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Summary of Results from Previous Cow »es

Grad, Div, Curl and the Laplacian in Cartesian Coordinates

In Cartesian coordinates, V = (a%, 5%, 5’%) For a scalar field ®(x) and a vector field

F(x) = (I, Fy, F3), we define:
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Laplacian (“del-squared Phi”)

Grad, Div and the Laplacian in Polar Coordinates
Cylindrical Polars (7,0, 2)

When the components (Fy, F, F3) of F are measured in cylindrical polar coordinates,
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Note: the formulae for plane polar coordinates (r, 0) are obtained-by selling % =l
Spherical Polars (r, 6, ¢)

When the components (Fy, I, ) of F are measured in spherical polar coordinates,
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Divergence and Stokes’ Theorems

Divergence Theorem in 3D: /// V.FdV = // F.ndS
v s

where the surface S encloses a volume V and n is its outward-pointing normal.
14 0
Divergence Theorem in 2D: // <0—f + 0_9) dedy = ]{(f dy — g dz)
A\ Oz Y
N c

where S is a plane region enclosed by a contour C' traversed anti-clockwise. We can
also write the right-hand side as $o F . ndl where F = (f,g) and n is the outward-
pointing normal on C.

Stokes’ Theorem: //(V x F).ndS = fF Ldl
o

S
where the open surface S is bounded by a contour €', n is the normal to S and dl is a

line element taken anti-clockwise around C.

Vectors and Matrices
Vector identities:

luf?=u.u
ux (vxw)=(u.w)v-(u.v)w
u.(vxw)=v.(wxu)=w.(uxv)
V(®T) = VY + ¥V

Vu.v)=ux (Vxv)+(u.V)v+vx(Vxu)+(v.V)u

V.(Pu)=dV.u+u.Ve
Viuxv)=v.(Vxu)-u.(Vxv)

Vx(Pu)=dV xu+Vdxu
Vx{uxv)=(V.v)u—u.Vv—(V.u)v+v.Vu

Viu=VY(V.u) -V x (V x u)

A matrix A is orthogonal if ATA = AAT = I where [ is the identity matrix and

AT is the transpose of A. This is true if and only if the columns of A are mutually
orthogonal unit vectors; similarly for the rows. Then A=! = AT, In 3D, an orthogonal
matrix is either a rotation, a reflection, or a combination of the two.

x is an eigenvector of a symmetric matrix A with eigenvalue A if Ax = Ax. The eigen-
values can be found by solving the equation det(A4 — AI) = 0. The three unit eigenvec-
tors are orthogonal (or in the case of repeated eigenvalues, can be chosen to be s0).

The determinant of a matrix is unchanged by adding a multiple of one row to a dif-
ferent row, or by adding a multiple of one column to a different column. Swapping
two rows changes the sign of the determinant, as does swapping two columns. Mul-
tiplying a row, or a column, by a constant factor « multiplies the determinant by .
If two rows, or columns, are the same, then the determinant is zero. For any square
matrices 4 and B, det AT = det A and det AB = del A det B.
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Fourier Series

Any (well-behaved) function f(z) with period L may be represented as the infinite
sum

2nrmw
A Ancos —— + By s
f(z) = Ap + "X:l ( cos + sin T )
where
Ag = / f(z)dz,
nre
An = L f( ) L dI)
2 [t 2z
By =~ f(z)sin 22 i,
L Jy L
A function f(z) which is defined only in the region 0 < @ < L may be represented as

a full Fourier Series as above by first making it into a periodic function with period
L; or may alternatively be represented cither by a Fouricr cosine series, in which only
the cosine terms appear, or by a Fourier sine series, in which only the sine terms ap-
pear. In the former case, f is first extended to —L < z < 0 by requiring it to be an
even function, and then made into a periodic function with period 2L; in the latter

case, it is first extended into an odd function and then made periodic with period 2L.

Legendre Polynomials

Legendre’s equation for P(z) is

d dP

— (1 =1 AP =0.

dz <( ’ )d”c> *
The non-trivial solutions of this equation are ill-behaved at z = +1 except when
A = n(n + 1) for some non-negative integer n. Then the solutions are the Legen-

dre polynomials P,(z) of degree n. P,(x) is an even/odd function of z (i.e., contains
only even/odd powers of ) when n xs even/odd respectively. It is normallsed so that

" P,(1) = 1 (and therefore P,(—1) = (=1)"). Legendre polynomials are orthogonal:

0 m#mn,

/ P () Pu(z)dz = 3 -
m m =n.

They can be found explicitly using Rodrigues’ formula
1 4
Pilg) = —{(z* - 1)"}.
(z) 27! dan {(T ) }
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Taylor’s Theorem (complex version)

Any smooth complex function can be expressed as a power series around z = zg in

the form
(o]
z) = z an(z — 29)"
n=0
where a, = f")(2)/n!.

Fourier Transforms

For suitable functions f(z), the Fourier Transform is defined by

- /w f(x)e~**de,

f(z) = 51-7; [ flk)e* = dk.

The Fourier Transform of f'(z) is ikf(k ). The Fourier Transform of f(z — a) for con-
stant a is e~ f(k). The convolution h = f g, defined by

(y) / f(z)g(y — z) dz,

and the inversion formula is

satisfies h(k) = f(k)F(k).

Laplace Transforms

For suitable functions f(z) which satisfy f(z) =0 for z < 0, the Laplace Transform is

defined by
10)= [ f@e .
Jo

The Laplace Transform of f'(z) is pf(p) — f(0). The Laplace Transform of f(z—a) for
constant a (remembering that f(z —a) = 0 for z < a) is ¢™7* f(p). The convolution
h = f g satisfies h(k) = f(k)g(k).
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Summary of Results from Chapter 1: Poisson’s Equation

Physical Origins of Poisson’s Equation

Steady-state heat equation VT = -S(x)/k .
Steady-state diffusion equation Vi = -S(x)/k
Electrostatic potential V20 = —p(x)/eg
Gravitational potential V2® = 47Gp(x)

Loy @(_\"9): Lo \@(3)

2 s : -
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or, more compactly,

Laplace’s Equation in 3D Spherical Polars, Axisymmetric Case

= ¥
. o s 1 9 [ ,09 1 9 Sme@g - Bevol= T (s)
’ or r2sinf 06 - uy 2::‘953 i,’,{ ey
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/V//@Vg\p —UV23)dV = !/(@V\P —~UV®P).ndS
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Green’s Function & the Integral Solution of Poisson’s Equation

If G(x;xg) is Green’s function satisfying

V3G = §(x — xp) inV

- iz on S
then the solution to Poisson’s equation with Dirichlet boundary conditions
V=0 inV QPPM{S
d=f onS N2
is ldoanty
‘ oG >
bxo) = [[[ o Glxixa)av + / Fo0 52 dS 4
v
by Sy )

1= (% fndv Ca [1F ([ fads §§ 7. Co61 ds - .
Fundamental Solutions » Y42 ree e BBOCENE
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Se.
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Images in Circles and Spheres 4776(&5 O ad 1> =5 -3
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g,,,,,

In either case, for Dirichlet boundary conditions the image point is at =2 6-(.3(_’::(‘5‘) = ;:‘t[-o(-qf {
- - ¥ C.A ¥

a?

= ——Xq,
X1 |X0|2 0;

with strength —1 in the 2D case (circle) and strength —a/|xo| in the 3D case (sphere)

Dot Erieun Mo 30 Sé(‘f-[\JS ~ SSKVE\A\/

S(F wldl = Kgfv.f ds
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Summary of Results from Chapter 2: Cartesian Tensors

Transformation Law

If a tensor of rank n has components T;;... measured in a frame with unit Cartesian
axes {ej, ez, e3} then its components in a frame with axes {e}, e3,e3} are given by

iljk... = lipljqler - - - Tpqr...
where the rotation matrix L is defined by
lij = eg . €5.

The components of L satisfy lixljx = 0i; and lgile; = ;.

The Kronecker Delta and the Alternating Tensor

1 i=j
% = {0 oy
+1 if (4,4,k) is a cyclic permutation of (1,2, 3)
gijr = { —1 if (4,7,k) is an anticyclic permutation of (1,2,3)
0  if any two of (4, ], k) are equal

EijkEklm = 0it0jm — Oimdj1
[x X y]i = €ijxT;Yk
det A = EijkAliAnggk

Symmetric and Antisymmetric Tensors

A tensor T;j... is symmetric in 4, j if Tijk... = Tjik... and antisymmetric in 4, j if
Tijk... = =Tjik...-

Any second rank tensor T can be decomposed into a symmetric part S and an anti-
symmetric part A where

Sij
Aij =

(Ti; + Tjs),
(T35 — Tjs)

Nol—= N

and
T,;j = Sij + A,J

Any antisymmetric second rank tensor A can be expressed in terms of a suitable vec-
tor w such that A;; = g;j5wk. (In fact, wy = %eklmAlm-)
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Diagonalisation of Symmetric Second Rank Tensors

If T is a symmetric second rank tensor with eigenvalues (principal values) A1, A2 and
A3 and corresponding unit eigenvectors (principal axes) €], €5 and ej3, then the com-
ponents of 7' in a frame whose axes coincide with the principal axes are

A1 000
0 X O
0 0 As

Isotropic Tensors

The most general isotropic tensors are:
Rank 0: Any scalar

Rank 1: Only the zero vector

Rank 2: \d;;

Rank 3: ek

Rank 4: A6,k + pixdji + v0;105k

Differential Operators

9; = 8/0z; is a tensor differential operator of rank 1.

va); = gi
.= O
[V xF]; = e”k%—% B
2
Ve = 821;;1
2
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Summary of Results from Chapter 3: Complex Analysis

Analyticity
A function f(z) is differentiable at z if the limit

f’(Z) — f(Z—}-(SZ) —f(Z)

6z—0 0z

exists and is independent of the direction taken by dz in the limiting process.

A function f(z) is analytic (or regular) in a region R C C if f'(z) exists and is contin-
uous for all z € R. It is analytic at a point zg if it is analytic in some neighbourhood
of zp, i.e., in some region enclosing zg.

Tl -

f(z) is analytic in R if and only if the Cauchy-Riemann equations
2\ = Ayl +io Pyl

ou Ov ou  Ov

o oy e
hold in R, where v=dotor Lé‘fj a

u(z,y) = Re f(z +iy) and v(z,y) =Im f(z +iy).
The functions u and v are harmonic, i.e., satisfy Laplace’s equation in two dimen-
sions. Vlu = vlu =D.

Laurent Expansions

If f(z) is analytic in some annulus centred at zo then there exist complex constants
an such that

within the annulus.

An isolated singularity of a function f(2) is a point zo at which f is singular, but
where otherwise f is analytic within some circle centred at zg. A Laurent Expansion
of f always exists about an isolated singularity.

If there are non-zero a, for arbitrarily large negative n then f has an essential iso-
lated singularity at zo.

If a, = 0 for allm < —N, but a_y # 0, where N is a positive integer, then f has a
pole of order N at zo.

If a,, = 0 for all n < 0 then f has a removable singularity at 2o.
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Residues

If f(z) has an isolated singularity at zo, then its residue there is given by the coef-
ficient a_; in the Laurent Expansion.

If f(z) has a pole of order IV at zp, then

N-1
res f(z) = lim {(N i o ddzN_l ((z - ZQ)Nf(Z))} :

If f(z) has a simple pole at 2o thén
res f(z) = lim {(z — z0) f(2)}-

z=2y zZ—rzp

The residue of f(z) at infinity is defined to be equal to the residue of (72f(1/¢) at
€= 0. _ ~ ,

Branch Cuts

The canonical branch cut for both log z and 2%, where « is not an integer, is along
the negative real axis from 0 to —oo. With this cut,

log z = logr + 0

and

Za — T_aezaf)

where z = re?? and —7 < 6 < 7.

No curve may cross a branch cut.
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Summary of Results from Chapter 4: Contour Integration

(1= usrie
Cauchy’s Theorem dz= dotsidy
If f(z) is analytic in a simply-connected domain R, then for any simple closed curve
Cin R, ysy-# Uudy Tieagmmn § {20 dy 37 (urie)dr+ u’g)
N T e ey
re 7=
Al L, Swnpy onncle] Vet £ (upol \yr (-l > e 20 =
DU, N (R ol BEO: d“‘"’f‘&:f!
(We deduce that for any 1ntegra1 between two points 2o and 21, or round a closed n.df = :
curve, we may deform one contour of integration into another without affecting the -

QIDM

Sy
o
e

A M&@gw% ;

value of the integral so long as we do not cross any singularities of the 1ntegrand dur-4! = (dy d‘a‘

ing the deformation.) “ \ ey vl _(_\,,ledﬂ
(j): N Haa, P SWN o il
’ : .
The Integral of f'(z) €, ( — @ wi% -
If f(2) is analytic in a simply-connected domain R and the contour of integration lies

entirely in R, then

/z1 f'(z)dz = f(z1) — f(20)-

The Residue Theorem

If f(z) is analytlc in a simply-connected domain R except for a finite number of poles
at z = z1,22,...,2n, and C is a simple closedém in R enmrchng

the poles, then DC bt
\> Cwi s
74 f(z) z—27mz res f(z / t '“MW"/
C

€ 2 =2t Ee

In particular, if C is a simple closed curve encircling z¢ in a positive (anticlockwise) L

sense and n is an integer,
_J0 n#—1
?{C(Z_ZO) i = {271—2 n=-—1

Cauchy’s Formula

§T‘:o

If f(z) is analytic in a simply-connected domain R and 2y lies in R, then

W) 1 £(2) (btd dosed C{MW}
T f(z0) = 2mi Jo 7z — 2o dz = j{a‘ﬂ % jc*Sﬁﬁfg )
L S

for any simple closed anticlockwise contour C in R encircling zo.

If instead f(z) has a singularity at 2o, and has Laurent E‘cpansmn Z an(z — zo)"

there, then the coefficients of the expansion are given by ({ o J% L tal- ga .y “
o L=
1 £(2) gt RS T
an = % . -
2mi Jo (2 — zo)’”+1 §2va FES ARl SR
3 ,cz» i fw T— Ymia
°y VL V.
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Jordan’s Lemma

Let Cr be the semicircular contour of radius R in the upper half plane with centre

at the origin, traversed from +R on the real axis to —R; let C'p be the semicircular
contour of radius R in the lower half plane with centre at the origin, traversed from
+R to —R; and let f(z) be an analytic function (except possibly for a finite number
of poles) which satisfies f(z) — 0 as |z| — oo. Then for any real constant A > 0,

(2)e**dz = 0
Cr
as R — oo; while for A < 0,

f(z)e**dz = 0
Cr

as R — oo.

The Inverse Laplace Transform

If f(¢) (which vanishes for t < 0) has Laplace Transform f(p) then the Bromwich
Inversion Formula is

1 Y4100 .

fO0=5m [ Fwerdp
21t Joyoies

where the Bromwich inversion contour runs along the line Rep = 7, where 7 is a real

constant which lies to the right of all the singularities of f(p)-

If f(p) — 0 as |p| = oo, and if f(p) has poles at p = p1,p2,...,Pn (but no other
singularities, e.g. branch cuts), then

0 t<0
ft) = Zn:przes (f(p)ept) £>0
] p=px

?O{ ND(V\/\A,}‘ (\/\o(j\ﬁS ‘F
(Muhytt TIC\ Naw, g = ' T

it SY’W\%}M pT -ﬁa,%(;xﬂ\y;im
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