$$
\sqrt{1156}
$$

What is the approximate area of the Isle of Wight?

If two people can stand in $1 \mathrm{~m}^{2}$, what fraction of the 2012 worldwide population (7.046 billion) could fit on the IOW?

IOW area is approximately $\frac{1}{2} \times 21 \times 37=390 \mathrm{~km}^{2}$
[According to Google, the 'official' area is $380 \mathrm{~km}^{2}$]
$390 \mathrm{~km}^{2}=390 \times(1000 \mathrm{~m})^{2}=3.9 \times 10^{8} \mathrm{~m}^{2}$
$\frac{3.9 \times 10^{8} \mathrm{~m}^{2}}{0.5 \mathrm{~m}^{2}}=7.8 \times 10^{8}$
$\frac{7.8 \times 10^{8}}{7.046 \times 10^{9}}=11.1 \%$

Dome of the Rock Qubbat As-Sakhrah has a diameter of 20 m . What is surface area of the 11 dome? Assume it is a hemisphere. (From the photo, this is likely to be an underestimate

King Hussain of Jordan paid $\$ 8.2$ million in 1993 for the 80 kg of gold which was used to cover the roof. If the density of gold is 19.3 grams per cubic cm , what is the thickness of gold?

PLASMA LABORATORY

Dome surface area is $A=\frac{1}{2} \times 4 \pi R^{2}$

$$
\begin{aligned}
& R=10 \mathrm{~m} \\
& A=2 \pi \times 100=628.3 \mathrm{~m}^{2}
\end{aligned}
$$

$$
19.3 \mathrm{~g} / \mathrm{cm}^{3}=\frac{19.3 \times 10^{-3} \mathrm{~kg}}{\left(10^{-2} \mathrm{~m}\right)^{3}}=1.93 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}
$$

Volume of gold is $\quad V_{\mathrm{Au}}=\frac{80 \mathrm{~kg}}{1.93 \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}}=4.15 \times 10^{-3} \mathrm{~m}^{3}$

Thickness of gold is $\quad t=\frac{4.15 \times 10^{-3} \mathrm{~m}^{3}}{628.3 \mathrm{~m}^{2}}=6.60 \times 10^{-6} \mathrm{~m}$

$$
t=6.6 \mu \mathrm{~m}
$$

The depth of water just off Pukearuhe Beach in New Zealand varies with time t /hours according to the formula:

$d=2+\sin 20 t$

A seismic experiment on the beach can occur when this depth is less than 2 m . Otherwise the

- equipment will be washed away!

What is the time window for the experiment?

$d=2+\sin 20 t$

One period T hours of the tide is when $20 \mathrm{~T}=360^{\circ}$

Therefore $\mathrm{T}=18$ hours
Time window for the experiment is:

0900 till 1800

The resolution of a radar which transmits over frequency range of Δf is

$$
\delta R=\frac{c}{2 \Delta f}
$$

What is the resolution in metres if $\Delta f=200 \times 10^{6} \mathrm{~Hz}$?
[The speed of light $c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$]

$$
\begin{aligned}
& \delta R=\frac{c}{2 \Delta f} \\
& 1 \mathrm{~Hz}=1 \mathrm{~s}^{-1} \\
& \delta R=\frac{2.998 \times 10^{8} \mathrm{~ms}^{-1}}{2 \times 200 \times 10^{6} \mathrm{~s}^{-1}} \\
& \delta R=0.75 \mathrm{~m}
\end{aligned}
$$

This means the radar could resolve aircraft features such as length, position of engines, tailfin etc!

Gnallumen hevea

Radius of the Earth $R=6.378 \times 10^{6} \mathrm{~m}$
Distance to the horizon is approximately

$$
d=\sqrt{2 \times \frac{4}{3} R h}
$$

If radar height $h=30 \mathrm{~m}$, how far away is the horizon?

Radius of the Earth $R=6.378 \times 10^{6} \mathrm{~m}$
Distance to the horizon is approximately

$$
d=\sqrt{2 \times \frac{4}{3} R h} \quad \begin{aligned}
& \text { If radar height } h=30 \mathrm{~m}, \text { how } \\
& \text { far away is the horizon? }
\end{aligned}
$$

$$
d=\sqrt{2 \times \frac{4}{3} \times 6.378 \times 10^{6} \times 30} \mathrm{~m}
$$

$$
d=22.6 \mathrm{~km}
$$


```
\(\mathrm{p}=0\);
for \(\mathrm{n}=1: 12\)
        for \(m=1: n\)
        \(p=p+m ;\)
        end
end
```

What is p ?
What has this number got to do with a popular festive carol?

The total number of presents in the carol "The Twelve Days of Christmas" is:

$$
\begin{aligned}
& 1+ \\
& 1+2+ \\
& 1+2+3+ \\
& 1+2+3+4+ \\
& 1+2+3+4+5+ \\
& 1+2+3+4+5+6+ \\
& 1+2+3+4+5+6+7+ \\
& 1+2+3+4+5+6+7+8+ \\
& 1+2+3+4+5+6+7+8+9+ \\
& 1+2+3+4+5+6+7+8+9+10+ \\
& 1+2+3+4+5+6+7+8+9+10+11+ \\
& 1+2+3+4+5+6+7+8+9+10+11+12
\end{aligned}
$$

There is actually a formula for this type of sum. If n is the 'number of days of Christmas' and p is the total number of presents

$$
p=\frac{1}{6} n(n+1)(n+2)
$$

e.g. $(1 / 6) \times 12 \times 13 \times 14=364$

Note if Christmas lasted all year

$$
p=(1 / 6) \times 365 \times 366 \times 367=8,171,255 \text { presents! }
$$

How far behind Michael Johnson would a 400 m runner be if he ran 50.0 s?

Michael Johnson covers 400 m in 43.18 s at World Record pace (set on $26^{\text {th }}$ August 1999, Seville and still holding in Dec 2013)

The other athlete covers the same distance in 50s at top speed, therefore he runs at an average speed of
$400 \mathrm{~m} / 50.0 \mathrm{~s}=8 \mathrm{~ms}^{-1}$
In 43.18 s he will have covered $43.18 \times 8=345.44 \mathrm{~m}$, so will be
54.56 m behind Michael Johnson!

The height of Annapurna 1 is 8091 m .
Base camp is at 4130 m . If the summit is at an elevation of 30 degrees, how far away is the face? (You may assume it is effectively vertical).

The height of Annapurna 1 is 8091 m .

Base camp is at 4130m. If the summit is at an elevation of 30 degrees, how far away is the face? (You may assume it is effectively vertical).

Annapurna 1

Annapurna
Base Camp
$x \tan 30^{\circ}=3961 \mathrm{~m}$
(ABC) at 4130m

$$
\frac{x}{\sqrt{3}}=3961 \mathrm{~m}
$$

Maurice Herzog and Louis Lachenal, of a French expedition led by Maurice Herzog (including Lionel Terray, Gaston Rébuffat, Marcel Ichac, Jean Couzy, Marcel Schatz, Jacques Oudot, Francis de Noyelle), reached the summit on 3 June 1950.

Mera Peak, 6476m

If Mount Everest is a 30° angled square based pyramid of height (from the Khumbu glacier) of 3500 m , what is the mountain's mass in kg , if rock density is $3000 \mathrm{~kg} / \mathrm{m}^{3}$?
$3500=r \tan 30^{\circ}$
$3500=r \frac{1}{\sqrt{3}}$
$r=3500 \sqrt{3}$
$\frac{1}{2} x=r \cos 45^{\circ}$
Volume of a pyramid is $1 / 3$ x base area x perpendicular height

Grisedale tarn, Lake District

George the Bear. Mallory Challenge 2013, Scafell Pike

Indus river, near Basgo

