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Isaac Newton
(1642-1727) developed
a mathematical model of 
Gravity which predicted the 
elliptical orbits proposed by 
Johannes Kepler (1571-1630)
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Gravitational field strength

inside and outside a uniformly dense

spherical planet
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For our 

Solar 

System: ( )
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A very strong correlation of Kepler III to orbital data for planets in our solar system!

Challenge #1:  Replicate this Kepler III correlation in Excel or Python or MATLAB
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Assume all orbits are ellipses with the Sun at the (left) focus. Let this sun 

position be the origin of a Cartesian coordinate system, and assume the sun is 

stationary.
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Challenge #2:  Plot elliptical orbits of the planets using Excel, Python, MATLAB 

Use the data in the table on the previous

slide. Use a 1,000 linearly spaced angles

  for each orbit.

Use an axis scale of AU

Plot the inner five planets on a separate

scale to the outer planets

We will assume at this point all elliptical orbits

are in the same plane ... but this is not quite 

true!
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Where are the planets?

Watch The Solar System to Scale video!

https://www.youtube.com/watch?v=zR3Igc3Rhfg
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Challenge #3: Create a 2D animation of the solar system orbits Use an axis 

scale of AU
Plot the inner five planets on a separate scale to the outer planets

For the inner planets, set a frame rate such that one orbit of the Earth takes a 

second i.e. one year is one second. For the outer planets, set the orbit of Jupiter 

to take one second.

Run the simulation 

till the outermost 

planet completes 

at least one orbit.

YouTube example video

https://youtu.be/ED-_xN9Jufs


Challenge #4: 

Create a 3D 

animation of the 

solar system orbits

Use the elliptical inclination angle  (See next slide). Most orbits won’t 
change much, but Pluto is the exception! The coordinate change is:

' cos ' sin 'x x z x y y = = =

YouTube example video

https://youtu.be/jqxRgs-oHmc
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all zero, or perhaps a

random angle for each

planet’s orbit.



Calculating orbit angle vs time

Equal areas swept out in 

equal times
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from polar angle using Kepler II:
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Evaluate this 

numerically

From Kepler III:
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Challenge #5:  Calculate orbit angle vs time for an eccentric orbit (e.g. pluto) 

and compare to a circular version with the same period.
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To evaluate the angle integral, use 

Simpson’s rule, which approximates 

the integrand of an integral with a 

series of quadratic curve segments.

h is the strip width

Determine time vs angle for three periods of

Pluto’s orbit, using d = h =  1/1000.
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You’ll have to evaluate the integral over a range of polar angles, 

whichamounts to a cumulative sum. Many languages have functions 
(such as cumsum in MATLAB) that can perform efficient operations 
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To finish off this numeric 

method, interpolate the polar 

angle vs time array for the 

eccentric orbits at evenly 

spaced times, that form the 

input of the function to 

determine angle vs time.
i.e. you’ll get angles at 

the times that you want, 

rather

than the other way 

round.



%Numeric method to compute polar angle vs orbit time

function theta = angle_vs_time( t, P, ecc, theta0 )

 

%Angle step for Simpson's rule

dtheta = 1/1000;

 

%

 

%Number of orbits

N = ceil( t(end)/P );

 

%Define array of polar angles for orbits

theta = theta0 : dtheta : ( 2*pi*N + theta0 );

 

%Evaluate integrand of time integral

f = (1 - ecc*cos(theta) ).^(-2);

 

%Define Simpson rule coefficients  c = [ 1, 4, 2, 4, 2, 4, ....1 ]

L = length(theta);

isodd = rem( 1:(L-2),2 ); isodd( isodd==1 ) = 4; isodd( isodd==0 ) = 2;

c = [1, isodd, 1];

 

%Calculate array of times

tt = P*( (1-ecc^2)^(3/2) )*(1/(2*pi))*dtheta*(1/3).*cumsum( c.*f );

 

%Interpolate the polar angles for the eccentric orbit at the circular orbit

%times

theta = interp1( tt, theta, t, 'spline' );

MATLAB example code for 

determining polar angle vs 

time for an elliptical orbit

Note time

is an input



Challenge #6: Solar system spirograph!

Choose a pair of planets and determine their orbits vs time. At time intervals of t, 

draw a line between the planets and plot this line. Keep going for N orbits of the 

outermost planet.

N = 10 ,  t = N x maximum orbital period /1234, might be sensible parameters.

inspired by: https://engaging-data.com/planetary-

spirograph

https://engaging-data.com/planetary-spirograph/
https://engaging-data.com/planetary-spirograph/






Challenge #7: Use your orbital models to plot the orbits of the other bodies in the solar 

system, with a chosen object (e.g. Earth) at a fixed position at the origin of a Cartesian 

coordinate system. i.e. choose a coordinate system where your chosen object is at (0,0,0).

Claudius Ptolemy  

(100-170 AD)

It is perfectly fine for 
the Earth to be the 

centre of the Universe! 
Just don’t expect those 

nice ellipses that 
Johannes will discover 
in about 1500 years...













What about systems of more than two stars or planets?

We need a numeric method!



The Verlet Method implies constant acceleration motion 

between fixed timesteps.
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calculate the velocity update.

What about systems of more than two stars or planets?

We need a numeric method!
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Ring orbit sim



Interacting 

galaxies

sim

Note the spontaneous

formation of ‘tidal tails’



A possible explanation for common spiral galactic forms



Messier 83 galaxy





random_stars.m



Sagittarius A* is a supermassive

black hole in the centre of the Milky 

Way galaxy. It has a mass of about 4.2 

million solar masses.

Although nearby star orbits

look complex, the distances

involved  (and the relative mass of 

the black hole) mean you can

model each as an elliptical orbit in 

a two-body system.



Tidal forces
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‘Extra’ gravity compared

to centre of moon
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As of 2017, the best estimate 

for the age of the Universe is 

13.799 +/- 0.021 billion years 

using the Lambda-CDM 

model and observations of the 

Cosmic Microwave 

Background (CMB) radiation 

via Planck and Wilkinson 

Microwave Anisotropy 

(WMAP) probe (and others). 

The age of an 

expanding 

Universe

0v H d=
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