

Gravity \& astrophysics

Dr Andrew French.
December 2023.

British Physics Olympiad

Isaac Newton

 (1642-1727) developed a mathematical model of Gravity which predicted the elliptical orbits proposed by Johannes Kepler (1571-1630)Planet and star masses

Force of
$\longrightarrow F=\frac{G m M}{r^{2}}$
$\longrightarrow G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

gravity
Universal $\underset{\substack{\text { gravitational } \\ \text { constant }}}{ } \longrightarrow G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$

Orbital period P

Semiminor axis
$2 b$

$$
G=6.67 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2} \quad M_{\odot}=1.9891 \times 10^{30} \mathrm{~kg}
$$

1. The orbit of every planet in the solar system is an ellipse with the Sun at one of the two foci.
2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. The wording of Kepler's laws implies a specific application to the solar system. However, the laws are more generally applicable to any system of two masses whose mutual attraction is an inverse-square law.

$$
\begin{aligned}
& r=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \theta} \begin{array}{l}
\text { Polar } \\
\text { equation } \\
\text { of ellipse }
\end{array} \\
& \varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}} \text { Eccentricity of }} \begin{array}{l}
P^{2}=\frac{4 \pi^{2}}{G(m+M)} a^{3} \quad \begin{array}{l}
\text { Orbital } \\
\text { period } P
\end{array} \\
\text { mass }
\end{array} \\
& \text { Johannes Kepler } \\
& \text { 1571-1630 mass }
\end{aligned}
$$

$\left(60 R_{\oplus}+\delta\right)^{2}=d^{2}+\left(60 R_{\oplus}\right)^{2}$
$\left(60 R_{\oplus}\right)^{2}+120 R_{\oplus} \delta+\delta^{2}=d^{2}+\left(60 R_{\oplus}\right)^{2}$
$120 R_{\oplus} \delta+\delta^{2}=d^{2} \Rightarrow 120 R_{\oplus} \delta \approx d^{2}$
$\therefore \delta \approx \frac{d^{2}}{120 R_{\oplus}}$

Cybertron diametric transport

Simple
Harmonic
Motion

$$
m \ddot{x}=-\frac{G\left(\frac{4}{3} \pi x^{3} \rho\right)^{m}}{x^{2}} \Rightarrow \ddot{x}=-\frac{-}{3} \pi G \rho x
$$

$$
\begin{aligned}
& \ddot{x}=-\left(\frac{2 \pi}{P}\right)^{2} x \\
& x=R \cos \left(\frac{2 \pi t}{P}\right)
\end{aligned}
$$

$$
P=\sqrt{\frac{3 \pi}{G \rho}}
$$

$\rho_{\text {titanium }}=4,510 \mathrm{kgm}^{-3}$

$$
\rho_{\text {earth }}=5,513 \mathrm{kgm}^{-3}
$$

$P_{\text {cybertion }}=93 \mathrm{~min}$

$$
P_{\text {eath }}=84 \mathrm{~min}
$$

Object	Mass in Earth masses	Distance from Sun in AU	Radius in Earth radii	Rotational period /days	Orbital period years
Saturn	95.16	9.58	9.45	0.44	29.63
Uranus	14.50	19.29	4.01	0.72	84.75
Jupiter	317.85	5.20	11.21	0.41	11.86
Sun	332,837	-	109.12	-	-
Neptune	17.20	30.25	3.88	0.67	166.34
Pluto	0.00	39.51	0.19	6.39	248.35
Mars	0.107	1.523	0.53	1.03	1.88
Venus	0.815	0.723	0.95	243.02	0.62
Mercury	0.055	0.387	0.38	58.65	0.24
Earth	1.000	1.000	1.00	1.00	1.00

Gravitational field (in terms of $\mathrm{g}=$ $9.81 \mathrm{~ms}^{\wedge}-2$)
1.07
0.90
2.53
27.95
1.14
0.09
0.38
0.90
0.37
1.00

For our Solar System:
$m \ll M_{\odot}$

$$
P^{2}=\frac{4 \pi^{2}}{G\left(m+M_{\odot}\right)} a^{3}
$$

$$
P^{2} \approx \frac{4 \pi^{2}}{G M_{\odot}} a^{3}
$$

$$
\mathrm{Yr}^{2}=\frac{4 \pi^{2}}{G M_{\odot}} \mathrm{AU}^{3} \quad \therefore \frac{P}{\mathrm{Yr}} \approx\left(\frac{a}{\mathrm{AU}}\right)^{\frac{3}{2}}
$$

$1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m}$

A very strong correlation of Kepler III to orbital data for planets in our solar system!
Challenge \#1: Replicate this Kepler III correlation in Excel or Python or MATLAB

$$
P^{2}=\frac{4 \pi^{2}}{G(m+M)} a^{3}
$$

> Kepler III for exoplanets

$$
\left(\frac{P}{\mathrm{Yr}}\right)^{2}=\left(\frac{m+M}{M_{\odot}}\right)^{-1}\left(\frac{a}{\mathrm{AU}}\right)^{3}
$$

$1 \mathrm{AU}=1.496 \times 10^{11} \mathrm{~m} \quad M_{\odot}=1.99 \times 10^{30} \mathrm{~kg}$

Challenge \#2: Plot elliptical orbits of the planets using Excel, Python, MATLAB

Assume all orbits are ellipses with the Sun at the (left) focus. Let this sun position be the origin of a Cartesian coordinate system, and assume the sun is stationary.

$$
\begin{aligned}
& r=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \theta} \\
& \varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}} \therefore b=a\left(1-\varepsilon^{2}\right) \\
& P^{2}=\frac{4 \pi^{2}}{G(m+M)} a^{3}
\end{aligned}
$$

$x=r \cos \theta, y=r \sin \theta$
$\theta=0 \ldots .2 \pi$

Use the data in the table on the previous slide. Use a 1,000 linearly spaced angles θ for each orbit.

Use an axis scale of $A U$ true!

Plot the inner five planets on a separate scale to the outer planets

We will assume at this point all elliptical orbits are in the same plane ... but this is not quite
$\underset{\varepsilon=0.6, \mathrm{P}=7.91 \text { years. }}{2 a}$ Semi-major axis

Challenge \#3: Create a 2D animation of the solar system orbits

Use an axis scale of AU
Plot the inner five planets on a separate scale to the outer planets
For the inner planets, set a frame rate such that one orbit of the Earth takes a second i.e. one year is one second. For the outer planets, set the orbit of Jupiter to take one second.

$$
\begin{aligned}
& x=r \cos \theta, y=r \sin \theta \\
& \theta=\frac{2 \pi t}{P}
\end{aligned}
$$

Run the simulation till the outermost planet completes at least one orbit.

YouTube example video

Challenge \#4: Create a 3D animation of the solar system orbits

Use the elliptical inclination angle β. (See next slide). Most orbits won't change much, but Pluto is the exception! The coordinate change is:
$x^{\prime}=x \cos \beta \quad z^{\prime}=x \sin \beta \quad y^{\prime}=y$
β is the orbital inclination / degrees. In all cases the semi-major axis pointing direction is

$$
\mathbf{d}=d_{x} \hat{\mathbf{x}}+d_{y} \hat{\mathbf{y}}+d_{\mathbf{y}} \hat{\mathbf{z}}=\cos \beta \hat{\mathbf{x}}+\sin \beta \hat{\mathbf{z}}
$$

Object $\quad M / M_{\oplus}$	a / AU	ε	θ_{0}	β	R / R_{\oplus}	$T_{\text {rot }} /$ days	P / Yr
Sun 332,837	-	-	-	-	109.123	-	-
Mercury 0.055	0.387	0.21	*	7	0.383	58.646	0.241
Venus ${ }^{\dagger}$	0.723	0.01	*	3.39	0.949	243.018	0.615
Earth 1.000	1.000	0.02	*	0.00	1.000	0.997	1.000
Mars 0.107	1.523	0.09	*	1.85	0.533	1.026	1.881
Jupiter 317.85	5.202	0.0	*	1.3	11.209	0.413	1.861
Saturn 95.159	9.576	0.06	*	2.4	9.449	0.444	29.628
Uranus † 14.500	19.293	0.05	*	0.7	4.00	0.718	84.747
Neptune 17.204	30.246	0.01	*	1.7	3.883	0.671	166.344
Pluto † (0.003	39.509	0.2	*	17.	0.187	6.387	248.348
$\begin{aligned} & r=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \theta} \\ & \varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}} \\ & P^{2}=\frac{4 \pi^{2}}{G\left(m+M_{\odot}\right)} a^{3} \end{aligned}$	β is the orbital inclination /degrees. In all cases the semi-major axis pointing direction is $\mathbf{d}=d_{x} \hat{\mathbf{x}}+d_{y} \hat{\mathbf{y}}+d_{\mathbf{y}} \hat{\mathbf{z}}=\cos \beta \hat{\mathbf{x}}+\sin \beta \hat{\mathbf{z}}$ You could begin with all zero, or perhaps a random angle for each planet's orbit. $\begin{aligned} M_{\odot} & =1.9891 \times 10^{30} \mathrm{~kg} \\ R_{\odot} & =6.960 \times 10^{8} \mathrm{~m} \\ M_{\oplus} & =5.9742 \times 10^{24} \mathrm{~kg} \\ R_{\oplus} & =6.37814 \times 10^{6} \mathrm{~m} \\ 1 \mathrm{AU} & =1.495979 \times 10^{11} \mathrm{~m} \end{aligned}$						

$$
\begin{aligned}
& r=\frac{a\left(1-\varepsilon^{2}\right)}{1-\varepsilon \cos \theta} \\
& \varepsilon=\sqrt{1-\frac{b^{2}}{a^{2}}} \\
& P^{2}=\frac{4 \pi^{2}}{G\left(m+M_{\odot}\right)} a^{3}
\end{aligned}
$$

You could begin with all zero, or perhaps a random angle for each planet's orbit.

* For the current orbital polar angle θ_{0} (and indeed more accurate values for solar system parameters) see the website of the Jet Propulsion Laboratory (JPL) http://ssd.jpl.nasa.gov/
\dagger These planets rotate clockwise about their own internal polar axis. ("Retrograde"). All the other planets rotate anti-clockwise about their own internal axis. All the planets orbit the sun in an anticlockwise direction.

Calculating orbit angle vs time

Orbit time can be determined from polar angle using Kepler II:

$$
\frac{d A}{d t}=\frac{1}{2} \sqrt{G(m+M)\left(1-\varepsilon^{2}\right) a}
$$ equal times

$$
\begin{aligned}
& r^{2} \frac{d \theta}{d t}=\sqrt{G(m+M)\left(1-\varepsilon^{2}\right) a} \\
& \therefore \int_{\theta_{0}}^{\theta} r^{2} d \theta=t \sqrt{G(m+M)\left(1-\varepsilon^{2}\right) a} \\
& \therefore t=\frac{a^{2}\left(1-\varepsilon^{2}\right)^{2}}{\sqrt{G(m+M)\left(1-\varepsilon^{2}\right) a}} \int_{\theta_{0}}^{\theta} \frac{d \theta}{(1-\varepsilon \cos \theta)^{2}} \\
& \therefore t=\frac{a^{2}\left(1-\varepsilon^{2}\right)^{2}}{\sqrt{G(m+M)\left(1-\varepsilon^{2}\right) a}} \int_{\theta_{0}}^{\theta} \frac{d \theta}{(1-\varepsilon \cos \theta)^{2}}
\end{aligned}
$$

$\therefore t=\sqrt{\frac{a^{3}\left(1-\varepsilon^{2}\right)^{3}}{G(m+M)}} \int_{\theta_{0}}^{\theta} \frac{d \theta}{(1-\varepsilon \cos \theta)^{2}}$
From Kepler III: $P^{2}=\frac{4 \pi^{2}}{G(m+M)} a^{3}$

$$
t=P\left(1-\varepsilon^{2}\right)^{\frac{3}{2}} \frac{1}{2 \pi} \int_{\theta_{0}}^{\theta} \frac{d \theta}{(1-\varepsilon \cos \theta)^{2}} \quad \begin{aligned}
& \text { Evaluate this } \\
& \text { numerically }
\end{aligned} \quad \text { Note when: } \begin{aligned}
& \varepsilon \ll 1 \\
& t \approx P\left(\theta-\theta_{0}\right)
\end{aligned}
$$

Challenge \#5: Calculate orbit angle vs time for an eccentric orbit (e.g. pluto) and compare to a circular version with the same period.

To evaluate the angle integral, use Simpson's rule, which approximates the integrand of an integral with a series of quadratic curve segments.

You'll have to evaluate the integral over a range of polar angles, whichamounts to a cumulative sum. Many languages have functions (such as cumsum in MATLAB) that can perform efficient operations with arrays.

$$
P=248.348 \mathrm{Yr} \quad \varepsilon=0.25 \quad \theta_{0}=0
$$

Orbit angle vs time for pluto

\%Numeric method to compute polar angle vs orbit time function theta $=$ angle_vs_time (t , P, ecc, theta0)
\%Angle step for Simpson's rule dtheta $=1 / 1000$;
\%
\%Number of orbits
$\mathrm{N}=\operatorname{ceil}(\mathrm{t}(\mathrm{end}) / \mathrm{P})$;
\%Define array of polar angles for orbits theta $=$ theta $0:$ dtheta : ($2^{*} \mathrm{pi}^{*} \mathrm{~N}+$ theta 0$)$;
\%Evaluate integrand of time integral
$\mathrm{f}=\left(1-\mathrm{ecc}{ }^{*} \cos (\right.$ theta) $) .^{\wedge}(-2)$;
\%Define Simpson rule coefficients $c=[1,4,2,4,2$,
$\mathrm{L}=$ length(theta);
Note time is an input
isodd $=\operatorname{rem}(1:(\mathrm{L}-2), 2)$; isodd (isodd==1 $)=4$; isodd(isodd==0 $)=2$;
$\mathrm{c}=[1$, isodd, 1];
\%Calculate array of times
$\mathrm{tt}=\mathrm{P}^{*}\left(\left(1-\operatorname{ecc}^{\wedge} 2\right)^{\wedge}(3 / 2)\right)^{*}\left(1 /\left(2^{*} \mathrm{pi}\right)\right)^{*}$ dtheta${ }^{*}(1 / 3) .{ }^{*}$ cumsum (c. $\left.{ }^{* f}\right)$;
\%Interpolate the polar angles for the eccentric orbit at the circular orbit
\%times
theta = interp1 (tt, theta, t, 'spline');

Challenge \#6: Solar system spirograph!

Choose a pair of planets and determine their orbits vs time. At time intervals of Δt, draw a line between the planets and plot this line. Keep going for N orbits of the outermost planet.
$N=10, \Delta t=N \times$ maximum orbital period /1234, might be sensible parameters.

mercury earth spirograph
uranus neptune spirograph


```
neptune pluto spirograph
```


Challenge \#7: Use your orbital models to plot the orbits of the other bodies in the solar system, with a chosen object (e.g. Earth) at a fixed position at the origin of a Cartesian coordinate system. i.e. choose a coordinate system where your chosen object is at ($0,0,0$).

Claudius Ptolemy (100-170 AD)
inner solar system relative to earth

outer solar system relative to saturn

inner solar system relative to sun

inner solar system relative to venus

inner solar system relative to mercury

(b)
outer solar system relative to saturn

outer solar system relative to neptune

outer solar system relative to uranus

outer solar system relative to pluto

What about systems of more than two stars or planets? We need a numeric method!
$M 1=3, M 2=2 T=2.32$ years, $a=3 A U, k=1.1, a_{p}=0.965 A U$.

What about systems of more than two stars or planets?
We need a numeric method!
The Verlet Method implies constant acceleration motion between fixed timesteps.

$$
\begin{aligned}
& \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right) \\
& t_{n+1}=t_{n}+\Delta t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \\
& \mathbf{V}=\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
& \mathbf{A}=f\left(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V}\right) \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{A}\right) \Delta t
\end{aligned}
$$

Assume we can always calculate acceleration

Fixed timestep

Update position based upon constant acceleration motion between timesteps

Acceleration may depend upon velocity, so for greater precision we work out an intermediate velocity \mathbf{V}, update acceleration (A) and perform an average to calculate the velocity update.

Verlet method

$$
\begin{aligned}
& \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right) \\
& t_{n+1}=t_{n}+\Delta t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \\
& \mathbf{V}=\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
& \mathbf{A}=f\left(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V}\right) \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{A}\right) \Delta t
\end{aligned}
$$

Newton's Law of Gravitation

$$
\mathbf{a}_{n, i}=-G \sum_{j \neq i}^{N} M_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

$$
\begin{aligned}
& \mathbf{r}=\mathbf{r}_{M}-\mathbf{r}_{m} \\
& r=|\mathbf{r}|
\end{aligned}
$$

$M_{1}=3 M_{\odot}$
In this simulation: $\quad M_{2}=2 M_{\odot}$
$M_{3} \ll M_{\odot}$
$M 1=3, M 2=2 T=2.32$ years, $a=3 A U, k=1.1, a_{p}=0.965 A U$.


```
function gravity_sim_2_binary_stars_and_planet
```

$$
\begin{aligned}
& \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right) \\
& t_{n+1}=t_{n}+\Delta t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \\
& \mathbf{V}=\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
& \mathbf{A}=f\left(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V}\right) \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{A}\right) \Delta t
\end{aligned}
$$

$$
\mathbf{a}_{n, i}=-G \sum_{j \neq i}^{N} M_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

$M 1=3, M 2=2 T=2.32$ years, $a=3 A U, k=1.1, a_{p}=0.965 A U$.


```
%ᄋ% INPUTS %%%
%Semi-major axis of mutual star orbit in AU
a = 3;
```

\%Planet (initial) circular orbit radius about star 1
$\mathrm{ap}=\mathrm{a} / 3.11$;
\%Initial angle from x axis (anticlockwise) of planet /radians
theta0 $=$ pi/4;
\%Masses of stars in solar masses
$\mathrm{M} 1=3 ; \mathrm{M} 2=2$;
\%Initial vy velocity multiplier from mutually circular of stars
$\mathrm{k}=1.1$;
\%Number of orbital periods
num_periods $=50$;
\%Timestep in years
dt $=0.001$;
\%Fontsize
fsize $=18$;

요Axes limits

\%Starting period for plot
Pstart $=1.23$;

$$
\begin{aligned}
& \mathbf{a}_{n}=f\left(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n}\right) \\
& t_{n+1}=t_{n}+\Delta t \\
& \mathbf{r}_{n+1}=\mathbf{r}_{n}+\mathbf{v}_{n} \Delta t+\frac{1}{2} \mathbf{a}_{n} \Delta t^{2} \\
& \mathbf{V}=\mathbf{v}_{n}+\mathbf{a}_{n} \Delta t \\
& \mathbf{A}=f\left(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V}\right) \\
& \mathbf{v}_{n+1}=\mathbf{v}_{n}+\frac{1}{2}\left(\mathbf{a}_{n}+\mathbf{A}\right) \Delta t
\end{aligned}
$$

$$
\mathbf{a}_{n, i}=-G \sum_{j \neq i}^{N} M_{j} \frac{\mathbf{r}_{i}-\mathbf{r}_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

$M 1=3, M 2=2 T=2.32$ years, $a=3 A U, k=1.1, a_{p}=0.965 A U$.

Initial positions

$$
\begin{aligned}
X_{1}(0) & =-\frac{M_{2} a}{M_{1}+M_{2}} \\
Y_{1}(0) & =0 \\
X_{2}(0) & =\frac{M_{1} a}{M_{1}+M_{2}} \\
Y_{2}(0) & =0 \\
x(0) & =X_{1}(0)+a_{p} \cos \theta_{0} \\
y(0) & =a_{p} \sin \theta_{0}
\end{aligned}
$$

$$
\dot{X}_{1}(0)=0
$$

$$
\dot{Y}_{1}(0)=\frac{2 \pi k X_{1}(0)}{P}
$$

$$
\dot{X}_{2}(0)=0
$$

$$
\dot{Y}_{2}(0)=\frac{2 \pi k X_{2}(0)}{P} \quad \begin{aligned}
& \text { Initial } \\
& \text { velocities }
\end{aligned}
$$

$$
\dot{x}(0)=-2 \pi \sqrt{\frac{M_{1}}{a_{p}}} \sin \theta_{0}
$$

$$
\dot{y}(0)=-2 \pi \sqrt{\frac{M_{1}}{a_{p}}} \cos \theta_{0}+\dot{Y}_{1}(0)
$$

\% Gravity simulation which begins with a single Jupiter-like planet
\% orbiting a sun-like star, plus concentric circles of 'masslets' that act
\% like an accretion disc or dust cloud around the star. The planet and
\% masslets don't interact, and the star mass is assumed to be much larger
\% than then mass of the planet, even after it has shed mass.
\% After N planet rotations, the star loses fraction f of it's mass. The simulation
\% uses Verlet integration to determine the subsequent dynamics for another
\% M planet periods, before resetting.
$M S=2, t=1.6$
15

$\mathrm{M} 1=11, \mathrm{M} 2=3, \mathrm{~T}=31.6228, \mathrm{t}=3.39$

$M 1=5, M 2=3, T=14.7, t=1$
$\mathrm{M} 1=5, \mathrm{M} 2=3, \mathrm{~T}=14.7, \mathrm{t}=2$

$M 1=5, M 2=3, T=14.7, t=9.01$

$M 1=5, M 2=3, T=14.7, t=10$

$\mathrm{M} 1=5, \mathrm{M} 2=3, \mathrm{~T}=14.7, \mathrm{t}=11$

A possible explanation for common spiral galactic forms

```
*)
```

Gravity simulator using Verlet method: 52 masses


```
random_stars.m
```


Sagittarius \mathbf{A}^{*} is a supermassive black hole in the centre of the Milky Way galaxy. It has a mass of about 4.2 million solar masses.

Although nearby star orbits look complex, the distances involved (and the relative mass of the black hole) mean you can model each as an elliptical orbit in a two-body system.

Right Ascension difference from 17h 45 m 40.045 s

Tidal forces

Earth mass M_{\oplus}

$$
\mathbf{g} \approx-\frac{G M_{\oplus}}{R} \hat{\mathbf{r}}+\hat{\mathbf{r}} \frac{G M_{m}}{r^{2}}\left(\cos \theta-\frac{R}{r}\right)\left(1-\frac{3 R}{r} \cos \theta\right)-\hat{\boldsymbol{\theta}} \frac{G M_{m} \sin \theta}{r^{2}}\left(1-\frac{3 R}{r} \cos \theta\right)
$$

$F_{T}=\frac{\frac{4}{3} G \pi R^{3} \rho \delta m}{\left(r-R_{m}\right)^{2}}-\frac{G \frac{4}{3} \pi R^{3} \rho \delta m}{r^{2}}$
$F_{T}=\frac{4}{3} G \pi R^{3} \rho \delta m\left(\frac{1}{\left(r-R_{m}\right)^{2}}-\frac{1}{r^{2}}\right)$
$F_{T}=\frac{4}{3} \frac{G \pi R^{3} \rho \delta m}{r^{2}}\left(\frac{1}{\left(1-\frac{R_{m}}{r}\right)^{2}}-1\right)$
'Extra’ gravity compared to centre of moon

$$
F_{M}=\frac{4}{3} \frac{G \pi R_{m}^{3} \rho_{m} \delta m}{R_{m}^{2}}=\frac{4}{3} G \pi R_{m} \rho_{m} \delta m
$$

Édouard Roche 1820-1883

Therefore define the Roche limit to be when $F_{T}>F_{M}$:

PTO

$$
\frac{8}{3} \frac{G \pi R^{3} R_{m} \rho \delta m}{r^{3}}>\frac{4}{3} G \pi R_{m} \rho_{m} \delta m
$$

$$
\therefore r \lesssim 1.26 R\left(\frac{\rho}{\rho_{m}}\right)^{\frac{1}{3}}
$$

This is not too far from Roche's actual calculation, which considered the moon to be a 'tidally locked fluid satellite', with the effect
torting the moon from a spherical shape. In Roche's analysis

$$
r \lesssim 2.44 R\left(\frac{\rho}{\rho_{m}}\right)^{\frac{1}{3}}
$$

Édouard Roche 1820-1883

This means the Roche limit for the Earth Moon system is:

$$
\begin{aligned}
r & \lesssim 2.44 R_{\oplus}\left(\frac{5,513}{3,347}\right)^{\frac{1}{3}} \\
r & \lesssim 2.44 R_{\oplus} \times 1.181 \\
r & \lesssim 2.88 R_{\oplus}
\end{aligned}
$$

15231 galaxies from NASA Extragalactic Database (2008)
Hubble law $v=H_{0} d$ where: $\mathrm{H}_{0}=72.1 \mathrm{kms}^{-1} / \mathrm{Mpc}$

$v=\frac{d}{t} \quad v=H_{0} d$
$\therefore H_{0} d=\frac{d}{t} \quad \therefore t=\frac{1}{H_{0}}$
$t=\left(\frac{71.9 \times 10^{3} \mathrm{~ms}^{-1}}{3.086 \times 10^{22} \mathrm{~m}}\right)^{-1}=13.6$ billion years

1Mega-parsec (Mpc)
$=3.086 \times 10^{22} \mathrm{~m}$

Edwin Hubble 1889-1953

The age of an expanding Universe

As of 2017, the best estimate for the age of the Universe is 13.799 +/- 0.021 billion years using the Lambda-CDM model and observations of the Cosmic Microwave Background (CMB) radiation via Planck and Wilkinson Microwave Anisotropy (WMAP) probe (and others).

