

Seminar 02: An experimental data processing pipeline

Dr Andrew French. December 2021.

Experimental data processing pipeline using Excel & MATLAB

Raw data in Excel

Import into MATLAB. Assign spreadsheet columns to arrays e.g. x, y...

Perform analysis

- Averages
- Compute uncertainty
- Scaling
- Offset removal
- Linearization
- Line of best fit ...

Plot data + error bars, *underlaid* with model curve

Plot data vs model i.e. a y = x graph and Perform y = mx line of best fit

Plot linearized graph and use to determine Model parameters from gradient (and intercept if y = mx + c, not y = mx fit)

Raw data in Excel

$ml\ddot{\theta} = -mg\sin\theta \approx -mg\theta$ NEWTON II

$$\therefore \ddot{\theta} = -\frac{g}{l}\theta$$

T is the pendulum period

SHM:
$$\ddot{\theta} = -\left(\frac{2\pi}{T}\right)^2 \theta = -\omega^2 \theta$$

$$\theta(t) = \theta_0 \cos\left(\frac{2\pi t}{T}\right) = \theta_0 \cos \omega t$$

$$\therefore T = 2\pi \sqrt{\frac{l}{g}} \quad T^2 = 4\pi^2 \frac{l}{g} \quad g T^2 = 4\pi^2 \frac{l}{y} \quad \text{i.e.} \quad y = gx$$

Simple Harmonic Motion (SHM) of a pendulum

- * Ignore air resistance
- * Small angle approximation i.e. $\theta \ll 1$ radian

l + l £				<u> </u>			
length of							
pendulu	ten	ten	ten	ten	,		
m L /m	periods /s	periods /s	periods /s	periods /s	period T /s	x = T^2	y = 4*pi^2 * L
0.1	6.25	6.25	6.45	6.32	0.63	0.40	3.95
0.15	7.86	7.84	7.85	7.85	0.79	0.62	5.92
0.2	8.87	8.94	8.93	8.91	0.89	0.79	7.90
0.25	10.07	10.14	10.11	10.11	1.01	1.02	9.87
0.3	11.17	10.97	10.93	11.02	1.10	1.22	11.84
0.35	11.7	11.82	11.79	11.77	1.18	1.39	13.82
0.4	12.67	12.69	12.69	12.68	1.27	1.61	15.79
0.45	13.55	13.55	13.49	13.53	1.35	1.83	17.77
0.5	14.38	14.33	14.35	14.35	1.44	2.06	19.74
0.55	14.94	14.86	14.91	14.90	1.49	2.22	21.71
0.6	15.66	15.81	15.76	15.74	1.57	2.48	23.69
0.65	16	15.96	16	15.99	1.60	2.56	25.66
0.7	16.9	16.92	16.92	16.91	1.69	2.86	27.63
0.75	17.26	17.47	17.35	17.36	1.74	3.01	29.61
0.8	17.95	17.97	18.11	18.01	1.80	3.24	31.58
0.85	18.67	18.72	18.65	18.68	1.87	3.49	33.56
0.9	19.19	19.23	19.17	19.20	1.92	3.69	35.53
0.95	19.89	19.85	19.82	19.85	1.99	3.94	37.50
1	20.24	20.23	20.24	20.24	2.02	4.10	39.48
0.72	17.11	17.14	17.17	17.14	1.71	2.94	28.42

$ml\ddot{\theta} = -mg\sin\theta \approx -mg\theta N$	NEWTON II
$ml\ddot{\theta} = -mg\sin\theta \approx -mg\theta \mathbf{N}$ $\therefore \ddot{\theta} = -\frac{g}{l}\theta$	
SHM: $\ddot{\theta} = -\left(\frac{2\pi}{T}\right)^2 \theta = -a$	$\rho^2 \theta$
$\theta(t) = \theta_0 \cos\left(\frac{2\pi t}{T}\right) = \theta_0 \cos \theta$	ot .
$\therefore T = 2\pi \sqrt{\frac{l}{g}} T^2 = 4\pi^2 \frac{l}{g}$	$gT^2 = \underbrace{4\pi^2 I}_{y} \text{ i.e. } y = gx$

Length 1

Mass 1

Gravity

Friction

To complete, underlay (Period vs pendulum length)

data with a model curve

MEASURING g VIA A PENDULUM

03/06/2020

length of	ten	ten	ten				
pendulu	periods	periods	periods	ten			
m L/m	/s	/s	/s	periods/s	period T /s	x = T^2	y = 4*pi^2 * L
0.1	6.25	6.25	6.45	6.32	0.63	0.40	3.95
0.15	7.86	7.84	7.85	7.85	0.79	0.62	5.92
0.2	8.87	8.94	8.93	8.91	0.89	0.79	7.90
0.25	10.07	10.14	10.11	10.11	1.01	1.02	9.87
0.3	11.17	10.97	10.93	11.02	1.10	1.22	11.84
0.35	11.7	11.82	11.79	11.77	1.18	1.39	13.82
0.4	12.67	12.69	12.69	12.68	1.27	1.61	15.79
0.45	13.55	13.55	13.49	13.53	1.35	1.83	17.77
0.5	14.38	14.33	14.35	14.35	1.44	2.06	19.74
0.55	14.94	14.86	14.91	14.90	1.49	2.22	21.71
0.6	15.66	15.81	15.76	15.74	1.57	2.48	23.69
0.65	16	15.96	16	15.99	1.60	2.56	25.66
0.7	16.9	16.92	16.92	16.91	1.69	2.86	27.63
0.75	17.26	17.47	17.35	17.36	1.74	3.01	29.61
0.8	17.95	17.97	18.11	18.01	1.80	3.24	31.58
0.85	18.67	18.72	18.65	18.68	1.87	3.49	33.56
0.9	19.19	19.23	19.17	19.20	1.92	3.69	35.53
0.95	19.89	19.85	19.82	19.85	1.99	3.94	37.50
1	20.24	20.23	20.24	20.24	2.02	4.10	39.48
0.72	17 11	17 14	17 17	17 14	1 71	2 94	28.42

Initial angle = 20 degrees

Linearization, line of best fit to assess model correlation, and determine g

751116 E - 210114/116					
MODEL cu	rve				
_					
./m	T/s				
0.000	0.000				
0.010	0.201				
.020	0.284				
0.030	0.347				
.040	0.401				
0.050	0.449				
.060	0.491				
.070	0.531				
0.080	0.567				
.090	0.602				
.100	0.634				
.110	0.665				
.120	0.695				
.130	0.723				
.140	0.751				
.150	0.777				
.160	0.802				
.170	0.827				
.180	0.851				
.190	0.874				
.200	0.897				
.210	0.919				
.220	0.941				
.230	0.962				
.240	0.983				
.250	1.003				
.260	1.023				
).270	1.042				
.280	1.062				
.290	1.080				
.300	1.099				
.310	1.117				
.320	1.135				
.330	1.152				
.340	1.170				
.350	1.187				
.360	1.204				

Using g = 9.81N/kg

Run **pendulum.m** (right click, **run**) to execute a series of commands which constitute the rest of the data processing pipeline. The code can be modified for different experiments.

The key feature is that the code performs the process *automatically*, which can save considerable time when working on new data sets. MATLAB has the ability to perform useful analysis and create bespoke plots to a much higher standard than Excel. Students can focus on the *process*, in modifying the code, rather than the faff of dealing with Excel's defaults! However, I would always start with Excel as a first IT-based analysis.

MATLAB data processing pipeline

Import into MATLAB. Assign spreadsheet columns to arrays e.g. x, y...

```
%% IMPORT EXCEL DATA & PREPARE L, T arrays %%
```

%Import data. Four columns. First is pendulum length, next three are % ten periods /s.

[num, txt, raw] = xlsread('pendulum');
L = num(:,1); T10 1 = num(:,2); T10 2 = num(:,3); T10 3 = num(:,4);

%Determine period T /s and the (unbiased estimator) of the error in T.

 $\mbox{\ensuremath{\$}}\mbox{The second argument of the std function uses the /(N-1) normalization$

 $T = mean([T10_1, T10_2, T10_3], 2)/10;$

2930

3132

33

34 -

35 -

3637

38

40 -

Terror = std([T10 1, T10 2, T10 3], 0, 2)/10;

```
44
                 %% ANALYSIS: Compare T vs L data to model T(L) with actual q %%
45
46
                 %Determine model prediction of T using actual value of g
                 Tmodel = 2*pi*sqrt(L/q);
47 -
48
49
                 Determine model at a much finer grid of L values
50 -
                 LL = linspace(0, max(L), 1000); TTmodel = 2*pi*sqrt(LL/q);
51
52
                 %Plot model curve of T vs L
53 -
                 figure ('name', 'model vs data', 'color', [1 1 1], ...
54
                           'units', 'normalized', 'position', [0.05, 0.05, 0.9, 0.85]);
55 —
                 plot(LL, TTmodel, 'b-', 'linewidth', 2); hold on;
56-
                 set ( gca, 'fontsize', fsize ); grid on;
57
58
                 %Plot data error bars
                 x = L; y = T; y
59 -
60 -
                 xneq = Lerror*ones(size(L)); xpos = Lerror*ones(size(L));
                errorbar(x,y,yneq,ypos,xneq,xpos,'o','color','r');
61 -
62
63
                 %Graph labels etc
64 -
                 xlabel('Pendulum length L /m'); ylabel('Pendulum period T /s');
                title('Pendulum data underlaid with model using g=9.81N/kg');
65 -
66 - 
                 legend({'Model', 'Data'});
67
68
                 %Print a PNG file
69 -
                print( qcf, 'data underlaid with model.png','-r300','-dpng' );
70 -
                 if close after print==1; close(qcf); end
```

Plot data + error bars, *underlaid* with model curve


```
%% ANALYSIS: Determine line of best fit of the form y = m*x between T data and T model
% For 100% correlation, the gradient m = 1 and product-moment correlation coefficient r = 1.
y = Tmodel; x = T; [yfit, xfit, r, m, dm, yupper, ylower, s] = bestfit(x, y);
%Plot line of best fit
xlabel str = 'Period T data /s';
                                                                 These are sub-functions
ylabel str = 'Period T model = 2\pi*sqrt(L/g) /s';
                                                                 which perform the line of
plot LOBF( x,y, yfit,xfit,r,m,dm,yupper,ylower,...
    fsize, msize, xlabel str, ylabel str);
                                                                 best fit and associated plots.
                                                                 They should be generic,
%Plot y = x for visual check
                                                                 regardless of the dataset.
plot([0;x], [0;x], 'm-', 'linewidth', 1);
legend({'Lfit', 'Lfit upper','Lfit lower','x,y data','y = x'},...
    'location', 'southeast'); axis equal; axis tight;
Set sensible x, y limits to include origin
xlimits = get(gca,'xlim'); set( gca, 'xlim',[0,round( xlimits(2) )] );
ylimits = get(gca,'ylim'); set( gca, 'ylim',[0,round( ylimits(2) )] );
print( gcf, 'model vs data.png','-r300','-dpng' );
if close after print==1; close(gcf); end
```

$$T = 2\pi \sqrt{\frac{L}{g}}$$

74

75

77 78

76 —

79 —

-08

31 —

32

33

34

35 —

36-

90 -

91 -

92 -

93 —

94

Model variation of pendulum period T with pendulum length L

Plot data vs model i.e. a y = x graph and Perform y = mx line of best fit

$$T = 2\pi \sqrt{\frac{L}{g}}$$

Model variation of pendulum period with pendulum length

If you don't need to find parameters from data, simply comparing model vs measurement is a very clear first quantitative analysis

```
%% ANALYSIS: Determine q from data %%
%Determine y = 4*pi^2*L and x = T^2
```

But if you *do* need to find parameters, **linearize**, and then perform a line of best fit

 $x = T.^2; y = 4*pi^2 * L;$

%Determine upper and lower values for error bar calculation $x \text{ upper} = (T + Terror).^2; x lower = (T - Terror).^2;$

 $y_{upper} = 4*pi^2 *(L + Lerror); y_{lower} = 4*pi^2 *(L - Lerror);$ % Determine line of best fit of the form y = m*x.

%Plot line of best fit

%Plot data error bars

% Gradient m is q in this case

[yfit,xfit,r,m,dm,yupper,ylower,s] = bestfit(x,y);

xlabel str = $'(T/s)^2'$; ylabel str = $'4\pi^2 (L/m)'$;

plot LOBF(x,y, yfit,xfit,r,m,dm,yupper,ylower,... fsize, 0.001, xlabel str, ylabel str);

%Plot what the line should be, given the actual value of g plot(x, q*x, 'm-', 'linewidth', 1);

errorbar(x,y,yneq,ypos,xneq,xpos,'o','color','r'); %Add a legend

legend({'Lfit', 'Lfit upper', 'Lfit lower', '',... 'Using q=9.81N/kg','x,y data'},'location','southeast')

So g is the gradient of the x,y graph in our case

 $T = 2\pi \sqrt{\frac{L}{g}}$ $\therefore 4\pi^2 L = g T^2$

Plot linearized graph and use to determine model parameters from gradient (and intercept if y = mx + c, not a y = mx fit)

yneg = y - y lower; ypos = y upper - y; xneg = x - x lower; xpos = x upper - x;

$$T = 2\pi \sqrt{\frac{L}{g}} \quad \therefore 4\pi^2 L = g T^2 \quad \Rightarrow y = gx$$

In our case, our gradient (and hence calculated g) is systematically lower than what it should be.

Excel to MATLAB data processing pipeline example:

A mass-spring system with damping, with position recorded via an ultrasonic sensor and a datalogger.

- Suggested homework
- Q&A

