
DATA & ERROR ANALYSIS                                              AF February 2020

                                           

Standard form. Very small and very large quantities are tedious (and error prone) to write out using full decimal notation.  

Standard form:  e.g. 
116.67 10  is an integer between 1 and 9 followed by 1N   digits, where N is the number of 

significant figures of the quantity. The power of 10 (the ‘exponent’) gives you an immediate sense of scale. 

  

Precision vs accuracy.  A precise measurement is performed to a high number of significant figures. This means the 

random error in the measurement (i.e. the standard deviation) is very small compared to the mean value. In calculations, one 

should quote a answer to the worst precision (i.e. lowest number of significant figures) of the input values.  Accuracy relates 

to the degree of systematic error. A time of 12.345s may be very precise, but could easily be 2.000s out from a true value of 

10.345s if there is some form of accidental offset in the timing system. 

 

Errors.  All measurable quantities will be subject to uncertainty. If quantities , ...x y  are within a known range, we can use 

upper and lower bounds to determine the range of combined quantities.  e.g. x x x
 
   , y y y

 
   

Therefore: 
2 2 2x y x y x y

   
    and 

2 2 2x y x y x y
  

  .  Note the mixing of bounds in the last example. 

If errors are normally distributed, the ‘Law of Errors’ can be useful (although may result in an artificially tighter 

uncertainty than upper and lower bounds). Let ( , , ..)f x y z  be a function of measureable quantities e.g. 
x

x x   . 

f
f f    where ( , , ...)f f x y z   :            
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 You add the (power weighted) squares of fractional errors. 

If a quantity x  is subject to random error and N  independent measurements  ix  are made, the unbiased estimate of the 

mean value of x  is: 1

1

N

N i

i

x x


  . Since the mean value is used in the calculation of the standard deviation, the unbiased 

estimate of the standard deviation in x  (i.e. the ‘error’ in x ) is:  
2

1
1

1

N

Nx i

i

x x




  . We can quote:  
x

x x    

Units and dimensional analysis.  Equations relate quantities in the physical sciences. For an equation to be valid it must be 

dimensionally consistent as well as numerically. In other words if the left side of the equation is a mass (in kg), then the 

combination of quantities on the right hand side of the equation must also yield kg. This idea can be used to guess the form 

of various equations. e.g. the period of a pendulum T  may depend upon pendulum length l  , the strength of gravity g   

and pendulum bob mass M  . Therefore assert 
a b cT kl g M .  Noting dimensions:  [ ]T s   

2s [ ] m m s kga b b ck       . If constant k  is assumed to be dimensionless, by considering the powers of SI 

(International System or Metric) units  s, m, kg : T k l g .  The constant k  is actually 2 . (See the Simple Harmonic 

Motion sheet).  

 

For many equations it is useful to write them in dimension scaled, i.e. ‘dimensionless’ form. This can greatly aid 

comprehension, and ‘ready-reckoning’ quick-calculation usage. For example Kepler’s Third law of orbital motion about a 

single massive star of mass M  can be written as:      
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Yr AUT M M a  where Yr is an earth year 

( 365 24 3600s  ), M is the mass of the Sun and 
11AU 1.496 10 m   (‘Astronomical Unit’) is the average radius of 

the Earth’s orbit about the Sun. T  is the orbital period and a  is the semi-major axis of the orbit (‘radius’ if a circular 

orbit). 

 

Scaling equations often results in various important dimensionless groups. These pure numbers characterize a purely 

mathematical relationship, and can be very useful in building numerical models - particularly when the equations 

themselves cannot be solved easily. e.g. Optics the refractive index n  is the  speed of light in a vacuum / speed of light in a 

medium, in fluid dynamics the Reynold’s number (Re) is the fluid density   speed characteristic length / dynamic 

viscosity. Once the Reynold’s number exceeds a certain range of values, any fluid will become turbulent rather than laminar 

(‘smoothly flowing’). In other words, dimensionless scaling can tease out universal behaviour of physical laws, as encoded 

by their mathematical relationships. 

 



 

 

Linear regression 

Perhaps the most important analytical tool in the physical sciences is the ability to quantify the validity of a model relating a 

set of measurable parameters. The idea is as follows:  

 Rearrange the model in such a way that it becomes a linear equation of the form  y mx c   or y mx if direct 

proportion is assumed. e.g. ‘potential difference is proportional to current in a fixed resistor.’ 

 Plot experimental  ,x y  data on a graph and determine the line of best fit through the data. 

 Determine gradient m   and vertical intercept c  from the line of best fit. 

 Determine the standard deviations (‘errors’) of both gradient m   and intercept c  , and a quantitative measure of 

how good the fit is (this is called the product moment correlation coefficient r ). 

The concept is to find ,m c  minimize a sum of squared deviations  
2
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
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The recipe for linear regression (which can readily be inputted into a spreadsheet or computer program) is: 
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For a y mx c   line of best fit: 

 
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For a y mx  line of best fit:  
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The product moment correlation coefficient is: 
cov[ , ]

[ ] [ ]

x y
r

V x V y
 .  This is +1 for a perfect positive gradient line of best fit, 

and -1 for a perfect negative fit. It is zero for no discernible correlation. 

 

Question 1 

(i) In Greek mythology, King Sisyphus was doomed to push a large boulder endlessly up a hill. Unfortunately he 

 would never reach the top, and the boulder would always roll back down again. Sisyphus (who was outrageously 

 punished for outsmarting the somewhat prideful God Zeus) decides to time the rolls to make him feel better. His 

 measurements are:  7.52s, 7.86s, 7.15s, 7.33, 7.44s.  Determine the time t  in the form 
t

t t   . 

 (ii) Sam trains for the Senior cross-country by running the route several times. He always gets a little lost and also 

 forgets to bring his watch. He reckons he runs distance x  in the range 9.8km 10.3kmx   in time t  which is in 

 the range 39min 43mint  . Determine the range of possible speeds v   in (a) m/s and (b) km/h. 

(iii) A beta particle (a very fast moving electron) has an energy of between 5.0 and 9.8 MeV. An electron-volt

 
191eV 1.602 10 J  .  If the beta particle has mass 

319.109 10 kgm   , determine the range of speeds of the 

 electron (to appropriate precision) as a fraction of the speed of light using both the Classical formula for kinetic 

 energy 
21

2
E mv and the  Relativistic formula  

1
22 2 2 21E v c mc mc



   .  Speed of light 

 
8 -12.998 10 ms .c     

(iv) The gravitational force between two masses m , M  separated by distance r  is 
2F GMm r . Given ‘force is 

 mass   acceleration’ , determine the SI units (kg,m,s) of constant G . 

(v) The speed of sound in a gas of density   and pressure p  is given by the formula 
a bc k p where k  is a 

 dimensionless constant. Use dimensional analysis to find powers ,a b . 



(vi) The power P  of a wind turbine is given by 
2 3P kr v  where r  is the blade radius and v  is the wind speed. In the 

 county of Windyshire, blades vary by 10%  in radius, and wind speed vary by 30%  from their respective 

 mean values. What is the expected % error in power? [Perform using upper and lower bounds, and then assume 

 normally distributed errors. Compare the results. 

(vii) Homer is measuring the resistance R  of light bulbs in the Springfield Nuclear Power Station given by the equation 

 
2P V R  where P  is the electrical power transformed and V  is the potential difference across them. His 

 measurements are:  60.2W, 59.4W, 60.5W, 59.8W for power and 110.1V, 110.4V, 109.8V, 109.9V for potential 

 difference. Showing all calculations, determine the mean and uncertainty in resistance (in ). 

(viii)  A set of experimental data for quantities x  and y  is given below: 

  0.20, 0.63, 2.86, 3.96, 2.71, 5.50, 6.34, 9.03, 11.08, 12.22x     

  1.70, 0.50, 12.65, 15.44, 6.18, 6.82, 20.86, 23.24, 32.35, 29.07y            

 Construct a spreadsheet and input these numbers as columns. Work out 
2 2, ,x y xy  columns and hence determine  

 
2 2, , , , , [ ], [ ], cov[ , ].x y x y xy V x V y x y  Hence determine ,m c  for a y mx c   line of best fit. Determine the 

 product moment correlation coefficient r  and also the errors m  and c  in the gradient and intercept. 

 Plot the  ,x y  as crosses and overlay the (mean) line of best fit, and also the ‘envelope’ of lines based upon the 

 values calculated for m  and c .   

 

Question 2 A student is investigating Kepler’s Third Law    
2 3

/ Yr AUT a  for the planets + Pluto in the solar 

system. The data is as follows:  (Note it is deliberately imprecise! We known a  and T  to many more significant figures). 

 (a)  Type the data into a spreadsheet and plot  ,a T  as crosses (+) on a 

graph. Don’t join them with lines, as we predict an underlying model. Make 

a separate column of a  values between 0 and 40 with a step size of 0.1 or 

smaller. Determine the corresponding T  values. Plot this as a curved line 

(no markers) on the same graph as the data. Ideally this model curve should 

underlay the data points.      

 

(b)   Determine an appropriate linearization of Kepler III in the form 

y mx . Work out 
2 2, ,x y xy  columns and hence determine 

2 2, , , , , [ ], [ ], cov[ , ].x y x y xy V x V y x y  Hence determine m for a 

y mx  line of best fit. Determine the product moment correlation 

coefficient r  and also the gradient error m . Overlay the (mean) line of 

best fit, and also the ‘envelope’ of lines of gradients m m .   

 

(c)    Bode's Law is an approximate ‘numerological’ relationship between the planet number n  in the Solar System and the 

orbital radius from the Sun a :     10 AU 4 3 2na     . Estimate (or if you can use logarithms, calculate) n  for each 

planet. Is there anything wrong with the pattern?  Note the asteroid belt between Mars and Jupiter is at (approximately) 

2.1AUa  , although is much more dispersed than a fixed radius.  

                                                                   

Question 3 The charge to mass ratio 
e

e m  of an electron can be determined by measuring the radius r  of a circular 

beam of ionized hydrogen gas in a Fine Beam Tube. Other inputs are the accelerating potential V and magnetic field 

strength B .  The relationship is: .
2 22

e
e m V B r .   170 5 VV   ,   48.0 0.2 10 TB     and 

 5.50 0.30 cmr   .  (a) Determine 
e

e m in the form 
e

k e m k
 
  where k


 are the upper and lower bounds. 

(b)   Assuming all the errors are normally distributed, determine e k
e m k   . 

(c)   
191.602 10 Ce    and 

319.109 10 kg
e

m   . Is this result within the error range of the experiment?  

 

Planet Distance from 

sun a in AU 

Orbital 

period T   

/years 

Mercury 0.4 0.2 

Venus 0.7 0.6 

Earth 1.0 1.0 

Mars 1.5 1.9 

Jupiter 5.2 11.9 

Saturn 9.8 29.6 

Uranus 19.3 84.7 

Neptune 30.2 166 

Pluto 39.5 248 



Question 4 An air-filled syringe is slowly compressed via a screw system, such that the heat transfer between the air 

and the surroundings maintains thermal equilibrium (i.e. the same temperature). In this situation one might expect the 

relationship between air pressure and volume to follow Boyle’s Law i.e. constantpV  . The syringe is cylindrical and has 

a marked scale, so volume can be measured. The syringe also has a pressure gauge. The following data is recorded: 

 The Ideal Gas Equation is pV nRT  where n  is the number of moles of gas, T  is the 

absolute temperature in Kelvin (K) and the Molar Gas Constant 
-1 -18.314Jmol KR  . The 

fixed gas temperature when the syringe was compressed was 294K. 

 10 10 10
log log logp nRT V   , so one predicts a graph of 

10
logy p  vs 

10
logx V  

will yield a straight line with gradient -1 and y  intercept  10
log nRT   

(a) Input the recorded data into a spreadsheet and determine extra columns for 

 
10

logx V and 
10

logy p . 

(b) Perform a linear regression and determine m m  and c c  for the gradient 

 and intercept of a line of best fit y mx c  .  (Do this from scratch and don’t cheat 

 by using the built-in Excel ‘trendline’ function! However, you could use this 

 afterwards to check your calculations are correct) 

(c) Underlay the line of best fit to the  ,x y  data and calculate the product-moment 

 correlation coefficient r . Does Boyle’s Law correlate with the data? 

(d) Determine from the y  intercept the number of moles of gas in the syringe n . 

(e) Hence determine a model  ,p V  curve and plot this as a smooth underlay to the 

          data points (as crosses). 

 

Question 5 Protactinium-234 decays to Uranium 234 via beta-minus emission. The activity A of counts per second 

(Becquerel or Bq) decays according to the equation 0
2 t TA A    where t  is the time in seconds and T  is the half-life of 

Pa-234.  Times and activities for Pa-234 decay are recorded in the table below. 

Use the data to determine the half-life of Pa-234, and the uncertainty in this measurement. Do the same for the initial 

activity of the source 
0

A . 

Construct a spreadsheet for this process. Structure this and plot suitable graphs as per 

the norms hopefully established in questions 1 (viii), 2 and 4. 

The fractional activities are due to an (integer!) count in 10s being recorded, and then 

adjusted for background radiation. The background count was 182 in 100s. 

Note the ‘official’ value for the half-life of Pa-234 is 70.2s. How does this compare to 

the half life (in the form T
T T   ) determined from the data?  

 

 

 

  

Pressure 
5/10 Pa   

Volume 
4 3/10 m

  

3.25 0.98 

2.78 1.18 

2.28 1.37 

2.00 1.57 

1.78 1.77 

1.57 1.96 

1.45 2.16 

1.33 2.36 

1.23 2.55 

1.13 2.75 

1.07 2.95 

0.99 3.14 

0.93 3.34 

0.88 3.53 

0.85 3.73 

0.80 3.93 

0.76 4.12 

0.72 4.32 

0.69 4.52 

0.66 4.71 

0.60 4.91 

Time /s Activity /Bq 

0 29.9 

13 28.2 

26 24.9 

39 18.6 

52 21.3 

65 17.3 

78 14.3 

91 15.5 

104 12.3 

117 7.8 

130 10.6 

143 8.4 

156 8.9 

169 7.3 

182 6.2 

195 4.8 

208 4.4 

221 3.0 

234 4.8 


