

Special Relativity

Dr Andrew French.
December 2023.

British Physics Olympiad

 An Introduction to Special Relativity

$$
\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}
$$

Dr Andrew French. December 2016.
Based on Winchester College lectures of JJLD, notes of JAAB, Morin Classical Mechanics and Schwartz, J. \& McGuinness, Introducing Einstein.

Some of the key Physicists in this story

Galileo Galilei 1564-1642

Mechanics
Frames of reference Relative motion Scientific method
May have dropped some balls from the
tower of Pisa
The Inquisition was not too keen on his rather sunny outlook though

Isaac Newton 1642-1726

Mechanics
Calculus
Optics
Thermodynamics
Gravity.....
Alchemy
Wasn't very nice to Hooke

Thomas Young 1773-1829 \uparrow
Young's slits (diffraction) Young's modulus (elasticity)
Egyptology
Sadly died young as well

Augustin-Jean Fresnel
1788-1827

Humphry Davy 1778-1829

Michael Faraday 1791-1867

Electromagnetism Chemistry

Electromagnetism

Hermann von Helmholtz 1821-1894

Albert Michelson 1852-1931

Hendrik Lorentz 1853-1928

Maxwell is correct!

Heinrich Hertz 1857-1894

Developed wireless technology (Radio, Radar ...)

Guglielmo Marconi (1874-1937)

Albert Einstein 1879-1955

anNalen

P HYSIK.

3. Zur Elektroaynamak bewegter Körper;
von A. Einstein.
DaB die Elektrodynamik Maxwells - wie dieselbe gegen wirtig aufgefaßt zu werden pfiegt - in ibrer Anwendung suf
vewegte Körper za Asymmetrien fubrt, welche den Phinomen
cht anzuhafien schen
 C elektrodynamische Weccsselwirkung. Mrischen denke z. B. an
 IT nur ab von der Relativbewegung, yon Leiter und Magnot,
rend nach der üblichen Auffassung die beiden Falle dag Ir eine oder der andere dieser Bofrasper die beiden Falle, daB bewegte sei, streng nander $z 0$ trennen sind. Bewegt sich bewegte sei, streng
uhat der Leiter, so entsteht in ich der Uer Magnet ektrisches Feld von gentissem Ener Ungebung des Magneten orten, wo sich Toile gewissem Energiewerte, welches an
 age in der Umgebung dos Magneten kiein der Leiter, keine Energie entspricht, die aborer - Gleich
lche ewegung bei den beiden ins Auge -Glecich
setzt - zu elektrischen Strömen von derselben
eelben Verlenter elben Verlauue Veranlassung gibt, wie ime ersten ischen Krafte
iele azhulifher elo anhlicher Art, sowie dic mislungenen Versuck
fung der Erde relativ zum „Lichtmedium"c
 Puhe nicht nur in der Mechanik, somdern auch in
dynamik keine Eigenschaften der ynamik keine Eigenschaften der, Erscheinungen entdern dab vielmebr fur alle Koordinatensysteme,
die mechanischen Gleichungen rodynamischen und optischen Geesetze gelten, wie rö̉en erster Ordnang bereits erviesen ist. Wi ermatung (deren Inbalt im folgenden ,Prinzip
"genangt werden wird) zur Voraussetzung er-
genannt werden wird) zur Voraussetzung er-
erdem die mit ibm nur scheinbar unvertrigliche

LEIPZIG, 1905. johans ambrosties barta.

I have a talent for making the complicated make sense and explaining the inexplicable.

I can also pick locks, paint and play the bongos

Richard Feynman 1918-1988

Hyperspectral image from NASA space telescopes

Solar Radiation Spectrum

Light - perhaps the best understood of all physical phenomena

It is the only means for us to understand the Cosmos well beyond the inner solar system

THE ELECTROMAGNETIC SPECTRUM

Frequency
(Hz)

Temperature of bodies emitting the wavelength

Convert wavelength into frequency using $c=f \lambda \quad c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

HMI Dopplergram Surface movement Photosphere

HMI Magnetogram Magnetic field polarity Photosphere

HMI Continuum
Matches visible light Photosphere

AIA $1700 \AA$ 4500 Kelvin Photosphere

AIA $4500 \AA$ 6000 Kelvin Photosphere

AIA $211 \AA$
2 million Kelvin
Active regions

AIA $1600 \AA$ 10,000 Kelvin Upper photosphere/ Transition region

AIA $304 \AA$ 50,000 Kelvin Transition region/ Chromosphere

AIA $171 \AA$ 600,000 Kelvin Upper transition Region/quiet corona

AIA $193 \AA$
1 million Kelvin Corona/flare plasma

AIA $131 \AA$ 10 million Kelvin Flaring regions

Gamma-ray emissions

X-ray emissions

Milky Way

Thomas Young 1773-1829

Augustin-Jean Fresnel 1788-1827

Léon Foucault 1819-1868

Hippolyte Fizeau 1819-1896

Light is a wave - it reflects, refracts and diffracts. Its speed of propagation is:
$c=2.998 \times 10^{8} \mathrm{~ms}^{-1}$

Two infinitesimally thin slits
'Young's double slits'

Michael Faraday
1791-1867

Hermann von Helmholtz 1821-1894

Dipole
Colour scale is $\log _{10}$ of E field in Vm^{-1}

Heinrich Hertz
1857-1894

Guglielmo Marconi 1874-1937

Electromagnetism

Maxwell's Equations predict Electromagnetic Waves, which consist of electric and magnetic fields at right angles to each other, both transverse to the direction of wave propagation.

Intriguingly, these waves always propagate through a vacuum at speed:
$B=\frac{\mu_{0} I}{2 \pi r}$
Magnetic field at a radius r from a wire carrying current I

$$
F_{E}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{d^{2}}
$$

Force on
two electrons of charge e separated by distance d

These are fundamental constants. So the wave speed is independent of the relative speed of EM wave source and receiver!

Hang on a minute....

If I were a space duck, I

 wouldn't produce all these ripples......Not that type of medium!

Sound waves, surface waves etc are the vibration of a medium (e.g. air or water molecules). They have a characteristic speed depending on density, and stiffness of molecular bonds.

So for an electromagnetic wave passing from the Sun to Earth, what medium is vibrating?
The Luminiferous Aether of course!

Albert Michelson 1852-1931

Light source

Longitudinal and transverse waves expected to arrive in phase when $v=0$

If there is an aether, we should be able to measure the effect of moving towards it.....

Earth orbital speed is about $30 \mathrm{~km} / \mathrm{s}$

If there is a relative motion between the Earth and the aether, we should expect to see a difference in phase between the longitudinal and transverse beams in the Michelson-Morley interferometer

Michelson and Morley's interferometer, mounted on a stone slab that floats in an annular trough of mercury.

Conducted over the spring and summer of 1887 at what is now Case Western University, Cleveland Ohio, USA.

So did Michelson \& Morely observe any phase shift due to relative motion between the Earth and the Aether?

Light is not like a duck

Back to Maxwell's discovery ...

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=2.998 \times 10^{8} \mathrm{~ms}^{-1}
$$

${ }^{<}$These are fundamental constants. So the wave speed is independent of the relative speed of EM wave source, and receiver!

James Clerk Maxwell 1831-1879

This is a Gedanken
Albert Einstein (thought) experiment 1879-1955

Galileo Galilei 1564-1642

Isaac Newton 1642-1726

Let's use the mechanics of Galileo and Newton to work out what will happen.

To keep things simple we'll think about a short pulse of light.

Is the dynamics of the light pulse just like that of a projectile?

Is light like a hamster?

To keep things even simpler, let's consider hurling a hamster vertically upwards in a box in zero gravity

To fall (or rise) distance L the hamster takes time

Mr Wonka supplies a glass elevator for the experiment.
Prof. Feynman observes it translating at speed v to his right.
From his perspective, the hamster moves along the red dotted line path.

Charlie and the
Great Class Elevator

Therefore the hamster speed is:

$$
d=\sqrt{L^{2}+v^{2} \Delta t^{2}}=\sqrt{L^{2}+\frac{v^{2} L^{2}}{u^{2}}}=L \sqrt{1+\frac{v^{2}}{u^{2}}}
$$

$$
w=\frac{d}{\Delta t}=d \frac{u}{L}=\sqrt{1+\frac{v^{2}}{u^{2}}}
$$

Richard Feynman 1918-1988

Now what if we replace the hamster with a light pulse?

Prof. Feynman's Hamster speed

$$
w=u \sqrt{1+\frac{v^{2}}{u^{2}}}
$$

But according to Maxwell, this cannot be correct, since the speed of light is always c regardless of the frame of reference it is measured in......

This cannot be correct

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=2.998 \times 10^{8} \mathrm{~ms}^{-1}
$$

 depending on the relative motion of two frames of reference

$$
\begin{aligned}
& w=\frac{d}{\Delta t}=\frac{\sqrt{L^{2}+v^{2} \Delta t^{2}}}{\Delta t} \quad \therefore L=c \Delta t \\
& \therefore c^{2} \Delta t^{2}=L^{2}+v^{2} \Delta t^{2} \quad \therefore \quad \\
& \text { Now } L=c \Delta t^{\prime} \quad \therefore \Delta t^{\prime}=\Delta t \sqrt{1-\frac{v^{2}}{c^{2}}} \\
& \therefore \Delta t^{\prime}=\frac{\Delta t}{\gamma} \quad \text { So MOVING CLOCKS }
\end{aligned}
$$

Maxwell's assertion
$\therefore L=c \Delta t \sqrt{1-\frac{v^{2}}{c^{2}}}$
i.e. we relate L to the time passed in the elevator frame

The Lorentz factor

$$
\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}
$$

$\begin{array}{ll}\gamma & \text { Time dilation }\end{array}$

$\underset{\text { frame }}{\text { Moving }}>\Delta t^{\prime}=\frac{\Delta t}{\gamma} \underset{\substack{\text { 'Lab' } \\ \text { frame }}}{\substack{ \\\text { fan }}}$
MOVING CLOCKS run slow Note $\gamma \approx 1, v \ll c$ so for speeds much less than the speed of light

$$
\Delta t^{\prime} \approx \Delta t
$$

Thank goodness

Well this Special Relativity stuff is all well in theory, but can we do an experiment to confirm?
In 1964 Alväger and co-workers at CERN fired protons at a Beryllium target to produce fast-moving neutral pions $\left(\pi^{0}\right)$, travelling at $0.9998 c$. These pions quickly decayed into two gamma photons. They measured the speed of these photons in the laboratory rest frame and found the speed to be c to within 0.005%.

A similar experiment by Filippas \& Fox was conducted in 1963 with neutral pions at a speed of $0.2 c$. This also confirmed the hypothesis that light travels at c, regardless of the relative velocity of the source and detector.
(Adapted from JAAB’s Special Relativity notes)

My theory has passed all the tests so far ...

A photon is essentially a 'light pulse' More in the Quantum Mechanics course!

Recap of the main results so far:
>Speed of light is invariant for all frames of reference
>Time dilation: "Moving clocks run slow"
$\begin{aligned} & \text { Moving } \\ & \text { frame }\end{aligned} \Delta t^{\prime}=\frac{\Delta t}{\gamma} \quad \begin{gathered}\text { 'Lab' } \\ \text { frame }\end{gathered} \quad \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}}$

Time dilation example 1: A return trip to Alpha Centauri Time dilation example 2: Mysterious muon decay!

lab frame

moving frame (w.r.t lab)

The length of a moving object contracts in the direction of motion, relative to its length measured at rest

$$
\begin{aligned}
& \text { Length } \\
& \text { of moving } \\
& \text { object }
\end{aligned} \rightarrow l=\frac{L}{\gamma} \longleftarrow \begin{aligned}
& \text { Length } \\
& \text { at rest }
\end{aligned} \quad \begin{aligned}
& \text { This explains the Muon mystery } \\
& \text { from the Muon's perspective! }
\end{aligned}
$$

Relative motion close to the speed of light causes a loss in simultaneity i.e. time is offset as well as dilated.

Explanation of the Twins 'Paradox' (We'll need the Lorentz Transform for this)
i.e. 'putting all the relativistic effects together'

From the perspective of the astronauts, how long will the return journey to Alpha Centauri last? (Assume they stay there for a year)
$\rightarrow 0 \rightarrow v=\frac{4}{5} c$

$$
4 \text { light-years }=4 c T_{\text {year }}
$$

$$
T_{\text {year }} \approx 365 \times 24 \times 3600 \mathrm{~s}
$$

Earth perspective:

$$
T_{\text {year }} \approx \pi \times 10^{7} \mathrm{~s}
$$

$$
\Delta t_{\oplus}=2 \times \frac{4 c T_{\text {year }}}{\frac{4}{5} c}+1=11 \text { years }
$$

Only time dilate the moving part of the
Astronaut perspective:

$$
\Delta t^{\prime}=\frac{\Delta t_{\oplus}-1}{\gamma}+1
$$

journey

$$
\begin{aligned}
& \gamma=\left(1-\frac{\left(\frac{4}{5} c\right)^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
& \gamma=\left(1-\frac{16}{25}\right)^{-\frac{1}{2}}=\left(\frac{9}{25}\right)^{-\frac{1}{2}}=\frac{5}{3}
\end{aligned}
$$

$$
\Delta t^{\prime}=\frac{\Delta t}{\gamma}
$$

$$
\Delta t^{\prime}=\frac{10}{\frac{5}{3}}+1=7 \text { years }
$$

One of the effects of cosmic radiation is to create muons in the upper atmosphere

To travel the 10 km from upper atmosphere to a detector should take about:

This mystery is elementary, my dear Watson!

$$
\Delta t=\frac{h}{0.98 c}=\frac{10^{4} \mathrm{~m}}{0.98 \times 2.998 \times 10^{8} \mathrm{~ms}^{-1}} \approx 34 \mu s
$$

i.e. ≈ 15.5 half lives

We should therefore expect about $2^{-155 .} \approx \frac{1}{45,000}$
But it is more like an eighth...

The explanation, from the detector perspective, is that the muon's moving clock runs slow. The half life is not $2.2 \mu \mathrm{~s}$ but $2.2 \mu \mathrm{~s}$ multiplied by γ

$$
\begin{aligned}
& \gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
& \therefore \gamma=\left(1-0.98^{2}\right)^{-\frac{1}{2}} \approx 5.03 \\
& \therefore \Delta t=\gamma \Delta t^{\prime}=5.03 \times 2.2 \mu s=11.1 \mu s
\end{aligned}
$$

 should in this case correspond to the 'moving' frame (of the muon)

It's not just my pupils which are dilated my dear Holmes!

But what about the Muon's perspective? Surely the muon will 'experience' a half life of 2.2μ s? Don't we have a paradox?

The answer is that, from the Muon's perspective, the atmospheric distance it experiences 'coming towards it at $0.98 c$ is contracted.
i.e. according to the Muon the detector is not 10 km away, but $10 \mathrm{~km} / \gamma=1.99 \mathrm{~km}$

We'll prove this result soon but first a poetic interlude....

Observe that for muons created The dilation of time is related

 To Einstein's insistence Of shrunken-down distance In the frame where decays aren't belatedMorin pp 522

Length contraction

Let's return to Mt Wonka's glass elevator

A light pulse is produced at one end, which is reflected off a mirror. The time difference Δt^{\prime} between the light pulse transmission and reception (the torch has an in-built lux meter data logger) enables the width L of the elevator to be measured.
$\underset{\text { 'There and }}{\text { back' time }} \longrightarrow \Delta t^{\prime}=\frac{2 L}{c}$
Now consider the situation as viewed by Prof. Feynman who observes the elevator moving with velocity v to the right. Let's assume he will measure the elevator width as l
$c \Delta^{\psi} t_{S M}=l+\underset{\uparrow}{v \Delta t_{S M}} \therefore \Delta t_{S M}=\frac{l}{c-v} \quad \begin{aligned} & \text { Time from } \\ & \begin{array}{l}\text { Source to } \\ \text { Mirror }\end{array}\end{aligned}$
i.e. mirror has moved during transit!
$c \Delta t_{M S}=l-v \Delta t_{M S} \therefore \Delta t_{M S}=\frac{l}{c+v} \quad \begin{gathered}\text { Time from } \\ \begin{array}{c}\text { Mirror to } \\ \text { Source }\end{array}\end{gathered}$
Closer in this case

Total there-and back time is:

$$
\begin{aligned}
& \Delta t=\Delta t_{S M}+\Delta t_{M S}=\frac{l}{c-v}+\frac{l}{c+v} \\
& \Delta t=l\left(\frac{c+v+c-v}{(c-v)(c+v)}\right)
\end{aligned}
$$

Now from the time-dilation result

$$
\begin{aligned}
& \Delta t=\frac{2 l c}{c^{2}-v^{2}}=\frac{2 l}{c} \frac{1}{1-\frac{v^{2}}{c^{2}}}=\frac{2 l}{c} \gamma^{2} \\
& \text { esult }
\end{aligned}
$$

So Prof. Feynman will observe the elevator width to be contracted, relative to the measurement of the astronaut

Loss of simultaneity

A light source is placed in the centre of Mr Wonka's elevator. Detectors placed at opposite side will clearly receive a light pulse simultaneously, since light travels at speed c and travels the same distance.

Let us define two events:

\mathbf{R} means right detector receives the pulse
L means left detector receives the pulse
What does Prof Feynman see? Let us work out the time elapsed since the light source was created for events R and L

$$
\begin{aligned}
& c \Delta t_{R}=\frac{1}{2} l+v \Delta t_{R} \therefore \Delta t_{R}=\frac{\frac{1}{2} l}{c-v} \\
& c \Delta t_{L}=\frac{1}{2} l-v \Delta t_{L} \therefore \Delta t_{L}=\frac{\frac{1}{2} l}{c+v}
\end{aligned}
$$

i.e. work out the distance travelled as in the length contraction example

$$
\Delta t=\Delta t_{R}-\Delta t_{L}
$$

$$
\Delta t=\frac{\frac{1}{2} l}{c-v}-\frac{\frac{1}{2} l}{c+v}=\frac{1}{2} l \frac{c+v-(c-v)}{c^{2}-v^{2}}=\frac{v l}{c^{2}} \frac{1}{1-\frac{v^{2}}{c^{2}}}
$$

$$
l=\frac{L}{\gamma}
$$

The Twins ‘Paradox’

Consider a pair of twins. One journeys to Alpha Centauri and the other stays on Earth. According to the analysis of time dilation:


```
Earth twin:
\[
\Delta t_{\oplus}=2 \times \frac{4 c T_{\text {yar }}}{\frac{4}{5} c}+1=11 \text { years }
\]
\[
4 \text { light-years }=4 c T_{\text {year }}
\]
```

Astronaut
twin:

$$
\Delta t^{\prime}=\frac{\Delta t_{\oplus}-1}{\gamma}+1
$$

$\Delta t^{\prime}=\frac{\Delta t}{\gamma} \quad \Delta t^{\prime}=\frac{10}{\frac{5}{3}}+1=7$ years

So the Earth twin should be older by 4 years

But from the perspective of the Astronaut, the brother has receded away (and then returned) at the same speed. So shouldn't the Earth-bound brother be four years older, rather than the other way round?

Youtube video solution!

Resolution of the Twins paradox. The Earth-bound twin is older by four years. Morin (Appendix H) gives a number of reasons, but I think the correct thing to do is to properly consider the Lorentz transforms. The issue is that the problem involves the astronaut going there and back. The change of direction is the problem. We can't simply apply time dilation because the reference frames change

$$
\begin{array}{ll}
x=\gamma\left(x^{\prime}+V t^{\prime}\right) & x^{\prime}=\gamma(x-V t) \\
y=y^{\prime} & y=y^{\prime} \\
z=z^{\prime} & z=z^{\prime} \\
\gamma=\left(1-\frac{V^{2}}{c^{2}}\right)^{-\frac{1}{2}} t^{\prime} t^{\prime}=\gamma\left(t-\frac{V x^{\prime}}{c^{2}}\right)
\end{array}
$$

Earth is a rest, spaceship moves
$T=$ time in years

Journey to Alpha Centauri
$x=4 c T, \quad x^{\prime}=0$ $t=5 T, \quad V=\frac{4}{5} c$ $\gamma=\frac{5}{3}$

$$
t=\gamma t^{\prime} \quad \therefore t^{\prime}=\frac{5 T}{\frac{5}{3}}=3 T
$$

Journey home from Alpha Centauri

$$
\begin{aligned}
& x=4 c T, \quad x^{\prime}=0 \\
& t=5 T, \quad V=\frac{4}{5} c \\
& \gamma=\frac{5}{3}
\end{aligned} \quad t=\gamma t^{\prime} \quad \therefore t^{\prime}=\frac{5 T}{\frac{5}{3}}=3 T \text { l } l l
$$

So total time elapsed on Earth is $5+5=\mathbf{1 0}$ years which is equivalent to $3+3=\mathbf{6}$ years for the Astronaut twin

Spaceship is at rest, Earth moves

Journey to Alpha Centauri
$V=\frac{4}{5} c, \quad \gamma=\frac{5}{3}$
$t=3 T, \quad x=\frac{4 c T}{\frac{5}{3}}=\frac{12}{5} c T$
$t^{\prime}=\frac{5}{3}\left(3 T-\frac{\frac{4}{5} c \times \frac{12}{5} c T}{c^{2}}\right)$
$t^{\prime}=\frac{9}{5} T$

Lorentz contracted distance to Alpha Centauri, as observed by the spacecraft

$$
\begin{aligned}
& x^{\prime}=\gamma\left(x-V t^{\prime}\right) \\
& t^{\prime}=\gamma\left(t-\frac{V x}{c^{2}}\right)
\end{aligned}
$$

Journey home from Alpha Centauri
$V=\frac{4}{5} c, \quad \gamma=\frac{5}{3}$
$t=3 T, \quad x=\frac{4}{\frac{3}{3}} c T=\frac{12}{5} c T$
$t^{\prime}=\frac{5}{3}\left(3 T-\frac{\frac{4}{5} c \times \frac{12}{5} c T}{c^{2}}\right)$
$t^{\prime}=\frac{9}{5} T$

So total time elapsed on Earth, during relative motion, is $\frac{18}{5} T=3 \frac{3}{5} T$ What has gone wrong? What has happened to the missing $6 \frac{2}{5}$ years ?

The reason is that we haven't taken into account a time offset resulting from the fact that, from the Spaceship's perspective, the Earth has changed reference frame. In other words, simply adding the t ' contributions will not cover the entire time elapsed on Earth.
i.e. sticking with the original frame of reference just before departure

$$
\begin{array}{ll}
t_{1}^{\prime}=\frac{5}{3}\left(3 T-\frac{\frac{4}{5} c \frac{12}{5} c T}{c^{2}}\right)=\frac{9}{5} T & \begin{array}{l}
\text { Earth time when spacecraft } \\
\text { arrives at Alpha Centauri }
\end{array} \\
t_{2}^{\prime}=\frac{5}{3}\left(3 T-\frac{\left(-\frac{4}{5} c\right) \frac{12}{5} c T}{c^{2}}\right)+1 & \begin{array}{l}
\text { Earth time when spacecraft } \\
\text { leaves Alpha Centauri (after } \\
\text { the one year visit) }
\end{array}
\end{array}
$$

So extra Earth time is:
$\Delta t^{\prime}=t_{2}^{\prime}-1-t_{1}^{\prime}=\frac{5}{3} \frac{2 \times\left(\frac{4}{5} c\right) \frac{12}{5} c T}{c^{2}}$
$\Delta t^{\prime}=6 \frac{2}{5} T$
which is exactly what was missing

${ }^{\frac{12}{5}} c T$

This offset should exactly equate to the effects of acceleration as the rocket slows down to Alpha Centauri and then speeds up as it leaves.

Star distance $=41 \mathrm{y}, \mathrm{v} / \mathrm{c}=0.8, \mathrm{t}_{\text {wait }}=1 \mathrm{yr}$

$$
E^{2}-|\mathbf{p}|^{2} c^{2}=m^{2} c^{4} \quad \mathbf{f}=m \gamma \mathbf{a}+m \gamma^{3}\left(\frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}}\right) \mathbf{u}
$$

EXTRAS

$x=\gamma\left(x^{\prime}+V t^{\prime}\right)$
$y=y^{\prime}$
$z=z^{\prime}$
$t=\gamma\left(t^{\prime}+\frac{V x^{\prime}}{c^{2}}\right)$

Hooray! Lots of Maths
$E=\gamma m c^{2}$

Summary of Special Relativity Results
>The Lorentz Transform
>Relativistic transformation of velocities
>Relativistic Doppler Shift
$>$ Relativistic Momentum
$>$ Relativistic Newton's Second Law
$>$ Work done and $E=m c^{2}$
$>$ Energy, momentum invariant
$>$ Momentum of a photon

Time dilation, length contraction and loss of simultaneity can be incorporated into a general transformation of spacetime coordinates!

S

$$
\begin{aligned}
& x=\gamma\left(x^{\prime}+V t^{\prime}\right) \\
& y=y^{\prime} \\
& z=z^{\prime} \\
& t=\gamma\left(t^{\prime}+\frac{V x^{\prime}}{c^{2}}\right) \\
& \gamma=\left(1-\frac{V^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
& \begin{array}{l}
x^{\prime}=\gamma(x-V t) \\
y=y^{\prime} \\
z=z^{\prime} \\
t^{\prime}=\gamma\left(t-\frac{V x}{c^{2}}\right)
\end{array} \\
& \text { We can generalize to an } S^{\prime} \\
& \text { velocity which is not parallel to } \\
& \text { the } x \text { axis of the } S \text { frame } \\
& \mathbf{r}=(x, y, z), \quad \mathbf{r}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \\
& \mathbf{r}=\mathbf{r}^{\prime}+\left(\frac{\gamma-1}{V^{2}}\left(\mathbf{V} \cdot \mathbf{r}^{\prime}\right)+\gamma t^{\prime}\right) \mathbf{V} \\
& t=\gamma\left(t^{\prime}+\frac{\mathbf{V} \cdot \mathbf{r}^{\prime}}{c^{2}}\right) \\
& \mathbf{r}^{\prime}=\mathbf{r}+\left(\frac{\gamma-1}{V^{2}}(\mathbf{V} \cdot \mathbf{r})-\gamma t^{\prime}\right) \mathbf{V} \\
& t^{\prime}=\gamma\left(t-\frac{\mathbf{V} \cdot \mathbf{r}}{c^{2}}\right) \\
& V=|\mathbf{V}|
\end{aligned}
$$

$$
\begin{aligned}
& \text { Relativistic transformation of velocities } \\
& \text { Relativistic transformation of velocities } \\
& x=\gamma\left(x^{\prime}+V t^{\prime}\right) \\
& z=z^{\prime} \\
& v_{x}=\frac{\frac{d x^{\prime}}{d t^{\prime}}+V}{1+\frac{V}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}} \\
& v_{x}=\frac{v_{x}^{\prime}+V}{1+\frac{v_{x}^{\prime} V}{c^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& v_{y}=\frac{d y}{d t}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)} \\
& v_{y}=\frac{\frac{d y^{\prime}}{d t^{\prime}}}{\gamma\left(1+\frac{V}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}\right)} \\
& v_{y}=\frac{v_{y}^{\prime}}{\gamma\left(1+\frac{v_{x}^{\prime} V}{c^{2}}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& v_{z}=\frac{d z}{d t}=\frac{d z^{\prime}}{\gamma\left(d t^{\prime}+\frac{V}{c^{2}} d x^{\prime}\right)} \\
& v_{z}=\frac{\frac{d z^{\prime}}{d t^{\prime}}}{\gamma\left(1+\frac{V}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}\right)}
\end{aligned}
$$

$$
v_{z}=\frac{v_{z}^{\prime}}{\gamma\left(1+\frac{v_{z}^{\prime} V}{c^{2}}\right)}
$$

Hence:

If the velocity was $\quad v_{x}=c \cos \theta$ the speed of light

$$
v_{x}^{\prime}=c \cos \theta^{\prime}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\cos \theta^{\prime}+\frac{v}{c}}{1+\frac{v}{c} \cos \theta^{\prime}} \\
& \cos \theta^{\prime}=\frac{\cos \theta-\frac{v}{c}}{1-\frac{v}{c} \cos \theta}
\end{aligned}
$$

This is called 'relativistic aberration'

Relativistic Doppler shift

Consider a receding wave source of frequency f^{\prime} in the S^{\prime} frame. It crosses the x axis of the S frame at angle θ. and speed u. The velocity of waves emitted is w, in S.

The period T of waves received by an observer (in the x direction) at the origin O of the S frame is:
Note- it waves are
electromagnetic
$w=c$

See Eclecticon note for proof
Define Doppler frequency shift

$$
\Delta f=f-f^{\prime}
$$

Relativistic Momentum

We might expect 'force = rate of change of momentum' to be true in a relativistic sense as well as in the classical. However, the speed limit of c would imply an upper limit on the amount of momentum a given mass could have, if we use the classical momentum formula

$$
\mathbf{p}=m \mathbf{u}
$$

This would be counter to reality - we could easily devise a theoretical system which applies a finite amount of power, indefinitely, to a fixed mass system. e.g. a ball rolling down a infinitely long slope!

To get around this problem, let us redefine momentum such that it can become infinite as velocity tends towards c. i.e. multiply by $\gamma \ldots$

$\mathbf{p}=\gamma m \mathbf{u}$

$$
\gamma=\left(1-\frac{\mathbf{u} \cdot \mathbf{u}}{c^{2}}\right)^{-\frac{1}{2}}=\left(1-\frac{u^{2}}{c^{2}}\right)^{-\frac{1}{2}}
$$

Some useful derivatives involving γ

$$
\begin{array}{ll}
\frac{d \gamma}{d t}=-\frac{1}{2}\left(1-\frac{\mathbf{u} \cdot \mathbf{u}}{c^{2}}\right)^{-\frac{3}{2}}\left(-2 \frac{\mathbf{u}}{c^{2}} \cdot \frac{d \mathbf{u}}{d t}\right)^{-\mathbf{a}=\frac{d \mathbf{u}}{d t}} \\
\frac{d \gamma}{d t}=\gamma^{3} \frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}} & \gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-\frac{1}{2}} \\
\frac{d \gamma}{d u}=-\frac{1}{2}\left(1-\frac{u^{2}}{c^{2}}\right)^{-\frac{3}{2}}\left(-\frac{2 u}{c^{2}}\right) & u^{2}=\mathbf{u} \cdot \mathbf{u} \\
\frac{d \gamma}{d u}=\gamma^{3} \frac{u}{c^{2}} &
\end{array}
$$

Force, work \& energy
$\mathbf{f}=\frac{d}{d t}(\gamma m \mathbf{u}) \quad$ 'Relativistic Newton's Second Law'

$$
\mathbf{f}=m \gamma \frac{d \mathbf{u}}{d t}+m \mathbf{u} \frac{d \gamma}{d t}
$$

$$
\mathbf{f}=m \gamma \mathbf{a}+m \gamma^{3}\left(\frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}}\right) \mathbf{u}
$$

$W=\int \mathbf{f} \cdot d \mathbf{r}=\int \mathbf{f} \cdot \mathbf{u} d t \quad$ Work done

$$
W=m \int\left(\gamma \mathbf{a} \cdot \mathbf{u}+\gamma^{3}\left(\frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}}\right) u^{2}\right) d t
$$

$\mathbf{f}=m \gamma \mathbf{a}+m \gamma^{3}\left(\frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}}\right) \mathbf{u}$

$$
\mathbf{f}=m \mathbf{a}
$$

$$
\begin{aligned}
& W=m \int \gamma(\mathbf{a} \cdot \mathbf{u})\left(1+\frac{\gamma^{2} u^{2}}{c^{2}}\right) d t \\
& W=m \int \gamma^{3}(\mathbf{a} \cdot \mathbf{u}) d t \\
& W=m c^{2} \int \gamma^{3} \frac{(\mathbf{a} \cdot \mathbf{u})}{c^{2}} d t \quad \frac{d \gamma}{d t}=\gamma^{3} \frac{\mathbf{a} \cdot \mathbf{u}}{c^{2}} \\
& W=m c^{2} \int \frac{d \gamma}{d t} d t \\
& W=m c^{2} \int_{\gamma_{0}}^{\gamma_{1}} d \gamma \\
& W=\left(\gamma_{1}-\gamma_{0}\right) m c^{2}
\end{aligned}
$$

So the total energy of a mass m is:

$$
E=\gamma m c^{2}
$$

$$
\begin{aligned}
& 1+\frac{\gamma^{2} u^{2}}{c^{2}}=\gamma^{2} \Rightarrow \gamma^{2}\left(1-\frac{u^{2}}{c^{2}}\right)=1 \\
& \Rightarrow \gamma=\left(1-\frac{u^{2}}{c^{2}}\right)^{-\frac{1}{2}}
\end{aligned}
$$

When the mass is at rest

$$
\begin{aligned}
& \gamma=1 \\
& E_{0}=m c^{2}
\end{aligned}
$$

Hence kinetic energy is

$$
E_{k}=(\gamma-1) m c^{2}
$$

Now in the classical limit

$$
\begin{aligned}
& u \ll u \quad \therefore \gamma \approx 1+\frac{1}{2} \frac{u^{2}}{c^{2}} \\
& \therefore(\gamma-1) m c^{2}=\frac{1}{2} m u^{2}
\end{aligned}
$$

Energy, momentum invariant

Consider the following quantity:

$$
E^{2}-|\mathbf{p}|^{2} c^{2}=m^{2} c^{4}
$$

$$
\begin{aligned}
& k=E^{2}-|\mathbf{p}|^{2} c^{2} \\
& k=\left(\gamma m c^{2}\right)^{2}-(\gamma m \mathbf{u}) \cdot(\gamma m \mathbf{u}) c^{2} \\
& k=\gamma^{2} m^{2} c^{4}-\gamma^{2} m^{2} u^{2} c^{2}
\end{aligned}
$$

$$
k=m^{2} c^{4} \gamma^{2}\left(1-\frac{u^{2}}{c^{2}}\right)
$$

$$
k=m^{2} c^{4}\left(1-\frac{u^{2}}{c^{2}}\right)^{-1}\left(1-\frac{u^{2}}{c^{2}}\right)
$$

$k=m^{2} c^{4}$

This is clearly an invariant, regardless of the frame of reference.

This is very useful in Particle Physics, and collision problems at relativistic speeds.
e.g. Compton

Scattering.
So for a photon $m=0$
$E=p c \quad h$ is
$E=h f$ Planck's
$\therefore p=\frac{h f}{c}$
"Only a life lived for others is a life worthwhile."

"Logic will get from magination will take you eversw

"Any ma who reads too much and uses uis brain too little falls into lazy nabits of tinking."
"Insanity, doing the same thing over and over again and expecting different results."

