

BPhO Computational Challenge

Electromagnetism

Dr Andrew French. December 2023.


```
211
        % Compute electric potential and electric field vectors
      function [Ex,Ey,V] = field calc( x,y, xq,yq,zq, q )
212
213
        %Permittivity of free space / m^-3 kg^-1 s^4 A^2 (or Fm^-1)
214
        e0 = 8.854e - 12;
215 -
216
        Calculate electric potential and electric field in (x, y, z=0) plane
217
        \dim = size(x);
218 -
219 -
        V = zeros(dim);
        Ex = zeros(dim);
220 -
221 -
        Ey = zeros(dim);
222 -
        Xq = zeros(dim(1), dim(2), numel(q));
                                                                                               (x, y)
        Yq = zeros(dim(1), dim(2), numel(q));
223 -
        Zq = zeros(dim(1), dim(2), numel(q));
224 -
        Q = zeros(dim(1), dim(2), numel(q));
225 -
      for k=1:numel(q)
226 -
227 -
            Xq(:,:,k) = xq(k);
            Yq(:,:,k) = yq(k);
228 -
229 -
            Zq(:,:,k) = zq(k);
230 -
            Q(:,:,k) = q(k);
231 -
        end
232 -
        x = repmat(x, [1, 1, numel(q)]);
233 -
        y = repmat(y, [1, 1, numel(q)]);
234 -
        z = zeros(dim(1), dim(2), numel(q));
235 -
        r = sqrt((x - Xq))^2 + (y - Yq)^2 + (z - Zq)^2);
236 -
        V = sum(( Q./(4*pi*e0) )./r,3);
237 -
        Ex = sum((x - Xq).*(Q./(4*pi*e0))./(r.^3),3);
        Ey = sum((y - Yq).*(Q./(4*pi*e0))./(r.^3),3);
238 -
239
240
        ક્રક્ટ
```

$$\mathbf{E}(x,y) = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{Q_i}{(x-X_i)^2 + (y-Y_i)^2} \frac{\hat{\mathbf{x}}(x-X_i) + \hat{\mathbf{y}}(y-Y_i)}{\sqrt{(x-X_i)^2 + (y-Y_i)^2}}$$

Ball betwen plates Colour scale is \log_{10} of E field in Vm⁻¹

Actually the charge distribution on a conducting sphere will be *polarized* by the electric field between the plates

Capacitor model

V

40.80hm charging resistor in a terminal block Capacitors wired in parallel to yield a total capacitance of about 0.1F

Charge /discharge switch Multimeter for testing total resistance of resistors (unplug resistors from circuit before testing)

Discharging a capacitor

$$Q = CV$$
 $V = IR$

capacitor charge, voltage relationship

Ohm's law

 $\therefore I = \frac{V}{R} = -C\frac{dV}{dt}$

Note $V = V_0$ when t = 0

Definition of current, and negative since charge is discharged from plates

$$\frac{1}{RC} \int_0^t dt = -\int_{V_0}^V \frac{dV}{V}$$
$$\frac{t}{RC} = -\left[\ln|V|\right]_{V_0}^V$$
$$\frac{t}{RC} = -\ln\left(\frac{V}{V_0}\right)$$
$$V = V_0 e^{-\frac{t}{RC}}$$

Charge and discharge recorded using Capstone software, interfacing via USB to the PASCO datalogger hub. Note Ammeter is in series with discharge loop, so no current recorded during charging.

Capstone —> Copy and paste data to text files (one per discharge resistance)

🕞 🖉 - 🔍 - 🗧 Capacitor charge & discharge - Microsoft 🚊 🔳 🗙								
	Hor	ne Insert	Page Layout Fo	rmulas Data	Review Vie	w 🕲 – 📼 🗙		
-	*	Calibri	11 - = =		%	Σ - ΔΥ -		
Paste B Z U · A A E ≣ ≣ ⊠ · Number Styles Cells								
E8 • from the testing								
		A	В	С	D	E		
1	Run	#1	Run #1	Auto				
2	Curr	ent (mA)	Voltage (V)	Time (s)				
3	0	.4723045	-0.01163	0				
4	0	.4723045	-0.01163	0.2				
5	0	.4723045	-0.01163	0.4				
6	0	.4723045	-0.01163	0.6				
7	0	.4723045	-0.0165	0.8				
8	0	.4723045	-0.01163	1				
9	0	.4723045	-0.0165	1.2				
10	0	.4723045	-0.01163	1.4				
11 0.4723045 -0.01163 1.6								
Ready								
Ready					13070	· · · · · · · · · · · · · · · · · · ·		

7

6

Capacitor voltage /volts

1

0 0 %Import Capacitor charge & discharge data
% LAST UPDATED by Andy French Mar 2020
function import_data
disp(' '); disp(' Importing data from Excel...')

```
%Import data from Excel
num_runs = 15;
for n=1:15
    [num,txt,raw] = xlsread( 'Capacitor charge & discharge.xlsx',...
    ['Sheet',num2str(n)] );
    data(n).I_mA = num(:,1);
    data(n).V_volts = num(:,2);
    data(n).t_s = num(:,2);
    data(n).R_ohms = R(n);
end
%Save data to a .mat file
save( 'capacitor data','data','R' );
disp(' Data saved to file capacitor data.mat. '];
```

```
%End of code
```


Capacitor charging voltage vs time

Capacitor discharging current vs time

In(V) vs t line of best fit to find RC time

C= (0.1219 +/- 0.0012)F, R_{int} = (-0.575 +/- 1.14) Ω .

TANGENT MAGNETOMETER

Several wooden metre rulers bound with sticky tape

> Bar magnet (**S** pole facing Magnetometer)

Spilozeuje

Earth's magnetic North

Magnetometer

Retort stand for balance

Box to isolate magnetometer from unwanted magnetic fields from electrical wiring etc

OUCONY

Magnetometer defection θ

S

DGE

Anglanhundural unlandur

Mirror to avoid *parallax error* if reflection of needle aligns with its shadow

Magnet aligning with net magnetic field (Earth + bar magnet)

N

TANGENT MAGNETOMETER

ENGL

ən:

Note by convention magnetic field lines point **towards the south pole** and **emerge from the north pole**.

Note also that, as of 11 Nov 2017, geomagnetic north is actually a south pole! (i.e. *field lines point north*, not south).

A

TANGENT MAGNETOMETER

 \mathcal{X}

 $25\mu T < B_{\oplus} < 65\mu T$

 $B_{M}\hat{\mathbf{x}}$ is the magnetic field due to the bar magnet

The field of a **Magnetic dipole** is mathematically very similar to that of an electric dipole (see <u>Electric dipole</u> notes).

This explains

x/m

Rather than a curve fit using $B_M \propto r^{-3.17}$ we can construct an alternative linearization

Jean-Baptiste Biot (1774-1862)

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3}$$

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3}$$

$$\mathbf{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\mathbf{l} \times (\mathbf{r} - \mathbf{r'})}{|\mathbf{r} - \mathbf{r'}|^3}$$

Calculating the electron charge to mass ratio using a Fine Beam Tube

Low pressure hydrogen gas inside a spherical tube is ionized by a beam of electrons, which are accelerated via a voltage of approximately 100V. A pair of Helmholtz coils (solenoids) produce a highly uniform magnetic field which

bends the beam into a circle.

If the accelerating voltage, the coil current and the beam radius are measured, it is possible to calculate from these parameters the electron charge to mass ratio e/m_a

$$m_{e} = 9.109 \times 10^{-31} \text{kg}$$

$$e = 1.602 \times 10^{-19} \text{C}$$

$$\frac{e}{m_{e}} = 1.76 \times 10^{11} \text{Ckg}^{-1}$$

Assume *uniform* magnetic field of strength *B* between the Helmholtz coils.

The **force** on an electron (beyond cathode and deflection plates) is $\mathbf{F} = -e\mathbf{v} \times \mathbf{B}$

i.e. a purely *centripetal* force if the beam is initially vertical and perpendicular to the uniform magnetic field.

Newton II (+ve in radially inward direction):

$$\frac{m_e v^2}{r} = Bev \Longrightarrow v = \frac{Ber}{m_e}$$

Assume electron **kinetic energy** is solely from the **accelerating potential**, and velocities are low enough such that relativistic effects can be ignored.

$$\frac{1}{2}m_e v^2 = eV \therefore v = \sqrt{\frac{2eV}{m_e}}$$
 Hence:

The charge to mass ratio for an electron can therefore be determined in terms of readily measurable quantities via the Fine Beam Tube!

$$: \sqrt{\frac{2eV}{m_e}} = \frac{Ber}{m_e} \therefore \frac{2eV}{m_e} = \frac{B^2 e^2 r^2}{m_e^2}$$
$$\therefore \frac{e}{m_e} = \frac{2V}{B^2 r^2}$$

Classical result:

$$\frac{e}{m_e} = \frac{2V}{B^2 r^2}$$

В

So the Fine Beam tube can be used to measure the **electron charge to mass ratio** by plotting a graph of y vs x and finding the gradient.

For a *pair* of Helmholtz coils with N turns and radius R separated by distance 2h, the magnetic field strength along the coil centre line, half way between the coils, is:

space

 $4\pi \times 10^{-7} \,\mathrm{Hm}^{-1}$

$$B = \frac{\mu_0 NIR^2}{\left(R^2 + h^2\right)^{\frac{3}{2}}} = \frac{\mu_0 NI}{R} \left(1 + \left(\frac{h}{R}\right)^2\right)^{-\frac{3}{2}}$$
$$R = 0.15\text{m}, \quad h = 0.075\text{m}$$
$$\therefore 1 + \left(\frac{h}{R}\right)^2 = \frac{5}{4} \Longrightarrow B = \frac{\mu_0 NI}{R} \left(\frac{4}{5}\right)^{\frac{3}{2}} \quad \text{Permeability of free space}_{\mu = 4\pi \times 10^{-7}\text{H}}$$

Cyclotron

$$f_c = \frac{1}{2\pi} \frac{qB}{m}$$

Cyclotron frequency

 $\frac{1}{2}T_n$ is the time to complete a half-circular orbit between boosts.

$$\frac{1}{2}mv_{n+1}^2 = \frac{1}{2}mv_n^2 + qV_0.$$

$$V(t) = V_0 \cos\left(2\pi f_c t\right) = V_0 \cos\left(\frac{qBt}{m}\right).$$

$$\therefore v_{n+1} = \sqrt{v_n^2 + \frac{2qV_0}{m}}.$$

Particle speeds get a boost every half turn

$$f_c = \frac{1}{2\pi} \frac{qB}{m}$$

Feb. 20, 1934. E. O. LAWRENCE

1,948,384

METHOD AND APPARATUS FOR THE ACCELERATION OF IONS

Filed Jan. 26, 1932 2 Sheets-Sheet 1

Ernest Lawrence (1901-1958)

Ι

- 1. Vary current (range 0.4A to about 2.0A) in toroidal inductor by changing resistance of variable resistor.
- 2. Use Hall Probe and datalogger to measure magnetic flux density *B* in air gap.
- 3. Plot magnetic flux density (in T) vs current (in A). Use the graph to calculate the relative permeability μ of the iron core.

Application of the Lorentz force – the Hall Efffect

A semiconductor of width w and height h is placed in a magnetic field B. Current I passes through the semiconductor as shown. The Lorentz force on charges will cause a charge separation, which in turn will result in an electric field E perpendicular to both the magnetic field and the current direction.

Equilibrium is reached when the electric force and Lorentz magnetic forces balance.

Example calculation: $n = 7 \times 10^{21} \mathrm{m}^{-3}$ $q = e = 1.6 \times 10^{-19}$ C h = 0.1mm $\therefore qnh = 0.112$

 $\therefore \frac{V_{H}}{V_{H}}$ can be a ratio of near-

I unity quantities, which are readily measureable i.e. B fields not too many orders of magnitude less than 1.0T can be easily measured.

Semiconductor with *n* charges B per unit volume Each charge has q coulombs h

Edwin Hall 1855-1938

It is possible to measure the Hall effect in a small semiconductor, so the effect can be used to determine the how a non uniform magnetic field varies in time and space.

Ampère's Theorem:

 $B_{gap} = \mu_0 H_{gap}$

 $B_{inside} = \mu \mu_0 H_{inside}$

 $\mathbf{H} \cdot d\mathbf{l} = NI$

Magnetic field strength inside torus is tangential to circular loop

$$\therefore H_{inside} \left(2\pi r - d \right) + H_{gap} d = NI$$

 $d \ll 2\pi r$ Permeability of free space $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{Hm}^{-1}$

Magnetic flux density **B** is continuous perpendicular to the iron, air boundary. (*Maxwell Equation* result).

Hence:

loop

$$B_{gap} = B_{inside} = B \qquad \therefore H_{inside} (2\pi r - d) + \mu H_{inside} d = NI$$

$$\therefore H_{gap} = \mu H_{inside} \implies \therefore H_{inside} (2\pi r - d + \mu d) = NI$$

$$\therefore H_{inside} = \frac{B}{\mu \mu_0} \qquad \therefore \frac{B}{\mu \mu_0} (2\pi r - d + \mu d) = NI$$

André-Marie Ampère (1775-1836)
$$\therefore B = \frac{N \mu \mu_0}{2\pi r - d + \mu d} I$$

R B = kI

 $k = \frac{N \mu \mu_0}{2\pi r - d + \mu d}$

TOROIDAL ELECTROMAGNET EXPERIMENT 21/11/2022

0.08

0.018

220

1.25664E-06 0.00870

> 0.00950 0.00775

Radius of ring /m	
Gap in m	
Number of coils N	

μ0					
k	=	dB/			
k	m	nax			

μΟ	Γ
k = dB/dI	[
k max	
k min	L

35.15 μ mean 43.66 μ max 27.42 μ min

In many literature sources μ is quoted as being about 1,000.

So the ring metal is probably not pure iron!

Current raised then lowered to investigate hysteresis - only very marginal in this experiment.

Magnetic B in air ga	Magnetic flux density B in air gap (mT)				
B (mT)	B error /mT	I (A)			
0.00	0.01	0.000			
3.10	0.05	0.445			
3.39	0.09	0.486			
3.77	0.12	0.533			
4.22	0.13	0.589			
4.99	0.19	0.678			
5.83	0.27	0.776			
7.01	0.39	0.912			
9.28	0.72	1.154			
13.25	1.05	1.523			
16.29	1.29	1.846			
17.75	1.45	1.970			
13.20	0.90	1.452			
11.20	0.63	1.241			
9.63	0.51	1.066			
8.30	0.35	0.916			
7.04	0.24	0.771			
6.18	0.19	0.674			
5.53	0.15	0.600			
4.74	0.11	0.510			
4.41	0.09	0.471			
4.23	0.08	0.452			

Magnetic flux density in ring gap vs current in toroidal electromagnet

ply the induced EMF by core relative permeability μ which means $I_0 = \frac{2\sqrt{2}\pi r \varepsilon_{RMS}}{\mu \mu_0 \omega NA}$.

The Ising Model of Ferromagnetism

All atoms will respond in some fashion to **magnetic fields.** The angular momentum (and spin) properties of electrons imply a circulating charge, which means they will be subject to a Lorentz force in a magnetic field. **However the effects of** *diamagnetism, paramagnetism* and *anti-ferromagnetism* are typically very small. **Ferromagnetic materials** (iron, cobalt, nickel, some rare earth metal compounds) respond strongly to magnetic fields and can intensify them by orders of magnitude. i.e. the *relative permeability* can be tens or hundreds, or possibly thousands.

The Ising model is a simplified model of a **ferromagnet** which exhibits a **phase transition** above the **Curie temperature**. Below this, magnetic dipole alignment will tend to cluster into **domains**, and its is these micro-scale groupings which give rise to ferromagnetic behaviour.

Ernst Ising (1900-1998)

"Soft" magnetism - Ferromagnets

Unlike permanent "hard" magnets, once the applied field is removed, the domain alignment will randomize again, effectively zeroing the net magnetism.

Magnetic domains

The **Ising model** can be used to demonstrate spontaneous mass alignment of magnetic dipoles, and possibly a mechanism for domain formation.

Perhaps the simplest model which yields characteristic behaviour is an $N \times N$ square grid, where each square is initially randomly assigned a +1 or -1 value, with equal probability. The +/-1 values correspond to a single direction of magnetic dipole moment in a rectangular lattice of ferromagnetic atoms, or in the case of individual electrons, *spin*.

10 x 10 grid

White squares represent +1 **Black** squares represent -1

100 x 100 grid

Metropolis algorithm

- 1. Choose one square at random from the N x N grid. Let its spin be s(n) = +1 or -1.
- 2. Find the spins of the nearest neighbours. Use *circular boundary conditions* e.g. if s(n) is at the edge of the grid, use the nearest neighbour to be that of the

Compute a sum of spin-coupling energies for s(n) and its neighbours, and work out the energy change if s(n) were to change sign

$$\Delta E = 2 \times \left(F + J \sum_{k=1}^{4} s_n(k)\right) s(n)$$

J is the spin coupling energy in eV and F is the energy in eV associated with the alignment of spin s(n) with an applied external magnetic field. Let us ignore any energy contributions from non-nearest neighbours.

 $r \sim \mathrm{U}(0,1)$

Now change the sign of spin s(n) according to the following rule:

$$s(n) \rightarrow -s(n)$$
 if $e^{-\frac{\Delta E}{k_B T}} \ge r$ or $\Delta E < 0$

Nicholas Metropolis 1915-1999

Apply the Metropolis method for I x N x N iterations, and then compute from the N x N grid the following parameters

$$\langle s \rangle = \frac{1}{N^2} \sum_{n=1}^{N^2} s(n)$$
 Mean spin

$$\langle E \rangle = -\frac{1}{2} \frac{1}{N^2} \sum_{n=1}^{N^2} \left(J \sum_{k=1}^{4} s_n(k) + F \right) s(n)$$
 Mean energy per spin

$$k_B T^2 \langle C \rangle = \frac{1}{4} \frac{1}{N^2} \sum_{n=1}^{N^2} \left(J s(n) \sum_{k=1}^{4} s_n(k) + F s(n) \right)^2 - \left\langle E \right\rangle^2$$
This is a well known result in

Heat capacity in eV per K

This is a well known result in Statistical Thermodynamics

 $k_{B}T^{2}\langle C\rangle = \operatorname{Var}[E]$

For a 2D Ising model, Lars Onsager determined in 1944 the relationship between the **phase transition Curie temperature** and **coupling energy** J

$$J = \frac{1}{2} k_B T_C \ln\left(1 + \sqrt{2}\right)$$

$$T_{C} = 1,043 \text{K}$$
 Iron

(Note this expression assumes Coupling energy *J* is in joules)

Boltzmann's constant $k_B = 1.38 \times 10^{-23} \, \mathrm{JK}^{-1}$

Lars Onsager (1903-1976)

Peter Curie (1859-1906)

iteration = 1/2000 Mean spin=0.002568, T/Tc=0.5

iteration = 2000/2000 Mean spin=-0.007728, T/Tc=0.5

For a 500 x 500 grid, a similar equilibrium is not yet reached, even after I = 2000 x 500 x 500 iterations.

However, domain-like structures are clearly visible in this intermediate state.

Results of a MATLAB simulation:

- 10 x 10 grid
- I = 2000 (x 10 x 10) iterations of Metropolis algorithm
- R = 100 repeats for each temperature
- 100 different temperatures from T/Tc = 0.0 ... 2.0
- 21 different F/J values from -2 to 2
- i.e. 2000 x 10 x 10 x 100 x 100 x 21 =
- 42 billion iterations of the Metropolis algorithm

Running time on an i5 PC was about five days! Opportunity for parallel processing.

