

Electromagnetism

Dr Andrew French.
December 2023.

British Physics Olympiad

$$
P=I(\varepsilon-I r)
$$

$P=\varepsilon^{2} R /(r+R)^{2}$

$\varepsilon=I r+V$
$V=\varepsilon-I r$
$P=I V$
$P=I \varepsilon-I^{2} r$

$$
P=-r\left\{I^{2}-\frac{\varepsilon}{r} I\right\}=-r\left\{\left(I-\frac{\varepsilon}{2 r}\right)^{2}-\frac{\varepsilon^{2}}{4 r^{2}}\right\}
$$

$P=-r\left\{I^{2}-\frac{\varepsilon}{r} I\right\}=-r\left\{\left(I-\frac{\varepsilon}{2 r}\right)^{2}-\frac{\varepsilon^{2}}{4 r^{2}}\right\}$
$P=\frac{\varepsilon^{2}}{4 r}-r\left(I-\frac{\varepsilon}{2 r}\right)^{2}$
Maximum power dissipated in load R

$$
\begin{aligned}
& P_{\max }=\frac{\varepsilon^{2}}{4 r} \\
& R=r
\end{aligned}
$$

$$
P=\frac{c}{4 r}-r\left(I-\frac{c}{2 r}\right)
$$

$$
\begin{aligned}
& \varepsilon=I r+I R \\
& I=\frac{\varepsilon}{r+R} \\
& P=I^{2} R \\
& P=\frac{\varepsilon^{2} R}{(r+R)^{2}}
\end{aligned}
$$

$\boldsymbol{T}=9 \mathbf{4}$ Force = charge x electric field strength
$\mathbf{E}=\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{\mathbf{r}}$
Charles-Augustin de Coulomb (1736-1806)

Colour scale is $\log _{10}$ of E field in Vm^{-1}

$\mathbf{E}(x, y)=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{Q_{i}}{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}} \frac{\hat{\mathbf{x}}\left(x-X_{i}\right)+\hat{\mathbf{y}}\left(y-Y_{i}\right)}{\sqrt{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}}}$

20 random point charges
Colour scale is $\log _{10}$ of E field in Vm^{-1}

Colour scale is $\log _{10}$ of E field in Vm^{-1}


```
211
% Compute electric potential and electric field vectors
function [Ex,Ey,V] = field_calc( x,y, xq,yq,zq, q )
%Permittivity of free space / m^-3 kg^-1 s^4 A^2 (or Fm^-1)
e0 = 8.854e-12;
%Calculate electric potential and electric field in (x,y,z=0) plane
dim = size(x);
V = zeros(dim);
Ex = zeros(dim);
Ey = zeros(dim);
Xq}= zeros( dim(1),dim(2),numel(q) )
Yq = zeros( dim(1),dim(2),numel(q) );
Zq}= zeros( dim(1),dim(2),numel(q) )
Q = zeros( dim(1),dim(2),numel(q) );
for k=1:numel(q)
        Xq(:, :,k) = xq(k);
        Yq(:, :,k) = Yq(k);
        Zq(:,:,k) = zq(k);
        Q(:,:,k) = q(k);
    end
    x = repmat(x, [1,1,numel(q)] );
    y = repmat (y, [1,1, numel(q)] );
    z = zeros( dim(1), dim(2),numel(q) );
    r = sqrt( ( x - Xq ).^2 + ( Y - Yq ).^^2 + ( z - Zq ).^^2 );
    V = sum(( Q./(4*pi*e0) )./r,3);
    Ex = sum(( x - Xq ).*( Q./(4*pi*e0) )./(r.^3),3);
    Ey = sum(( Y - Yq ).*( Q./(4*pi*e0) )./(r.^3),3);
    %%
```

$\mathbf{E}(x, y)=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i} \frac{Q_{i}}{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}} \frac{\hat{\mathbf{x}}\left(x-X_{i}\right)+\hat{\mathbf{y}}\left(y-Y_{i}\right)}{\sqrt{\left(x-X_{i}\right)^{2}+\left(y-Y_{i}\right)^{2}}}$

Ball betwen plates Colour scale is $\log _{10}$ of E field in Vm^{-1}

Not quite!

Capacitor model

Two capacitors of capacitance $47,000 \mu \mathrm{~F}$ wired in parallel i.e. a total capacitance of $94,000 \mu \mathrm{~F}=\mathbf{0 . 0 9 4 F}$.

Discharging a capacitor
$Q=C V \quad V=I R \quad I=-\frac{d Q}{d t}$
capacitor charge, voltage relationship
$\therefore I=\frac{V}{R}=-C \frac{d V}{d t}$
Note $V=V_{0}$ when $t=0$

$$
\begin{aligned}
& \frac{1}{R C} \int_{0}^{t} d t=-\int_{V_{0}}^{V} \frac{d V}{V} \\
& \frac{t}{R C}=-[\ln |V|]_{V_{0}}^{V} \\
& \frac{t}{R C}=-\ln \left(\frac{V}{V_{0}}\right) \\
& V=V_{0} e^{-\frac{t}{R C}}
\end{aligned}
$$

Charging a capacitor using a DC source

$$
\begin{array}{lll}
Q=C V & V_{\infty}-V=I R & I=\frac{d Q}{d t} \\
\begin{array}{ll}
\text { capacitor } \\
\text { charge, voltage } \\
\text { relationship }
\end{array} & \text { Ohm's law } & \begin{array}{l}
\text { Definition of } \\
\text { current }
\end{array}
\end{array}
$$

$$
\frac{1}{R C} \int_{0}^{t} d t=\int_{0}^{V} \frac{d V}{V_{\infty}-V}=-\int_{0}^{V} \frac{-d V}{V_{\infty}-V}
$$

$$
\frac{t}{R C}=-\left[\ln \left|V_{\infty}-V\right|\right]_{0}^{V}
$$

$$
-\frac{t}{R C}=\ln \left(V_{\infty}-V\right)-\ln \left(V_{\infty}\right)=\ln \left(\frac{V_{\infty}-V}{V_{\infty}}\right)
$$

$$
\frac{V_{\infty}-V}{V_{\infty}}=e^{-\frac{t}{R C}}
$$

Charge and discharge recorded using Capstone software, interfacing via USB to the PASCO datalogger hub. Note Ammeter is in series with discharge loop, so no current recorded during charging.

Capstone \longrightarrow Copy and paste data to text files (one per discharge resistance)


```
%Import Capacitor charge & discharge data
% LAST UPDATED by Andy French Mar 2020
function import data
disp(' '); disp(' Importing data from Excel...')
%Import resistances /ohms
[num,txt, raw] = xlsread( 'Capacitor charge & discharge.xlsx',...
    'Resistances' );
R = num(:,2).';
%Import data from Excel
num_runs = 15;
for }\mp@subsup{}{}{-}n=1:1
    [num,txt,raw] = xlsread( 'Capacitor charge & discharge.xlsx',...
        ['Sheet',num2str(n)] );
    data(n).I_mA = num(:,1);
    data(n).V_volts = num(:,2);
    data(n).t-}\textrm{s}=\operatorname{num(:,3);
    data(n).R_ohms = R(n);
end
%Save data to a .mat file
save( 'capacitor data','data','R' );
disp(' Data saved to file capacitor_data.mat. '];
%End of code
```


MATLAB

Capacitor charging voltage vs time

Capacitor discharging current vs time

Capacitor discharging voltage vs time

$\ln (\mathrm{V})$ vs t line of best fit to find RC time

$$
\mathrm{C}=(0.1219+/-0.0012) \mathrm{F}, \mathrm{R}_{\mathrm{int}}=(-0.575+/-1.14) \Omega .
$$

Magnetometer defection θ

Mirror to avoid parallax error if reflection of needle aligns with its shadow

TANGENT MAGNETOMETER

Note by convention magnetic field lines point towards the south pole and emerge from the north pole.

Note also that, as of 11 Nov 2017, geomagnetic north is actually a south pole! (i.e. field lines point north, not south).

Magnetic North (note this is currently a magnetic south pole, which is
why the magnetic field points towards it)

Net magnetic field acting on magnetometer magnet (which it aligns with) is:
$\mathbf{B}=B_{M} \hat{\mathbf{x}}+B_{\oplus} \hat{\mathbf{y}}$

Hence:

$$
\frac{B_{M}}{B_{\oplus}}=\tan \theta
$$

$B_{M} \hat{\mathbf{x}}$ is the magnetic field due to the bar magnet

$$
\mathrm{B}_{\mathrm{M}} / \mathrm{B}_{\mathrm{E}}=\tan \theta=0.023 / \mathrm{x}^{3.2}
$$

Distance x of bar magnet from compass /m

The field of a Magnetic dipole is mathematically very similar to that of an electric dipole (see Electric dipole notes).

$$
\mathbf{E}=\frac{q d}{4 \pi \varepsilon_{0} r^{3}}(2 \hat{\mathbf{r}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta)
$$

In both cases assume r is much greater than the dimensions associated with the dipole

This explains why the variation of magnetic field strength vs distance is $B_{M} \propto r^{-3}$

We measured -3.2 as the power.

$$
\mathbf{B}=\frac{\mu_{0} m}{4 \pi r^{3}}(2 \hat{\mathbf{r}} \sin \theta+\hat{\boldsymbol{\theta}} \cos \theta)
$$

Permittivity of free space $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{Fm}^{-1}$
Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}$

Rather than a curve fit using $B_{M} \propto r^{-3.17}$ we can construct an alternative linearization
$\frac{B_{M}}{B_{\oplus}}=\tan \theta=\frac{k}{x^{3}}$

So plotting $\tan \theta$ vs $1 / x^{3}$ should yield a straight line

$$
\mathrm{B}_{\mathrm{M}} / \mathrm{B}_{\mathrm{E}}=\tan \theta=0.029 / \mathrm{x}^{3}
$$

Distance x of bar magnet from compass /m

Biot-Savart law

$$
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{l} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

Jean-Baptiste Biot (1774-1862)

Félix Savart (1791-1841)

Colour scale is $\log _{10}$ of B field in Tesla

Solenoid
Colour scale is $\log _{10}$ of B field in Tesla

Solenoid
Colour scale is $\log _{10}$ of B field in Tesla

$$
\mathbf{B}=\frac{\mu_{0} I}{4 \pi} \int \frac{d \mathbf{l} \times\left(\mathbf{r}-\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|^{3}}
$$

Solenoid ring
Colour scale is $\log _{10}$ of B field in Tesla

Colour scale is $\log _{10}$ of B field in Tesla

$$
D=\frac{\mu 01}{4 \pi} \int \frac{d 1 \times\left(r-r^{\prime}\right)}{\mid r-1 / 3}
$$

Calculating the electron charge to mass ratio using a Fine Beam Tube

Low pressure hydrogen gas inside a spherical tube is ionized by a beam of electrons, which are accelerated via a voltage of approximately 100 V . A pair of Helmholtz coils

$$
\begin{aligned}
& m_{e}=9.109 \times 10^{-31} \mathrm{~kg} \\
& e=1.602 \times 10^{-19} \mathrm{C} \\
& \frac{e}{m_{e}}=1.76 \times 10^{11} \mathrm{Ckg}^{-1}
\end{aligned}
$$ (solenoids) produce a highly uniform magnetic field which bends the beam into a circle.

If the accelerating voltage, the coil current and the beam radius are measured, it is possible to calculate from these parameters the electron charge to mass ratio

$$
e / m_{e}
$$

Assume uniform magnetic field of strength B between the Helmholtz coils.

The force on an electron (beyond cathode and deflection plates) is $\mathbf{F}=-e \mathbf{v} \times \mathbf{B}$
i.e. a purely centripetal force if the beam is initially vertical and perpendicular to the uniform magnetic field.

Newton II (+ve in radially inward direction):

$$
\frac{m_{e} v^{2}}{r}=B e v \Rightarrow v=\frac{B e r}{m_{e}}
$$

Assume electron kinetic energy is solely from the accelerating potential, and velocities are low enough such that relativistic effects can be ignored.

$$
\begin{aligned}
& \frac{1}{2} m_{e} v^{2}=e V \therefore v=\sqrt{\frac{2 e V}{m_{e}}} \quad \text { Hence: } \quad \sqrt{\frac{2 e V}{m_{e}}}=\frac{B e r}{m_{e}} \therefore \frac{2 e V}{m_{e}}=\frac{B^{2} e^{2} r^{2}}{m_{e}^{2}} \\
& \begin{array}{l}
\text { The charge to mass ratio for an electron can } \\
\text { therefore be determined in terms of readily } \\
\text { measurable quantities via the Fine Beam Tube! }
\end{array}
\end{aligned} \quad \therefore \frac{e}{m_{e}}=\frac{2 V}{B^{2} r^{2}} \quad l
$$

Classical result:
$\frac{e}{m_{e}}=\frac{2 V}{B^{2} r^{2}}$

So the Fine Beam tube can be used to measure the electron charge to mass ratio by plotting a graph of y vs x and finding the gradient.

$$
x=B^{2}, \quad y=\frac{2 V}{r^{2}}
$$

$B=\frac{\frac{1}{2} \mu_{0} N I R^{2}}{\left(R^{2}+h^{2}\right)^{\frac{1}{2}}}$
Magnetic field
on axis from a current loop of N turns

$$
x=B^{2}
$$

For a pair of Helmholtz coils with N turns and radius R separated by distance $2 h$, the magnetic field strength along the coil centre line, half way between the coils, is:

Fine beam tube experiment. Actual electron $\mathrm{e} / \mathrm{m}=1.76 \mathrm{e}+011$

The ratio of the measured to actual e / m value is:
1.76/2.96 = 0.595

Cyclotron

$$
f_{c}=\frac{1}{2 \pi} \frac{q B}{m}
$$

Cyclotron frequency

$\frac{1}{2} T_{n}$ is the time to complete a half-circular orbit between boosts.

$$
\frac{1}{2} m v_{n+1}^{2}=\frac{1}{2} m v_{n}^{2}+q V_{0}
$$

$$
V(t)=V_{0} \cos \left(2 \pi f_{c} t\right)=V_{0} \cos \left(\frac{q B t}{m}\right)
$$

$$
\therefore v_{n+1}=\sqrt{v_{n}^{2}+\frac{2 q V_{0}}{m}}
$$

Particle speeds get a boost every

$$
f_{c}=\frac{1}{2 \pi} \frac{q B}{m}
$$

cyclotron $\mathrm{B}=0.1 \mathrm{~T} \mathrm{~V}=100 \mathrm{kV} \mathrm{f}=1.5575 \mathrm{MHz}$
$E=5 \mathrm{MeV}, \mathrm{v} / \mathrm{c}=0.10435$

cyclotron $B=0.1 \mathrm{~T} V=100 \mathrm{kV} \mathrm{f}=1.5575 \mathrm{MHz}$

cyclotron $B=0.1 T \mathrm{~V}=100 \mathrm{kV} \mathrm{f}=1.5575 \mathrm{MHz}$
Max KE $=5 \mathrm{MeV}$, $\mathrm{v} / \mathrm{c}=0.10435$

cyclotron $\mathrm{B}=0.1 \mathrm{~T} \mathrm{~V}=100 \mathrm{kV} \mathrm{f}=1.5575 \mathrm{MHz}$

Feb. 20, 1934.
METHOD AND APPARATUS FOR THE ACCBLBRATION OF IONS Filed Jan. 26, $1932 \quad 2$ Sheets-Sheet

Ernest Lawrence (1901-1958)

TOROIDAL INDUCTOR

Air gap

Variable resistor Power supply

1. Vary current (range 0.4 A to about 2.0 A) in toroidal inductor by changing resistance of variable resistor.
2. Use Hall Probe and datalogger to measure magnetic flux density B in air gap.
3. Plot magnetic flux density (in T) vs current (in A). Use the graph to calculate the relative permeability μ of the iron core.

Application of the Lorentz force - the Hall Efffect

A semiconductor of width w and height h is placed in a magnetic field B. Current I passes through the semiconductor as shown. The Lorentz force on charges will cause a charge separation, which in turn will result in an electric field E perpendicular to both the magnetic field and the current direction.

Equilibrium is reached when the electric force and Lorentz magnetic forces balance.

Example calculation:

$$
\begin{aligned}
& n=7 \times 10^{21} \mathrm{~m}^{-3} \\
& q=e=1.6 \times 10^{-19} \mathrm{C} \\
& h=0.1 \mathrm{~mm} \\
& \therefore q n h=0.112
\end{aligned}
$$

can be a ratio of nearunity quantities, which are readily measureable i.e. B fields not too many orders of magnitude less than 1.0T can be easily measured.

$$
q E=q v B
$$

$$
\therefore E=v B
$$

The electric potential resulting from the separated charges is called the $I=q n w h v \quad$ Hall Voltage
$\therefore v=\frac{I}{q n w h}$
$\therefore \frac{V_{H}}{w}=\frac{I B}{q n w h}$
$V_{H}=\frac{I B}{q n h}$
$B=\frac{q n h V_{H}}{I}$
It is possible to measure the Hall effect in a small semiconductor, so the effect can be used to determine the how a non uniform magnetic field varies in time

Edwin Hall 1855-1938 and space.

Ampère's Theorem:
$\oint_{\text {loop }} \mathbf{H} \cdot d \mathbf{l}=N I$
Magnetic field strength inside torus is tangential to circular loop
$\therefore H_{\text {inside }}(2 \pi r-d)+H_{\text {gap }} d=N I \quad$ if gap is small

$$
d \ll 2 \pi r
$$

$$
\begin{aligned}
& B_{\text {gap }}=\mu_{0} H_{g a p} \\
& B_{\text {inside }}=\mu \mu_{0} H_{\text {inside }}
\end{aligned}
$$

Permeability of free space

$$
\mu_{0}=4 \pi \times 10^{-7} \mathrm{Hm}^{-1}
$$

Magnetic flux density \mathbf{B} is continuous perpendicular to the iron, air boundary. (Maxwell Equation result).

Hence: $\quad B_{\text {gap }}=B_{\text {inside }}=B$

$$
\therefore H_{g a p}=\mu H_{\text {inside }}
$$

$$
\begin{aligned}
& \therefore H_{\text {inside }}(2 \pi r-d)+\mu H_{\text {inside }} d=N I \\
\longrightarrow & \therefore H_{\text {inside }}(2 \pi r-d+\mu d)=N I
\end{aligned}
$$

$$
\therefore H_{\text {inside }}=\frac{B}{\mu \mu_{0}}
$$

André-Marie Ampère (1775-1836)

$$
\begin{aligned}
& \therefore \frac{B}{\mu \mu_{0}}(2 \pi r-d+\mu d)=N I \\
& \therefore B=\frac{N \mu \mu_{0}}{2 \pi r-d+\mu d} I
\end{aligned}
$$

$\rightarrow k(2 \pi r-d+\mu d)=N \mu \mu_{0}$

$$
k(2 \pi r-d)=\mu\left(N \mu_{0}-k d\right)
$$

$$
\therefore \mu=\frac{k(2 \pi r-d)}{N \mu_{0}-k d}
$$

TOROIDAL ELECTROMAGNET EXPERIMENT
21/11/2022

Radius of ring /m
Gap in m
Number of coils N
$\mu 0$
$\mathrm{k}=\mathrm{dB} / \mathrm{d} \mathrm{l}$
k max
k min
μ mean
μ max
μ min

0.08
0.018
220
$1.25664 \mathrm{E}-06$
0.00870
0.00950
0.00775
:---:
43.66
27.42

In many literature sources μ is quoted as being about 1,000.

So the ring metal is probably not pure iron!

Magnetic flux density B in air gap (mT)

$\mathbf{B}(\mathrm{mT})$	B error $\mathbf{/ m T}$	$\mathbf{I}(\mathbf{A})$
0.00	0.01	0.000
3.10	0.05	0.445
3.39	0.09	0.486
3.77	0.12	0.533
4.22	0.13	0.589
4.99	0.19	0.678
5.83	0.27	0.776
7.01	0.39	0.912
9.28	0.72	1.154
13.25	1.05	1.523
16.29	1.29	1.846
17.75	1.45	1.970
13.20	0.90	1.452
11.20	0.63	1.241
9.63	0.51	1.066
8.30	0.35	0.916
7.04	0.24	0.771
6.18	0.19	0.674
5.53	0.15	0.600
4.74	0.11	0.510
4.41	0.09	0.471
4.23	0.08	0.452

Current raised then lowered to investigate

Magnetic flux density in ring gap vs current in toroidal electromagnet

hysteresis - only very marginal in this experiment.

$B=\frac{\mu_{0} I}{2 \pi r}$

$$
\Phi=N B A=\frac{\mu_{0} N A I_{0}}{2 \pi r} \cos \omega t
$$

$\varepsilon=-\frac{d \Phi}{d t}$

Rogowski Coil

The Ising Model of Ferromagnetism

All atoms will respond in some fashion to magnetic fields. The angular momentum (and spin) properties of electrons imply a circulating charge, which means they will be subject to a Lorentz force in a magnetic field. However the effects of diamagnetism, paramagnetism and anti-ferromagnetism are typically very small. Ferromagnetic materials (iron, cobalt, nickel, some rare earth metal compounds) respond strongly to magnetic fields and can intensify them by orders of magnitude. i.e. the relative permeability can be tens or hundreds, or possibly thousands.

The Ising model is a simplified model of a ferromagnet which exhibits a phase transition above the Curie temperature. Below this, magnetic dipole alignment will tend to cluster into domains, and its is these micro-scale groupings which give rise to ferromagnetic behaviour.

"Soft" magnetism - Ferromagnets

In bulk material the domains usually cancel, leaving the material unmagnetized.

Externally applied magnetic field.

Iron will become magnetized in the direction of any applied magnetic field. This magnetization will produce a magnetic pole in the iron opposite to

Unlike permanent "hard" magnets, once the applied field is removed, the domain alignment will randomize again, effectively zeroing the net magnetism.

Magnetic domains

The Ising model can be used to demonstrate spontaneous mass alignment of magnetic dipoles, and possibly a mechanism for domain formation.

Perhaps the simplest model which yields characteristic behaviour is an $N \times N$ square grid, where each square is initially randomly assigned $a+1$ or -1 value, with equal probability. The $+/-1$ values correspond to a single direction of magnetic dipole moment in a rectangular lattice of ferromagnetic atoms, or in the case of individual electrons, spin.

10×10 grid

White squares represent +1 Black squares represent -1

Metropolis algorithm

1. Choose one square at random from the $\mathrm{N} \times \mathrm{N}$ grid. Let its spin be $\mathrm{s}(\mathrm{n})=+1$ or -1 .
2. Find the spins of the nearest neighbours. Use circular boundary conditions e.g. if $s(n)$ is at the edge of the grid, use the nearest neighbour to be that of the other end.

3. Compute a sum of spin-coupling energies for $\mathrm{s}(\mathrm{n})$ and its neighbours, and work out the energy change if $s(n)$ were to change sign

$$
\Delta E=2 \times\left(F+J \sum_{k=1}^{4} s_{n}(k)\right) s(n)
$$

J is the spin coupling energy in eV and F is the energy in eV associated with the alignment of spin $\mathrm{s}(\mathrm{n})$ with an applied external magnetic field. Let us ignore any energy contributions from non-nearest neighbours.
$r \sim \mathrm{U}(0,1)$
Now change the sign of spin $s(n)$
$s(n) \rightarrow-s(n)$ if $e^{-\frac{\Delta E}{k_{B} T}} \geq r$ or $\Delta E<0$

Nicholas
Metropolis
1915-1999

Apply the Metropolis method for $\mathrm{x} \times \mathrm{N} \times \mathrm{N}$ iterations, and then compute from the $\mathrm{N} \times \mathrm{N}$ grid the following parameters
$\langle s\rangle=\frac{1}{N^{2}} \sum_{n=1}^{N^{2}} s(n) \quad$ Mean spin
$\langle E\rangle=-\frac{1}{2} \frac{1}{N^{2}} \sum_{n=1}^{N^{2}}\left(J \sum_{k=1}^{4} S_{n}(k)+F\right) s(n)$
Mean energy per spin
$k_{B} T^{2}\langle C\rangle=\frac{1}{4} \frac{1}{N^{2}} \sum_{n=1}^{N^{2}}\left(J s(n) \sum_{k=1}^{4} s_{n}(k)+F s(n)\right)^{2}-\langle E\rangle^{2}$

This is a well known result in Statistical Thermodynamics

$$
k_{B} T^{2}\langle C\rangle=\operatorname{Var}[E]
$$

For a 2D Ising model, Lars Onsager determined in 1944 the relationship between the phase transition Curie temperature and coupling energy J

$$
J=\frac{1}{2} k_{B} T_{C} \ln (1+\sqrt{2})
$$

$$
T_{C}=1,043 \mathrm{~K} \text { Iron }
$$

(Note this expression assumes
Coupling energy J is in joules)

$$
\begin{aligned}
& \text { Boltzmann's constant } \\
& k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}
\end{aligned}
$$

Mean spin vs iteration. $\mathrm{N}=10, \mathrm{~T} / \mathrm{Tc}=0.5$

iteration $=1 / 2000$
Mean spin $=0.002568, \mathrm{~T} / \mathrm{Tc}=0.5$

For a 500×500 grid, a similar equilibrium is not yet reached, even after $\mathrm{I}=2000 \times 500 \times 500$ iterations.

However, domain-like structures are clearly visible in this intermediate state.
iteration $=2000 / 2000$
Mean spin $=-0.007728, \mathrm{~T} / \mathrm{Tc}=0.5$

Mean spin vs iteration. $\mathrm{N}=500, \mathrm{~T} / \mathrm{Tc}=0.5$

Results of a MATLAB simulation:

10×10 grid

I = 2000 ($\times 10 \times 10$) iterations of Metropolis algorithm $R=100$ repeats for each temperature 100 different temperatures from $\mathrm{T} / \mathrm{Tc}=0.0$... 2.0 21 different F / J values from -2 to 2
i.e. $2000 \times 10 \times 10 \times 100 \times 100 \times 21=$ 42 billion iterations of the Metropolis algorithm

Mean abs spin $\mathrm{N}=10, \mathrm{R}=100, \mathrm{I}=2000, \mathrm{Tc}=1043 \mathrm{~K}, \mathrm{~J}=0.039644 \mathrm{eV}$

