

BPhO Computational Challenge

Seminar 06: Exoplanets and Kepler's Third Law

Dr Andrew French. December 2021.

Kepler's laws of orbital motion

Nicolaus Copernicus 1473-1543

Tycho Brahe 1546-1601

Nose lost in 1566 following a sword duel with third cousin Manderup Parsberg over the legitimacy of a mathematical formula!

Isaac

Newton

1642-

1727

Kepler's three laws are:

- 1. The orbit of every planet in the solar system is an ellipse with the Sun at one of the two foci.
- 2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- 3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. The wording of Kepler's laws implies a specific application to the solar system. However, the laws are more generally applicable to any system of two masses whose mutual attraction is an inverse-square law.

Object	Mass in Earth	Distance from Sun in	Radius in Earth radii	Rotational period /days	Orbital period /years
	masses	AU			
Saturn	95.16	9.58	9.45	0.44	29.63
Uranus	14.50	19.29	4.01	0.72	84.75
Jupiter	317.85	5.20	11.21	0.41	11.86
Sun	332,837	-	109.12	-	-
Neptune	17.20	30.25	3.88	0.67	166.34
Pluto	0.00	39.51	0.19	6.39	248.35
Mars	0.107	1.523	0.53	1.03	1.88
Venus	0.815	0.723	0.95	243.02	0.62
Mercury	0.055	0.387	0.38	58.65	0.24
Earth	1.000	1.000	1.00	1.00	1.00

Grav	vitational field
(in t	erms of g =
9.81	ms^-2)
1.07	
0.90	
2.53	
27.9	5
1.14	
0.09	
0.38	
0.90	
0.37	
1.00	

For our Solar System:

 $m \ll M_{\odot}$

A very strong correlation of Kepler III to orbital data for planets in our solar system!

Exce Exoplanet Kepler III

Raw data (slightly processed!) from <u>www.exoplanet.eu</u>

660 Exoplanets

	Exoplanet raw data - Microsoft Excel													
	Home Insert Pa	ge Layout Formulas	Data Revi	ew View									0 - 🗖	×
ſ	Calibri 🚽 1		= >	📑 Wrap Text	G	eneral	•					ΣΖ	r 🚓 👘	
Pas	te 🦪 🖪 🛛 🖳 –	- <u>*</u> - <u>A</u> - E =	■ 律 律	🔤 Merge &	Center 👻 📮	9 - % ,	◆.0 .00 C	onditional Fo	rmat as Cell	Insert D	elete Format	Sort of	& Find &	
Clipb	oard 🖻 Font	5	Alignn	nent	6	Number		Sty	able * Styles les		Cells	Edit	ing	
	А	В	С	D	E	F	G	Н	1	J	К	L	М	Ę
				Exoplanet	lower	upper		min	max					
			Star mass	mass /	mass /	mass	orbital_p	orbital	orbital					
			/solar	mass of	mass of	/mass of	eriod	period	period	semi_major	min a	max a		
1	Exoplanet	Star	mass	Jupiter	Jupiter	Jupiter	/days	/days	/days	_axis a /AU	/AU	/AU		
2	11 Com b	11 Com	2.7	19.4	17.9	20.9	326.03	325.71	326.35	1.29	1.24	1.34		
3	11 UMi b	11 UMi	1.8	10.5	8.03	12.97	516.22	512.97	519.47	1.54	1.47	1.61		
4	14 Her b	14 Her	0.9	4.64	4.45	4.83	1773.4	1770.9	1775.9	2.77	2.72	2.82		
5	16 Cyg B b	16 Cyg B	1.01	1.68	1.61	1.75	799.5	798.9	800.1	1.68	1.65	1.71		
6	1SWASP J1407 b	1SWASP J1407	0.9	20	14	26	3725	2825	4625	3.9	2.2	5.6		
7	24 Sex b	24 Sex	1.54	1.99	1.61	2.25	452.8	448.3	454.9	1.333	1.324	1.337		
8	24 Sex c	24 Sex	1.54	0.86	0.64	1.21	883	869	915	2.08	2.06	2.13		
9	2M 0746+20 b	2M 0746+20	0.12	30	5	55	4640	4615	4665	2.897	2.892	2.902		
10	2M 1936+4603 b	2M 1938+4603	0.6	1.9	1.8	2	416	414	418	0.92	0.9	0.94		
11	2M 2140+16 b	2M 2140+16	0.08	20	0	100	7340	6756	7924	3.53	3.38	3.68		
12	2M 2206-20 b	2M 2206-20	0.13	30	10	100	8686	8616.6	8755.4	4.48	4.08	4.88		
13	30 Ari B b	30 Ari B	1.22	9.88	8.94	10.82	335.1	332.6	337.6	0.995	0.983	1.007		
14	4 Uma b	4 Uma	1.234	7.1	5.5	8.7	269.3	267.34	271.26	0.87	0.83	0.91		
15	42 Dra b	42 Dra	0.98	3.88	3.03	4.73	479.1	472.9	485.3	1.19	1.18	1.2		
16	47 Uma b	47 Uma	1.03	2.53	2.47	2.6	1078	1076	1080	2.1	2.08	2.12		
17	47 Uma c	47 Uma	1.03	0.54	0.467	0.606	2391	2304	2491	3.6	3.5	3.7		
18	47 Uma d	47 Uma	1.03	1.64	1.16	1.93	14002	8907	18020	11.6	8.7	13.7		
19	55 Cnc b	55 Cnc	0.905	0.8	0.788	0.812	14.651	14.6509	14.6511	0.1134	0.1128	0.114		
20	55 Cnc c	55 Cnc	0.905	0.169	0.161	0.177	44.3446	44.3376	44.3516	0.2403	0.2386	0.242		
21	55 Cnc d	55 Cnc	0.905	3.835	3.755	3.915	5218	4988	5448	5.76	5.7	5.82		
22	55 Cnc e	55 Cnc	0.905	0.0261775	0.02495	0.027405	0.736542	0.736539	0.736545	0.0156	0.01549	0.01571		
23	55 Cnc f	55 Cnc	0.905	0.144	0.104	0.184	260.7	259.6	261.8	0.781	0.775	0.787		-
I I	Sheet1 Sheet2	Sheet3 💭						4						
Read	У										100%	0	•	.::

Kepler's Third LawIn the exoplanet
data, planet masses
are given in Jupiter masses
$$M_{\odot} = 1.98847 \times 10^{30} \text{ kg}$$

 $m_{J} = 1.898 \times 10^{27} \text{ kg}$
 $m_{\oplus} = 5.972 \times 10^{24} \text{ kg}$
 $M_{\oplus} = 6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$
 $AU^3 \approx \frac{4\pi^2}{GM_{\odot}} AU^3$
 $\therefore (\frac{P}{\text{Yr}})^2 = \left(\frac{M}{M_{\odot}} + \frac{m}{M_{\odot}}\right)^{-1} \left(\frac{a}{\text{AU}}\right)^3$
 $\therefore 2\log\left(\frac{P}{\text{Yr}}\right) = -\log\left(\frac{M}{M_{\odot}} + \frac{m}{M_{\odot}}\right) + 3\log\left(\frac{a}{\text{AU}}\right)$
 $X = \log\left(\frac{R}{\text{AU}}\right)$ Note in most cases:
 $\frac{M}{M_{\odot}} + \frac{m}{M_{\odot}} \approx \frac{M}{M_{\odot}}$ $y = 2\log\left(\frac{P}{\text{Yr}}\right) + \log\left(\frac{M}{M_{\odot}} + \frac{m}{M_{\odot}}\right)$ So y vs x should be a straight

So y vs x should be a **straight** line from the origin of gradient 3

Analysis using Microsoft Excel

Use these to set the error bars

EXOPLANET ANALY A. FRENCH March 2	'SIS 019	Solar mass / 1.98847E+30	kg)	Jupiter m 1.90E+27	nass /kg	Yr in day: 365.2422	5														$\langle \ \rangle$		
		Star mass	Exoplanet mass / mass of	lower mass / mass of	upper mass /mass of	orbital_p eriod	min orbital period	max orbital period	semi_majo	r min a	max a	K	x =	K	2log(Tmi	2log(T/Y	2log(Tma		log((M+m)/N	1	7		A
Exoplanet	Star	/solar mass	Jupiter	Jupiter	Jupiter	/days	/days	/days	_axis a /AU	I /AU	/AU	x - xmin	log(a/AU)	xmax - x	n/Yr)	r)	x/Yr)	lower	sun)	upper	y - ymin	y y	/max - y
11 Com b	11 Com	2.7	19.4	17.9	20.9	326.03	325.71	326.35	1.29	1.24	1.34	0.0172	0.1106	0.0165	-0.0995	-0.0986	-0.0978	0.4341	0.4343	0.4346	0.0011	0.3357 0).0011
11 UMi b	11 UMi	1.8	10.5	8.03	12.97	516.22	512.97	519.47	1.54	1.47	1.61	0.0202	0.1875	0.0193	0.2950	0.3005	0.3060	0.2571	0.2577	0.2582	0.0061	0.5582 0).0060
14 Her b	14 Her	0.9	4.64	4.45	4.83	1773.4	1770.9	1775.9	2.77	2.72	2.82	0.0079	0.4425	0.0078	1.3712	1.3725	1.3737	-0.0437	-0.0436	-0.0435	0.0013	1.3288 ().0013
16 Cyg B b										1.65	1.71	0.0078	0.2253	0.0077	0.6798	0.6805	0.6811	0.0050	0.0050	0.0050	0.0007	0.6855 0).0007
1SWASP J1407 b				Exoplane	et data					2.2	<u> </u>		1 5111	. 1	1 //60	10171	1 112 1		-0.0366	-0.0339	0.2429	1.9804 ().1907
24 Sex b		+ Exc	onlanet da	a	Linear (F	vonlanet	data)			1.324	$ \langle T \rangle^2$		1	$\sum_{i=1}^{n}$	$\langle \rangle$	\ ³			0.1881	0.1881	0.0088	0.3747 0).0041
24 Sex c			splanetaa		Lincal (L	xopiariet	uutuj			2.00			4	$m \mid 1$	a			I	0.1878	0.18/8	0.0139	0.9545 0	0.0310
2NI 1026+4602 h				8.0						2.892		= -	<u> </u>						-0.8279	-0.7032	0.0807	1.3800 0	0.0093
2M 2140+16 b					v =	2 9910	ly l	/		3.38	$ \langle Yr \rangle $	(N)	l_{a} .	M_{\odot}) (AU ,)			-1.0040	-0.2203	0.1650	1 6023 0	1 3146
2M 2206-20 h	-			6.0	y -	2.5515	~			4.08			0	0)					-0.7996	-0.6469	0.0627	1.9529 (1596
30 Ari B b	5			0.0	R* =	= 0.998	6 T			0.983		$\langle \mathbf{m} \rangle$		((0.0897	0.0900	0.0068	0.0149 0	0.0068
4 Uma b	/Isr							- T	·	0.83		(T)		(M)	n	1	a1 (a	0.0937	0.0942	0.0069	-0.1710 (0.0068
42 Dra b	<			4.0		H.				1.18	$\therefore 2\log$	sl —— I	= -1	og	-+	- +	- 3log	—— II	-0.0071	-0.0068	0.0117	0.2286 0	0.0115
47 Uma b	E					- F				2.08		′\Yr⊥		M	M	r	2	AU 川	0.0139	0.0139	0.0016	0.9539 0	0.0016
47 Uma c	É			2.0						3.5		$\langle 1 1 \rangle$) 171	\odot /		10/	0.0131	0.0131	0.0322	1.6451 0).0356
47 Uma d	lsu			2.0		a				8.7		,		1		``			0.0135	0.0136	0.3931	3.1807 0).2192
55 Cnc b	2									0.1128		(T	' `	(M	n	n)			-0.0430	-0.0430	0.0000	-2.8364 ().0000
55 Cnc c	Σ			0.0						0.2386	v = 21	og 1	_ + 1	$n\sigma = \frac{m}{m}$	_ +	<i>i</i>			-0.0433	-0.0433	0.0001	-1.8748 0).0001
55 Cnc d	66 .0	-2.0	-1.0	10.	0	1.0		2.0	3.0	5.7	y - 21	v	. ' '	⁰⁵ M	' 1 <i>1</i>	r		I	-0.0416	-0.0416	0.0392	2.2682 0).0375
55 Cnc e	+									0.01549		(I	r)		~ 101	0/			-0.0433	-0.0433	0.0000	-5.4341 (0.0000
55 Cnc f	÷			-2.0						0.775						- /			-0.0433	-0.0433	0.0037	-0.3362 ().0037
61 Vir b	2									0.050196		(a						I	-0.0223	-0.0223	0.0001	-3.8978 ().0001
61 Vir c	- -			-4.0						0.2174	r - 100		_						-0.0223	-0.0222	0.0008	-1.9874 ().0008
61 Vir d	Ő									0.475	$ \lambda - 10\xi$								-0.0222	-0.0222	0.0039	-0.9675 ().0039
7 CMa b	=									1.8		(AU						I	0.1826	0.1827	0.0197	0.8224 0).0193
BD+49 828	>	HF-		-6.0						3.88									0.1823	0.1823	0.1070	1.8837 ().0584
BD-061339 b										0.0421	v = (2)	.992+	0.004	(4)x					-0.1549	-0.1549	0.0001	-4.1040 ().0001
BD-061339 C				8.0						0.428	J (-		0.00	.)				I	-0.1548	-0.1548	0.0031	-1.0/96 (0.0030
BD-082823 D				$x = \log($	a/AU)					0.054	0.7	0.0120	0 1675	0.0136	0.2700	0 2725	0.3690	0.1306	-0.1307	-0.1307	0.0031	-3./595 0	0.0031
BD-082823 C										2 21	2.25	0.0130	-0.10/5	0.0120	-0.3790	-0.3/35	1 2257	-0.1306	-0.1306	-0.1306	0.0055	1 0757	0.0055
BD-114072 D =	BD-17-63	0.371	5.1	4.98	5.22	655.6	655	656.2	1 3/	1 32	1.35	0.0155	0.3379	0.0064	0.5073	0.5081	0.5089	-0.2430	-0.2450	-0.2429	0.0174	1.0/3/ 0	0009
CEBDS 1458 b	CEBDS 1458	0.024	6.5	2	11	14600	5800	23400	2.6	2.4	2.8	0.0348	0.4150	0.0322	2 4017	3 2035	3 6133	-1 5865	-1 5199	-1 4622	0.8685	1 6836	1 4675
CoRoT-1 h	CoBoT-1	0.95	1.03	0.91	1.15	1.508956	1.508949	1.508962	0.0254	0.025	0.0258	0.0069	-1.5952	0.0068	-4 7678	-4 7678	-4 7678	-0.0219	-0.0218	-0.0218	0.0001	-4 7896 (0001
CoRoT-10 b	CoRoT-10	0.89	2.75	2.61	2.89	13.2406	13.2404	13.2408	0.1055	0.1034	0.1076	0.0087	-0.9767	0.0086	-2.8814	-2.8813	-2.8813	-0.0494	-0.0493	-0.0493	0.0001	-2.9307 (0.0001
CoRoT-11 b	CoRoT-11	1.56	2.33	2.06	2.6	2.994325	2.994304	2.994346	0.04351	0.04315	0.04387	0.0036	-1.3614	0.0036	-4.1726	-4.1726	-4.1726	0.1937	0.1937	0.1938	0.0001	-3.9788 (0.0001

Exoplanet data

+ Exoplanet data — Linear (Exoplanet data)

LINE OF BEST FIT CALCULATOR y = mx

Dr Andy French. March 2019

paste as values x,y data here

х	у	x^2	y^2	ху	xfit	yfit	(y-fit)^2	ylower	yupper
0.111	0.336	0.012	0.113	0.037	0.111	0.331	0.000	0.330	0.331
0.188	0.558	0.035	0.312	0.105	0.188	0.561	0.000	0.560	0.562
0.442	1.329	0.196	1.766	0.588	0.442	1.324	0.000	1.322	1.326
0.225	0.685	0.051	0.470	0.154	0.225	0.674	0.000	0.673	0.675
0.591	1.980	0.349	3.922	1.171	0.591	1.768	0.045	1.766	1.771
0.125	0.375	0.016	0.140	0.047	0.125	0.373	0.000	0.373	0.374
0.318	0.955	0.101	0.911	0.304	0.318	0.952	0.000	0.950	0.953
0.462	1.380	0.213	1.904	0.637	0.462	1.382	0.000	1.380	1.384
-0.036	-0.108	0.001	0.012	0.004	-0.036	-0.108	0.000	-0.108	-0.109
0.548	1.602	0.300	2.567	0.878	0.548	1.639	0.001	1.637	1.641
0.651	1.953	0.424	3.814	1.272	0.651	1.949	0.000	1.946	1.951
-0.002	0.015	0.000	0.000	0.000	-0.002	-0.007	0.000	-0.007	-0.007
-0.060	-0.171	0.004	0.029	0.010	-0.060	-0.181	0.000	-0.181	-0.181
0.076	0.229	0.006	0.052	0.017	0.076	0.226	0.000	0.226	0.226
0.322	0.954	0.104	0.910	0.307	0.322	0.964	0.000	0.963	0.965
0.556	1.645	0.309	2.706	0.915	0.556	1.664	0.000	1.662	1.667
1.064	3.181	1.133	10.117	3.386	1.064	3.185	0.000	3.180	3.189
-0.945	-2.836	0.894	8.045	2.682	-0.945	-2.829	0.000	-2.824	-2.833
-0.619	-1.875	0.383	3.515	1.161	-0.619	-1.853	0.000	-1.850	-1.855
0.760	2.268	0.578	5.145	1.725	0.760	2.275	0.000	2.272	2.278
-1.807	-5.434	3.265	29.530	9.819	-1.807	-5.406	0.001	-5.398	-5.414
-0.107	-0.336	0.012	0.113	0.036	-0.107	-0.321	0.000	-0.321	-0.322
-1.299	-3.898	1.688	15.193	5.064	-1.299	-3.887	0.000	-3.882	-3.893
-0.663	-1.987	0.439	3.950	1.317	-0.663	-1.982	0.000	-1.979	-1.985
-0.322	-0.968	0.104	0.936	0.312	-0.322	-0.965	0.000	-0.963	-0.966
0.279	0.822	0.078	0.676	0.229	0.279	0.834	0.000	0.833	0.835
0.623	1.884	0.388	3.548	1.174	0.623	1.865	0.000	1.862	1.867
-1.369	-4.104	1.873	16.843	5.617	-1.369	-4.095	0.000	-4.089	-4.101
-0.362	-1.080	0.131	1.166	0.390	-0.362	-1.082	0.000	-1.080	-1.083
-1.252	-3.760	1.567	14.134	4.706	-1.252	-3.745	0.000	-3.740	-3.751
-0.167	-0.504	0.028	0.254	0.084	-0.167	-0.501	0.000	-0.500	-0.502
0.358	1.076	0.128	1.157	0.385	0.358	1.071	0.000	1.069	1.072
0.127	0.380	0.016	0.145	0.048	0.127	0.380	0.000	0.380	0.381
0.415	1.684	0.172	2.835	0.699	0.415	1.242	0.195	1.240	1.243
-1.595	-4.790	2.545	22.941	7.640	-1.595	-4.773	0.000	-4.766	-4.780
-0.977	-2.931	0.954	8.589	2.863	-0.977	-2.922	0.000	-2.918	-2.927
-1.361	-3.979	1.853	15.831	5.417	-1.361	-4.073	0.009	-4.067	-4.079
-1.396	-4.189	1.949	17.550	5.849	-1.396	-4.177	0.000	-4.171	-4.183
-1.292	-3.876	1.670	15.020	5.009	-1.292	-3.867	0.000	-3.861	-3.873
-1.569	-4.710	2.461	22.185	7.388	-1.569	-4.693	0.000	-4.686	-4.700
-1.209	-3.627	1.462	13.157	4.385	-1.209	-3.617	0.000	-3.612	-3.623
-1.336	-3.955	1.786	15.641	5.285	-1.336	-3.998	0.002	-3.992	-4.004
-1.530	-4.588	2.341	21.053	7.021	-1.530	-4.578	0.000	-4.572	-4.585
-1.286	-3.861	1.653	14.904	4.963	-1.286	-3.847	0.000	-3.841	-3.852
-1.551	-4.654	2.407	21.663	7.220	-1.551	-4.641	0.000	-4.635	-4.648

Note bug in old versions fo Excel (<2003), that will give an incorrect R^2 value for the built-in trend line function when 'set intercept at 0,0' is chosen

$$y = 2\log\left(\frac{T}{Yr}\right) + \log\left(\frac{M}{M_{\odot}} + \frac{m}{M_{\odot}}\right), \quad x = \log\left(\frac{a}{AU}\right)$$

 $y = (2.992 \pm 0.004)x$

N 660

MATLAB Exoplanet Kepler III

Similar to the Excel analysis – but a bit easier to implement. Particularly the error bars!

Obtaining exoplanet

parameters

As of January 2021, **4,395** confirmed exoplanets in **3,242** systems, with **720** systems having more than one planet. <u>https://en.wikipedia.org/wiki/Exoplanet#Methodology</u>

Popular exoplanet detection methods:

- Detection of a dip in star **luminosity** during a **transit** of a planet
- **Doppler shift** in peak wavelength of star emission spectra due to **star motion** about centre of mass of star and planet
- Direct imaging
- Gravitational microlensing

For multiple planet systems – *variations in orbital periods* due to multi-body gravitational interaction

Any many more exotic techniques....

https://en.wikipedia.org/wiki/Methods of detecting exoplanets

Detection of a dip in star luminosity during a transit of a planet

Transit of the Sun by Venus

22 Also 06=

and

$$\frac{\Delta L}{L_0} = \frac{\pi r^2}{\pi R^2} = \left(\frac{r}{R}\right)^2$$

Find planet radius from luminosity dip, if you know star radius and luminosity

and

21

RO

Sh

696340

6371

This is amazingly a real image!

Moon transit captured by a NASA camera aboard the Deep Space Climate Observatory (DSCOVR) satellite

<u>away-nasa-camera-shows-moon-crossing-face-of-earth</u>

https://www.nasa.gov/feature/goddard/from-a-million-miles-

Doppler shift in wavelength of star emission spectra due to star motion about centre of mass of star and planet

Orbitel penal P merly hight from stor will be dopply shifted n ugsa Q(H)= ATTE

Note we are trying to measure the **orbital speed** *u* **of the** *star*, *not the planet*, about the common centre of mass, the 'barycentre'.

Find star orbital speed from peak of sinusoidal variation of spectral peak wavelength. Can also determine orbital period of planet-star system from this data. *Note the doppler shifts will be* **TINY.**

Now expect: $m \ll M$, $a \ll b$ and orbits to be *approximately circular*

Kepler III:
$$P^2 = \frac{4\pi^2}{GM}b^3$$
 $\therefore \left(\frac{b}{AU}\right) = \left(\frac{M}{M_{\odot}}\right)^{\frac{1}{3}} \left(\frac{P}{Yr}\right)^{\frac{2}{3}}$

So if we know the star mass and the orbital period we can find the **orbital radius of the planet.**

Newton II:

$$\frac{Mu^{2}}{a} = \frac{GMm}{(a+b)^{2}} \Rightarrow \frac{u^{2}}{a} \approx \frac{Gm}{b^{2}} \quad \therefore m = \frac{u^{2}b^{2}}{aG}$$
$$u = \frac{2\pi a}{P} \therefore a = \frac{uP}{2\pi}$$
$$\therefore m = \frac{u^{2}b^{2}}{\frac{uP}{2\pi}G} \Rightarrow m = \frac{2\pi b^{2}u}{GP}$$
So if we know the star orbital speed, the planet orbital radius and the orbital period, we can find the mass of the planet.

Direct image of exoplanets around the star HR8799 using a *vector vortex coronagraph* on a 1.5m portion of the Hale telescope http://www.nasa.gov/topics/universe/features/exoplanet20100414-a.html

DIRECT IMAGING

Gravitational microlensing

Extrasolar planet detected by gravitational microlensing

https://exoplanets.nasa.gov/resources/53/extrasolar-planet-detected-by-gravitational-microlensing/

Gravitation microlensing

https://en.wikipedia.org/wiki/Gravitational microlensing

Gravitational lensing In **this case the** gravity of a luminous red galaxy has gravitationally distorted the light from a much more distant blue galaxy.

https://en.wikipedia.org/wiki/Gravitational microlensing#/media/File:A Horseshoe Einstein Ring from Hubble.JPG

So how do you determine the **mass**, **radius** and **luminosity** of the *star*?

Good question! Probably via a variety of methods – but you can use correlations from the **Hertzsprung Russell diagram** (for Main Sequence stars) to have a sensible initial guess. All you need to start off is the spectral peak wavelength. From **Wein's law** this yields the star surface temperature.

 $R_{\odot} = 696,340 \text{km}, \quad M_{\odot} = 1.99 \times 10^{30} \text{kg}, \quad L_{\odot} = 3.846 \times 10^{26} \text{Wm}^{-2}.$

Hertzsprung-Russell Diagram

MAIN SEQUENCE EXAMPLE STARS https://en.wikipedia.org/wiki/Main_sequence

<u>Stellar</u> classification	Radius R/R O	Mass M/M⊙	Luminosity L/L⊙	Surface temperature /K	Star	log10(L/L⊙)	log10 (T/T⊙)	log10(M/M⊙)	log10 ((R/R⊙)^2 * (T/5780K)^4)
M8	0.13	0.1	8.00E-04	2,660	Van Biesbroeck's star	-3.097	-0.337	-1.000	-3.120
M5	0.32	0.21	7.90E-03	3,120	<u>EZ Aquarii A</u>	-2.102	-0.268	-0.678	-2.061
M0	0.51	0.6	7.20E-02	3,800	Lacaille 8760	-1.143	-0.182	-0.222	-1.313
К5	0.74	0.69	1.60E-01	4,410	61 Cygni A	-0.796	-0.117	-0.161	-0.731
КО	0.85	0.78	4.00E-01	5,240	70 Ophiuchi A	-0.398	-0.043	-0.108	-0.312
G5	0.93	0.93	7.90E-01	5,610	<u>Alpha Mensae</u>	-0.102	-0.013	-0.032	-0.115
G2	1	1	1.00E+00	5,780	<u>Sun</u>	0.000	0.000	0.000	0.000
					<u>Beta Comae</u>				
G0	1.05	1.1	1.26E+00	5,920	<u>Berenices</u>	0.100	0.010	0.041	0.084
F5	1.2	1.3	2.50E+00	6,540	<u>Eta Arietis</u>	0.398	0.054	0.114	0.373
FO	1.3	1.7	6.00E+00	7,240	<u>Gamma Virginis</u>	0.778	0.098	0.230	0.619
A5	1.7	2.1	2.00E+01	8,620	<u>Beta Pictoris</u>	1.301	0.174	0.322	1.155
					<u>Alpha Coronae</u>				
A0	2.5	3.2	8.00E+01	10,800	Borealis A	1.903	0.271	0.505	1.882
B5	3.8	6.5	8.00E+02	16,400	<u>Pi Andromedae A</u>	2.903	0.453	0.813	2.971
BO	7.4	18	2.00E+04	30,000	Phi1 Orionis	4.301	0.715	1.255	4.599
06	18	40	5.00E+05	38,000	Theta1 Orionis C	5.699	0.818	1.602	5.782

Putting these calculations all together in a spreadsheet.....

EXOPLANET ANALYSIS MODEL

A. French Jan 2021

Star	Kepler 452	
Planet	Kepler 452b	"Earth 2.0"
	_	-
Planet mass /earth masses	5	
Planet radius /earth radii	1.5	
Orbital period /days	384.84	
Orbital radius /AU	1.046	
Star mass /solar masses	1.037	
Star radius /solar radii	1.11	
Luminosity /solar luminosity	1.2	
Star surface temperature /K	5757	
Distance from Earth /ly	1402	
Parallax /milli arc seconds	1.7838	
1AU /m	1.50E+11	
Solar mass /kg	1.99E+30	
Earth mass /kg	5.97E+24	
Solar radius /km	696340	
Earth radius /km	6371	
Solar luminosity /Wm^-2	3.85E+26	
Speed of light /ms^-1	3.00E+08	
1 year /s	31536000	
1 light year (ly) /m	9.45E+15	
Gravitational constant G / Nm^2kg^-2	6.67E-11	
Stefan-Boltzmann constant /Wm^-2K^-4	5.67E-08	
Sun surface temperature /K	5780	
Sun peak spectral intensity wavelength /nm	502	

Peak star spectral intensity wavelength /nm

504

Published value

1.046

5.00

29.57

Star calculation based upon main sequence correlations, and quoted star surface temperature

Calculated star mass / solar masses	0.992	1.037
Calculated star radius /solar radii	0.994	1.11
Calculated star luminosity /solar luminosity	0.973	1.2

Star calculation based upon main sequence correlations, and quoted star mass

Calculated star surface temperature / Sun surface temperature	1.019	0.996
Calculated star surface temperature /K	5889	5757
Calculated star radius /solar radii	1.027	1.11
Calculated star luminosity /solar luminosity	1.135	1.2

Calculated orbital radius /AU from star mass and period	1.049
Orbital speed of star /ms^-1 about barycentre	0.430
Calculated planet mass /earth mass	5.02
Maximum Doppler wavelength shift of star due to orbit about barycentre /nm	7.23E-07
Orbital speed of planet /kms^-1 about barycentre (effectively the star centre of mass)	29.64

Time for centre of mass of planet to transit star /hours	14.49
Luminosity dip (%) during transit of planet in front of star	0.0153

https://en.wikipedia.org/wiki/Exoplanet

https://en.wikipedia.org/wiki/Doppler_spectroscopy Kepler 452-b exoplanet Kepler-452 star

Notice how tiny the star doppler shift is! Apparently modern astronomical telescope systems can resolve star orbital speeds to a **precision of about 0.1m/s.** An *extraordinary* feat.

And the numbers for for another 'earth-like' exoplanet which will receive enough radiation to support liquid water, and *perhaps* alien life. Alas, it is 101.61 light years away so we may never know.

EXOPLANET ANALYSIS MODEL

A. French Jan 2021

		_			
Star	TOI 700	Red dwarf	Peak star spectral intensity wavelength /nm	834	
Planet	TOI 700d	Liquid water?			
		-	Star calculation based upon main sequence correlations, and quoted star surface temper	ature	Published value
Planet mass /earth masses	1.72	!			
Planet radius /earth radii	1.19)	Calculated star mass / solar masses	0.372	0.416
Orbital period /days	37.43	1	Calculated star radius /solar radii	0.490	0.42
Orbital radius /AU	0.163	1	Calculated star luminosity /solar luminosity	0.032	0.0233
		-			
Star mass /solar masses	0.416	5	Star calculation based upon main sequence correlations, and quoted star mass		
Star radius /solar radii	0.42	<u>!</u>			
Luminosity /solar luminosity	0.0233	•	Calculated star surface temperature / Sun surface temperature	0.638	0.602
Star surface temperature /K	3480)	Calculated star surface temperature /K	3686	3480
Distance from Earth /ly	101.61		Calculated star radius /solar radii	0.532	0.42
Parallax /milli arc seconds	32.098	3	Calculated star luminosity /solar luminosity	0.047	0.0233
1AU /m	1.50E+11		Calculated orbital radius /AU from star mass and period	0.164	0.163
Solar mass /kg	1.99E+30)	Orbital speed of star /ms^-1 about barycentre	0.593	
Earth mass /kg	5.97E+24		Calculated planet mass /earth mass	1.73	1.72
Solar radius /km	696340)	Maximum Doppler wavelength shift of star due to orbit about barycentre /nm	1.65E-06	
Earth radius /km	6371		Orbital speed of planet /kms^-1 about barycentre (effectively the star centre of mass)	47.54	47.38
Solar luminosity /Wm^-2	3.85E+26	;			
Speed of light /ms^-1	3.00E+08	3			
1 year /s	31536000)	Time for centre of mass of planet to transit star /hours	3.42	
1 light year (ly) /m	9.45E+15	5	Luminosity dip (%) during transit of planet in front of star	0.0672	
Gravitational constant G / Nm^2kg^-2	6.67E-11				
Stefan-Boltzmann constant /Wm^-2K^-4	5.67E-08	3	https://en.wikipedia.org/wiki/Exoplanet		
Sun surface temperature /K	5780)	https://en.wikipedia.org/wiki/Doppler_spectroscopy		OI 700d
Sun peak spectral intensity wavelength /nm	1 502	<u>!</u>	https://en.wikipedia.org/wiki/TOI 700 d	نا ا	017004
			https://en.wikipedia.org/wiki/TOI 700		
					and the second

- Suggested homework
- Q&A

