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Differentiation:  
i.e. “finding  
gradients” 

dx

dt



At the time of the London 2012 Olympics (where Bolt won Gold in a 
time of 9.63s), the 100m world record stood at 9.58s. This was set at 
the Berlin World Championships in 2009. 

So how fast did he go? What indeed does this statement actually 
mean? Did he pull away from the rest of the field, or slow down? To 
answer these questions we need to analyse the race using 
kinematics* (literally, the study of motion). 

*From the Greek κίνημα, kinema (movement, motion)  



In kinematics we describe motion by a graph in three ways: 
 
1. Displacement vs time   (t,x) 

2.  Velocity vs time   (t,v) 

3.  Acceleration vs time   (t,a) 
 
 
•   Displacement  x  is the position vector from a specified origin. 
 
•   Velocity  v is the rate of change of displacement at any  
     given instant 
 
•   Acceleration  a is the rate of change of velocity at any  
     given instant 
 
 

For simplicity at this stage we will consider 
displacements, velocities and accelerations in a single 
direction, i.e. down the 100m track. Note however that 
these quantities are actually vectors and therefore have 
both magnitude and direction. 



http://rcuksportscience.wikispaces.com/file/view/
Analysing+men+100m+Nspire.pdf 

 

Bolt’s 100m races. Time elapsed /s every 10m* 

Olympic final, Beijing 
World Champs, Berlin 

Let’s look at the displacement vs time graph first: 

* 

Photo credit 

http://rcuksportscience.wikispaces.com/file/view/Analysing+men+100m+Nspire.pdf
http://rcuksportscience.wikispaces.com/file/view/Analysing+men+100m+Nspire.pdf
http://www.dailymail.co.uk/news/article-2184089/London-Olympics-2012--Usain-Bolt-storms-100m-glory-answers-critics-resounding-victory-9-63-seconds.html


To find the time, velocity graph  we could calculate the 
gradient of the (t,x) graph, at different times 
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THIS IS DONE BY FIRSTLY FITTING CUBIC SPLINES BETWEEN THE DATA POINTS 



The graph below has been constructed from the local gradients 
calculated every second along a smooth curve drawn between the 
elapsed time data recorded at 10m intervals 

He is speeding up 
i.e. accelerating 
in the ‘drive’ 
phase out of the 
blocks 

He is slowing down 
in the final stages! 
(In 2008, quite 
dramatically) 

100m, 200m, 
4x100m Beijing 
Olympics 2008 

http://www.youtube.com/watch?v=F14EaVEDyUs
http://www.youtube.com/watch?v=F14EaVEDyUs
http://www.youtube.com/watch?v=F14EaVEDyUs


We can go one step further and find the graph of acceleration vs time 
by working out the local gradients of the (t,v) graph. 
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For a complete view we can compare (t,x), (t,v) and (t,a) traces. 
Note the time axis must be the same scale for each graph. 



Kinematics of Blue Origin’s New Shepherd 
20-July-2021 
 
Acceleration estimated from velocity 
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‘Free fall’ at -9.81m/s2 
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In summary:  Kinematics provides a really good reason to 
wish to know velocity or acceleration from displacement 
measurements. i.e. the gradient of the ‘underlying curve.’ 
We may not know the functional form of the curve 
however – we may have to estimate it from the data. 
 
 
 
New Shepherd example:  Assume a straight line between 
velocity measurements. 
 
 
 
 
 

Bolt example: Fit a cubic spline between a 
rolling set of four data points. We can then 
differentiate the cubic (yielding a quadratic). 
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Find the gradient and 
scale by: 
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Note: as per the ‘daily death rate’ 
graphs in World in Data, we also apply 
a seven-day moving average to 
smooth the numerical derivative. 

One can estimate the 
number of CV-19 
infectives from the 
cumulative deaths: 

From Oxford World in data 

Note mortality fraction k and disease 
time constant  may vary considerably within a population 
and indeed post-vaccination – so treat with caution! 

COVID-19 

https://github.com/owid/covid-19-data/tree/master/public/data


This MATLAB program evaluates 
a function f(x) over a defined range 
of x, and then determines a cubic-
spline over the same range. 
 
This means the function can be 
differentiated numerically. 
 
In the example, a tangent and 
normal is evaluated at point (2,8) 
using this system. 

f(x) 

df/dx 

normal 

tangent 



Integration:  
i.e. “finding  

areas” 
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EXPERIMENTALLY 
VERIFYING MOMENTUM 
CHANGE IS THE  
AREA UNDER A FORCE VS 
TIME GRAPH 

PASCO ultrasonic 
position detector 

Old and rather 
flaccid basketball (!) 

Retort stand 

Force measuring plate 

Windows PC running 
CAPSTONE software 

PASCO USB 
datalogger hub 
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Ultrasonic position sensor 

PASCO USB datalogger hub 

Force measuring plate 



The constant acceleration motion 
free-fall phases are much more 
clearly seen in the velocity vs 
time graph. 

The constant acceleration motion 
free-fall phases are also characterized 
by the parabolic shape of the 
position vs time graph between 
bounces 





Integration of the area under the force vs time graph 
during impact should yield the change in momentum 
of the ball: 

By adding the area of trapeziums the impulse  
is about 3.78Ns 
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For the first bounce, the velocity change was about 6.1ms-1. 
 
So if the mass was 0.625kg, this means an impulse of 0.625 x 6.1 = 3.8Ns,  
which is in agreement to the area under the force vs time graph  
for the duration of the bounce. 

... By adding the area of trapeziums the impulse  
is about 3.78Ns 



MATLAB version 

Investigating the Planck spectrum of radiation from the Sun, and Stefan’s law 
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• Suggested homework 
• Q&A 


