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These books are amazing!
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If heat dQ is supplied to the gas

then the First Law of 

Thermodynamics (that Energy in a 

closed system is conserved) means 

the internal energy change is

dW pdV = −

Work done on the gas

dU dQ pdV= −
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U nRT=The internal energy for 

n moles of

an ideal gas is:

Internal energy 

of n moles of 

gas

Number of degrees of 

freedom of molecular 

motion (e.g  = 3 for 

x,y,z translation)

Molar gas constant 

8.314 Jmol-1K-1

Temperature 

(Kelvin K)

Internal energy Heat Work
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From the First Law of Thermodynamics

dU dQ pdV dU TdS pdV= −  = −

Over the whole cycle the internal energy doesn’t 

change, so the work done by the gas is

( ) ( )

( )

2

1

2

1

in 2

1

ln

ln

1

ln

H C H C

H C

C

H

H

V
W T T S T T nR

V

V
T T nR

V TW

Q TV
nRT

V



 
= −  = −  

 

 
−  

 
 = = = −

 
 
 

ISOTHERMAL PROCESS

0

0

constant

ln

dT

pV

V
Q W nRT

V

=

=

 
= =  

 
Heat input = work done by gas

Since no change in U
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So Carnot engine is (one example) 

of the most efficient heat engine 

possible.

i.e. area enclosed by cycle
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Nicolas Léonard 

Sadi Carnot 

(1796-1832)
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Next step: code up a Heat Cycle model! Start with a spreadsheet, then try 

MATLAB/Python etc …The key idea is to VISUALIZE your solutions.



Four-stage engine (modelled by Diesel or Otto cycles)
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… which appears to

be true! So diesel

engines are more

efficient than petrol ones.
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Q is the heat transferred from the vessel to the surroundings

k is the thermal conductivity of the vessel

x is the thickness of the vessel

A is the surface area of the vessel

If the specific heat capacity of the fluid is c, and the 

vessel contains m kg of fluid

dQ mcdT= −

If we assume the heat capacity is independent of temperature 
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“Heat flow via conduction

is proportional to temperature

gradient”
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Brownian motion – a random walk

Brownian motion, initially observed as the random jittering of pollen grains in 

a microscope slide, is due to the random jostling of molecular motion. In the 

base of the pollen grains, it is the smaller (invisible) air molecules which are 

colliding at random. How far will a given particle move in a specified

time, given its motion is random? 

Consider motion in one direction in N steps of fixed length l. The caveat is 

that each step is either forward or backwards, and the direction is ‘chosen’ 

randomly.

The total displacement is                       where  
1

N

i

i

x l a
=

=  1 or 1
i

a = −

A sensible measure of the distance travelled is the 

root-mean-square (RMS) displacement:
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Brownian motion simulation

https://en.wikipedia.org/wiki/Brownian_motion


If the average molecular speed is         ,  the number of steps in t seconds is: 
v t

N
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Hence the RMS random walk displacement in t seconds is predicted to be:

2x l N l v t= =

The step size l can be associated with the mean free path 

between molecular collisions. We can define the mean 

free path to be the average distance travelled by a 

molecule in time t divided by the number of molecules it 

will likely collide with in that time.

We might use the RMS

speed here
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PhET States of Matter

Fluid Gas

https://phet.colorado.edu/sims/html/states-of-matter/latest/states-of-matter_en.html
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1D random walk simulation in Excel
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Average of 1,000 

1D random walks



2D random walk with 

fixed step size. i.e. angle of turn

per step is random.



2D random walk

MATLAB

simulation





MATLAB implementation

of multiple random

walks (in a loop)



We can compute a 3D diffusion model

efficiently by using a random walk.

The random walk gets around the need

to keep track of thousands of particles

and their collisions.

Note in this simulation

the power is not 0.5

as per a 1D random walk

Mean of 50

random trajectories



Random angles

in azimuth and elevation

Assume elastic 

collisions with walls



Ludwig Boltzmann

1844-1906
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Normalized 

histogram
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James Clerk Maxwell 

(1831–1879) 

Ludwig Boltzmann

1844-1906i.e. absolute temperature is proportional to mean KE of molecules
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