

Thermodynamics

Dr Andrew French.
December 2023.

Theodore Gray

Bestselling author of The Elements and How Things Work Photographs by Nick Mann

These books are amazing!

$$
Q_{\text {in }}=Q_{\text {out }}+W \quad 1^{\text {st }} \text { law }
$$

$$
\begin{aligned}
& \Delta S_{H}=-\frac{Q_{\text {in }}}{T_{H}} \quad \Delta S_{C}=\frac{Q_{\text {out }}}{T_{C}} \\
& \Delta S_{\text {total }}=\Delta S_{H}+\Delta S_{C}=-\frac{Q_{\text {in }}}{T_{H}}+\frac{Q_{\text {out }}}{T_{C}}
\end{aligned}
$$

$$
\frac{\Delta S_{\text {total }} \geq 0}{2^{\text {nd }} \text { law }} \quad \therefore-\frac{Q_{\text {in }}}{T_{H}}+\frac{Q_{\text {out }}}{T_{C}} \geq 0
$$

$$
-\frac{Q_{i n}}{T_{H}}+\frac{Q_{i n}-W}{T_{C}} \geq 0
$$

$$
\therefore-\frac{1}{T_{H}}+\frac{1-\frac{W}{Q_{i n}}}{T_{C}} \geq 0
$$

$$
-\frac{T_{C}}{T_{H}}+1-\frac{W}{Q_{i n}} \geq 0
$$

$\eta=\frac{W}{Q_{\text {in }}} \quad$ Engine efficiency
$\therefore-\frac{T_{C}}{T_{H}}+1-\eta \geq 0 \quad \therefore \eta \leq 1-\frac{T_{C}}{T_{H}}$

volume change

$$
d V=-A d x \quad d W=F d x \quad \text { Work done on the gas }
$$

$$
p=\frac{F}{A} \quad \therefore d W=p A \times-\frac{d V}{A}
$$

The pressure acting upon the gas

$$
\therefore d W=-p d V
$$

If heat $d Q$ is supplied to the gas then the First Law of Thermodynamics (that Energy in a closed system is conserved) means the internal energy change is

The internal energy for n moles of an ideal gas is:

Molar gas constant
$8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

IDEAL GAS EQUATION

$p V=n R T$

ISOTHERMAL PROCESS

$d T=0$
$p V=\mathrm{constant}$
$Q=W=n R T \ln \left(\frac{V}{V_{0}}\right)$
Heat input = work done by gas since no change in U

Rudolf Clausius 1822-1888

ISENTROPIC (CONSTANT ENTROPY) PROCESS

$$
d S=d Q=0 \quad \text { No heat exchanged }
$$

$p V^{\gamma}=$ constant
$\gamma=\frac{c_{P}}{c_{V}}=1+\frac{2}{\alpha} \quad \begin{aligned} & \text { consta } \\ & \text { capaci }\end{aligned}$
$W=\frac{p_{0} V_{0}}{\gamma-1}\left(1-\left(\frac{V_{0}}{V}\right)^{\gamma-1}\right)$
Work done by gas on the surroundings

$$
\begin{aligned}
& c_{V}=\frac{R}{M} \frac{1}{\gamma-1} \\
& c_{P}=\frac{R}{M} \frac{\gamma}{\gamma-1}
\end{aligned}
$$

Carnot cycle: $\mathrm{T}_{\mathrm{H}}=90^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=20^{\circ} \mathrm{C}, \mathrm{V}_{1}=0.1 \mathrm{~m}^{3}$

$$
\mathrm{W}=13.9266 \mathrm{~kJ}, \mathrm{Q}_{\text {in }}=72.2194 \mathrm{~kJ}, \text { Efficiency }=\mathrm{W} / \mathrm{Q}_{\text {in }}=19.2837 \%
$$

$\Delta S=\frac{Q_{\text {in }}}{T_{H}}=\frac{Q_{\text {out }}}{T_{C}}=n R \ln \left(\frac{V_{2}}{V_{1}}\right)$
ISOTHERMAL PROCESS
$d T=0$
$p V=$ constant
$Q=W=n R T \ln \left(\frac{V}{V_{0}}\right)$
Heat input = work done by gas Since no change in U

$$
d U=d Q-p d V \quad \therefore d U=T d S-p d V
$$

Over the whole cycle the internal energy doesn't change, so the work done by the gas is

$$
W=\oint p d V=\oint T d s
$$

i.e. area enclosed by cycle

$$
\therefore \eta=\frac{W}{Q_{\mathrm{in}}}=\frac{\left(T_{H}-T_{C}\right) n R \ln \left(\frac{V_{2}}{V_{1}}\right)}{n R T_{H} \ln \left(\frac{V_{2}}{V_{1}}\right)}=1-\frac{T_{C}}{T_{H}}
$$

$$
\eta \leq 1-\frac{T_{C}}{T_{H}} \begin{aligned}
& \text { So Carnot engine is (one example) } \\
& \text { of the most efficient heat engine } \\
& \text { possible. }
\end{aligned}
$$

Carnot cycle: $\mathrm{T}_{\mathrm{H}}=90^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=20^{\circ} \mathrm{C}, \mathrm{V}_{1}=0.1 \mathrm{~m}^{3}$
$W=13.9266 \mathrm{~kJ}, \mathrm{Q}_{\text {in }}=72.2194 \mathrm{~kJ}$, Efficiency $=W / Q_{\text {in }}=19.2837 \%$

Nicolas Léonard Sadi Carnot (1796-1832)

$$
W=\left(T_{H}-T_{C}\right) n R \ln \left(\frac{V_{2}}{V_{1}}\right)
$$

$$
\begin{aligned}
& Q_{\mathrm{in}}=n R T_{H} \ln \left(\frac{V_{2}}{V_{1}}\right) \\
& Q_{\text {out }}=n R T_{C} \ln \left(\frac{V_{3}}{V_{4}}\right)
\end{aligned}
$$

Inputs

$$
T_{H}, T_{C}, V_{1}, V_{2}, n
$$

$$
V_{4}=\left(\frac{T_{H}}{T_{C}}\right)^{\frac{1}{\gamma-1}} V_{1} \quad V_{3}=\left(\frac{T_{H}}{T_{C}}\right)^{\frac{1}{\gamma-1}} V_{2}
$$

Next step: code up a Heat Cycle model! Start with a spreadsheet, then try MATLAB/Python etc ...The key idea is to VISUALIZE your solutions.

Pressure, volume coordinates of heat cycle

p1	3.00
V1	0.4
p2	1.20
V2	1.0
p3	0.48
V3	1.73
p4	1.20
V4	0.7

Note all pressures are quoted in atmospheres. 1atm $=101,325 \mathrm{~Pa}$. Volumes in litres. T in K .
Reservoir temperatures in K

T_H	423
T_C	293

Number of moles of gas in engine	0.035
Ratio of specific heats gamma	1.667

V diff fraction	1 to 2		2 to 3		3 to 4		4 to 1	
	Isothermal expansion		Adiabatic expansion		Isothermal compression		Adiabatic compression	
	p	V	p	v	p	V p	p v	v
0	2.996	0.400	1.198	1.000	0.478	1.735	1.196	0.694
0.01	2.951	0.406	1.184	1.007	0.481	1.724	1.205	0.691
0.02	2.908	0.412	1.169	1.015	0.484	1.714	1.213	0.688
0.03	2.867	0.418	1.155	1.022	0.487	1.703	1.222	0.685
0.04	2.826	0.424	1.142	1.029	0.490	1.693	1.231	0.682
0.05	2.787	0.430	1.128	1.037	0.493	1.683	1.240	0.679
0.06	2.748	0.436	1.115	1.044	0.496	1.672	1.249	0.676
0.07	2.711	0.442	1.102	1.051	0.499	1.662	1.258	0.673
0.08	2.675	0.448	1.089	1.059	0.503	1.651	1.267	0.670
0.09	2.639	0.454	1.077	1.066	0.506	1.641	1.276	0.667
0.1	2.605	0.460	1.065	1.073	0.509	1.631	1.286	0.664
0.11	2.571	0.466	1.053	1.081	0.512	1.620	1.295	0.662
0.12	2.539	0.472	1.041	1.088	0.516	1.610	1.305	0.659
0.13	2.507	0.478	1.029	1.096	0.519	1.599	1.315	0.656
0.14	2.476	0.484	1.018	1.103	0.522	1.589	1.324	0.653
0.15	2.445	0.490	1.007	1.110	0.526	1.579	1.334	0.650
0.16	2.416	0.496	0.996	1.118	0.529	1.568	1.345	0.647
0.17	2.387	0.502	0.985	1.125	0.533	1.558	1.355	0.644
0.18	2.359	0.508	0.974	1.132	0.536	1.547	1.365	0.641
0.19	2.331	0.514	0.964	1.140	0.540	1.537	1.376	0.638
0.2	2.304	0.520	0.953	1.147	0.544	1.526	1.386	0.635
0.21	2.278	0.526	0.943	1.154	0.547	1.516	1.397	0.632
0.22	2.252	0.532	0.933	1.162	0.551	1.506	1.408	0.629
0.23	2.227	0.538	0.924	1.169	0.555	1.49	1.419	0.626
0.24	2.203	0.544	0.914	1.176	0.559	1.485	1.430	0.623
0.25	2.179	0.550	0.905	1.184	0.563	1.474	1.441	0.620
0.26	2.155	0.556	0.895	1.191	0.567	1.464	1.453	0.617
0.27	2.132	0.562	0.886	1.198	0.571	1.454	1.465	0.615
0.28	2.110	0.568	0.877	1.206	0.575	1.443	1.476	0.612
0.29	2.088	0.574	0.868	1.213	0.579	1.433	1.488	0.609
0.3	2.066	0.580	0.860	1.220	0.584	1.422	1.500	0.606
0.31	2.045	0.586	0.851	1.228	0.588	1.412	1.512	0.603
0.32	2.024	0.592	0.843	1.235	0.592	1.402	1.525	0.600
0.33	2.004	0.598	0.834	1.242	0.597	1.391	1.537	0.597
0.34	1.984	0.604	0.826	1.250	0.601	1.381	1.550	0.594
0.35	1.964	0.610	0.818	1.257	0.606	1.370	1.563	0.591
0.36	1.945	0.616	0.810	1.264	0.610	1.360	1.576	0.588
0.37	1.926	0.622	0.803	1.272	0.615	1.350	1.589	0.585
0.38	1.908	0.628	0.795	1.279	0.620	1.339	1.603	0.582
0.39	1.890	0.634	0.787	1.287	0.625	1.329	1.616	0.579
0.4	1.872	0.640	0.780	1.294	0.630	1.318	1.630	0.576

Four-stage engine (modelled by Diesel or Otto cycles)

intake

compression
fuel injector

power

exhaust
© Encyclopædia Britannica, Inc.

Otto cycle
$\mathrm{T}_{1}=20^{\circ} \mathrm{C}, \mathrm{T}_{2}=192.1085^{\circ} \mathrm{C}, \mathrm{T}_{3}=1192^{\circ} \mathrm{C}, \mathrm{T}_{4}=649.8922^{\circ} \mathrm{C}$ $\mathrm{W}=191.9293 \mathrm{~kJ}, \mathrm{Q}_{\text {in }}=518.6724 \mathrm{~kJ}$, Efficiency $=\mathrm{W} / \mathrm{Q}_{\text {in }}=37.0039 \%$

Inputs

$$
p_{1}, p_{3}, V_{1}, V_{2}, T_{1}, n
$$

Molar mass of gas
$M_{\text {air }} \approx 29 \mathrm{gmol}^{-1}$

Nikolaus Otto (1832-1891)

$$
\eta_{\text {otto }}=1-\frac{1}{r^{\gamma-1}}
$$

FORD MOTOR CO.
1.0L ECOBOOST

DOHC DI I-3

Displacement: 999 co	EPA city / highway: $31 / 43 \mathrm{mpg}$
Block / head material: cast iron / aluminum	Assembly site: Cologne, Germany;
Horsepower (SAE net): 123 @ 6,000 rpm	Craiova, Romania
	Application tested: 14 Ford Fiesta SE
Torque: $125 \mathrm{lb} . \mathrm{ft} .(169 \mathrm{Nm})$ (a) $2,500 \mathrm{rpm}$	Additional applications: Ford Focus, C-Max,
Specific output: $123 \mathrm{hp} / \mathrm{L}$	Mondeo, Transit Courier (Europe); B-Max (Europe,
Bore x stroke: $71.9 \times 82 \mathrm{~mm}$	Asia/Pacific); EcoSport (Asia/Pacific)

$$
W=\frac{V_{2}}{\gamma-1}\left(1-\frac{1}{r^{\gamma-1}}\right)\left\{p_{3}-p_{1} r^{\gamma}\right\}
$$

$$
r=\frac{V_{1}}{V_{2}}
$$

$$
Q_{\text {out }}=Q_{\text {in }}-W
$$

$$
Q_{\mathrm{in}}=\frac{V_{2}\left(p_{3}-p_{1} r^{\gamma}\right)}{\gamma-1}
$$

$\mathrm{T}_{1}=20^{\circ} \mathrm{C}, \mathrm{T}_{2}=380.8128^{\circ} \mathrm{C}, \mathrm{T}_{3}=816.6881^{\circ} \mathrm{C}, \mathrm{T}_{4}=413.4605^{\circ} \mathrm{C}$ $\mathrm{W}=172.7357 \mathrm{~kJ}, \mathrm{Q}_{\text {in }}=376.835 \mathrm{~kJ}$, Efficiency $=\mathrm{W} / \mathrm{Q}_{\text {in }}=45.8386 \%$

$$
Q_{\mathrm{in}}=\frac{\gamma}{\gamma-1} r^{\gamma}(s-1) p_{1} V_{2}
$$

Inputs

$$
p_{1}, V_{1}, V_{2}, V_{3}, T_{1}, n
$$

$$
W=\frac{p_{1} V_{2}}{\gamma-1}\left\{r\left(1-s^{\gamma}\right)+r^{\gamma}(s-1) \gamma\right\}
$$

$$
\eta_{\text {diesel }}=1-\frac{1}{r^{\gamma-1}}\left(\frac{s^{\gamma}-1}{\gamma(s-1)}\right)
$$

If the specific heat capacity of the fluid is c, and the vessel contains $m \mathrm{~kg}$ of fluid

$$
d Q=-m c d T
$$

If we assume the heat capacity is independent of temperature

$$
\begin{aligned}
& \frac{d T}{d t}=-\frac{k A}{m c \Delta x}\left(T-T_{a}\right) \\
& \int_{T_{0}}^{T} \frac{d T}{T-T_{a}}=-\frac{k A}{m c \Delta x} \int_{0}^{t} d t \\
& {\left[\ln \left|T-T_{a}\right|\right]_{T_{0}}^{T}=-\frac{k A t}{m c \Delta x}}
\end{aligned}
$$

Q is the heat transferred from the vessel to the surroundings k is the thermal conductivity of the vessel Δx is the thickness of the vessel A is the surface area of the vessel

$$
\frac{d Q}{d t}=k A \frac{\left(T-T_{a}\right)}{\Delta x}
$$

"Heat flow via conduction is proportional to temperature gradient"
Joseph Fourier (1768-1830)

Brownian motion - a random walk

Brownian motion, initially observed as the random jittering of pollen grains in a microscope slide, is due to the random jostling of molecular motion. In the base of the pollen grains, it is the smaller (invisible) air molecules which are colliding at random. How far will a given particle move in a specified time, given its motion is random?

Consider motion in one direction in N steps of fixed length l. The caveat is that each step is either forward or backwards, and the direction is 'chosen' randomly.
The total displacement is $x=l \sum_{i=1}^{N} a_{i}$ where $a_{i}=-1$ or 1
A sensible measure of the distance travelled is the root-mean-square (RMS) displacement:

Robert Brown (1773-1858)

$$
\begin{aligned}
& \sqrt{\left\langle x^{2}\right\rangle}=l \sqrt{\left\langle\left(\sum_{i=1}^{N} a_{i}\right)^{2}\right\rangle}=l \sqrt{\left\langle\sum_{i=1}^{N} a_{i}^{2}+\sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} a_{i} a_{j}\right\rangle} \quad \begin{array}{l}
\text { Robert Brown } \\
(1773-1858)
\end{array} \\
& \left\langle\sum_{i=1}^{N} a_{i}^{2}\right\rangle=N \text { and }\left\langle\sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} a_{i} a_{j}\right\rangle=0 \longleftarrow \begin{array}{l}
\text { Since } a \text { is a random choice } \\
\text { between }-1 \text { and } 1
\end{array} \\
& \therefore \sqrt{\left\langle x^{2}\right\rangle}=l \sqrt{N}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\left\langle x^{2}\right\rangle}=l \sqrt{\left\langle\left(\sum_{i=1}^{N} a_{i}\right)^{2}\right\rangle}=l \sqrt{\left\langle\sum_{i=1}^{N} a_{i}^{2}+\sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} a_{i} a_{j}\right\rangle} \\
& \begin{array}{l}
x=l \sum_{i=1}^{N} a_{i} \\
a_{i}=-1 \text { or } 1
\end{array} \\
& \left\langle\sum_{i=1}^{N} a_{i}^{2}\right\rangle=N \quad \text { and } \quad\left\langle\sum_{i=1, i \neq j}^{N} \sum_{j=1}^{N} a_{i} a_{j}\right\rangle=0 \\
& \text { 1D random walk } \\
& \text { If the average molecular speed is }\langle v\rangle \text {, the number of steps in } t \text { seconds is: } N=\frac{\langle v\rangle t}{l}
\end{aligned}
$$ Hence the RMS random walk displacement in t seconds is predicted to be:

$$
\sqrt{\left\langle x^{2}\right\rangle}=l \sqrt{N}=\sqrt{\langle\langle\nu\rangle t}
$$

The step size l can be associated with the mean free path between molecular collisions. We can define the mean free path to be the average distance travelled by a molecule in time t divided by the number of molecules it
 will likely collide with in that time.

We can determine the mean free path for an ideal gas by using the Ideal Gas Equation

Since the number of moles is $\frac{n V}{N_{A}} \longleftarrow$ volume
pressure $\rightarrow p V=\frac{n V}{N_{A}} R T \longleftarrow$ Absolute temperature $\therefore n=\frac{p}{k_{B} T}$

Molar gas constant
$R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Boltzmann's constant $k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$
Hence $l=\frac{k_{B} T}{\pi \sqrt{2} d^{2} p}$

If we divide this by the particle diameter d we arrive at Knudsen's number (Kn). This dimensionless constant determines whether our statistical mechanics argument is valid, or whether a 'continuum' concept is needed.

The latter model is what is used to describe much of fluid mechanics i.e. where we consider the fluid as a continuously varying entity rather than a series of discrete, and randomly moving, molecules colliding.

$$
l=\frac{k_{B} T}{\pi \sqrt{2} d^{2} p}
$$

$\mathrm{Kn} \ll 1$ Continuum
$\mathrm{Kn}>1 \quad$ Statisticalmechanics
Fluid
Gas
For a typical air molecule on Earth
$d=0.3 \mathrm{~nm}, p=10^{5} \mathrm{~Pa}, T=293 \mathrm{~K}$
$\therefore l=1.0 \times 10^{-7} \mathrm{~m}$
$\therefore \mathrm{Kn}=\frac{l}{d}=333$
So a statistical argument is justified

PhET States of Matter

STEP SIZE = 1

Random walk $\mathrm{I}=1000, \mathrm{~N}=10000$

Random walk. Max step size $=1, \mathrm{~N}=10000$

\% A visual representation of a random walk. \% Step sizes are fixed, but directions are random.

```
%Number of steps
```

$N=1 e 6 ;$
ofixed step size
$s=1 ;$

2D random walk MATLAB

simulation

```
%Initilize x,y position vectors, starting from the origin.
x = zeros(1,N); y = zeros(1,N);
```

\%Determine random walk
for $n=2: N$
theta $=2$ *pi*rand;
$\mathrm{x}(\mathrm{n})=\mathrm{x}(\mathrm{n}-1)+\mathrm{s}^{\star} \cos \left(\right.$ theta) $; \mathrm{y}(\mathrm{n})=\mathrm{y}(\mathrm{n}-1)+\mathrm{s}^{*} \sin ($ theta $)$;
end
oPlot random walk
plot (x,y,'b-'); hold on;
plot($\left.x(1), y(1), ' g^{*}\right)$) ; plot($\left.\left.x(e n d), y(e n d), r^{*}\right)^{\prime}\right) ;$
xlabel('x'); ylabel('y'); title(['Random walk. Step size = ',num2str(s)]);
grid on;
\%Print a PNG file of the random walk
print(gcf, 'random walk.png','-dpng','-r300');
\%End of code

Random walk. Step size $=1$


```
P = 42; %Numbers of random walks
N = 5000; %Number of steps
s = 1; %Fixed step size
fsize = 18; %Graph fontsize
%Initialize axes and then plot random walks
axes('nextplot','add','fontsize',fsize);
for n=1:P
    [x,y] = randomwalk(N,s);
    RGB = rand(1,3); plot(x,y,'-','color',RGB);
end
xlabel('x'); ylabel('y'); title( ['Random walk. Step size = ',num2str(s)] );
grid on; axis equal; box on;
%Print a PNG file of the random walk
filename = ['random walks ',strrep(datestr(now),':','-'),'.png'];
print( gcf, filename,'-dpng','-r300' );
close(gcf);
%%%
%Random walk generator
function [x,y] = randomwalk(N,s)
x = zeros (1,N); y = zeros(1,N);
for n=2:N
    theta = 2*pi*rand;
    x(n) = x(n-1) + s*cos(theta); y(n) = y(n-1) + s*sin(theta);
end
```

Diffusion. Particle speed $=10 \mathrm{~m} / \mathrm{s}$

Mean x vs t for diffusion, $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$

$$
x=0.0937 \mathrm{t}^{0.784}
$$

x vs t for diffusion, $v=10 \mathrm{~m} / \mathrm{s}$

We can compute a 3D diffusion model efficiently by using a random walk.

The random walk gets around the need to keep track of thousands of particles and their collisions.

Diffusion. Particle speed $=10 \mathrm{~m} / \mathrm{s}$

y

\%Determine trajectory

```
function [x,y,z,t] = diffusion_trajectory(a,r,s,dt,tmax)
```

\%Initialize x, y, z, t coordinates
$\mathrm{x}=0 ; \mathrm{y}=0 ; \mathrm{z}=0 ; \mathrm{t}=0$;
\%Compute the random walk!
$\mathrm{n}=1$;
while $\mathrm{t}(\mathrm{end})<\mathrm{tmax}$
\%Choose random direction angles azi $=2 * p i \star r a n d ; ~ e l e v=-0.5^{\star} p i+p i \star r a n d ;$

Random angles in azimuth and elevation

융Define magnitude of displacement during timestep $d=s^{*} d t ;$
\%Compute next x, y position
$d x=d^{\star} \cos (e l e v)^{\star} \cos (a z i) ;$
$d y=d^{\star} \cos (e l e v)^{*} \sin (a z i) ;$
$d z=d^{\star} \sin (e l e v) ;$
\%Check if particle has hit a side wall
if $\left(\quad(y \text { (end) }+d y)^{\wedge} 2+(z \text { (end) }+d z)^{\wedge} 2\right)>r^{\wedge} 2$ $d z=-d z ; \quad d y=-d y ;$
end
\%Check if particle has hit back wall if ($x(e n d)+d x$) $<a$ $\mathrm{dx}=-\mathrm{dx} ;$
end

```
\%Update \(x, y, z\) trajectory
\(x(n+1)=x(n)+d x ; y(n+1)=y(n)+d y ; z(n+1)=z(n)+d z ;\)
\(\mathrm{t}(\mathrm{n}+1)=\mathrm{t}(\mathrm{n})+\mathrm{dt} ; \mathrm{n}=\mathrm{n}+1\);
```

end

Boltzmann distribution simulation. $\mathrm{I}=100, \mathrm{~N}=10000, \mathrm{M}=500$

$N=10,000$ energy quanta shared randomly among $M=500$ molecules

Process repeated 100 times

Normalized
histogram

$$
k_{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}
$$

