

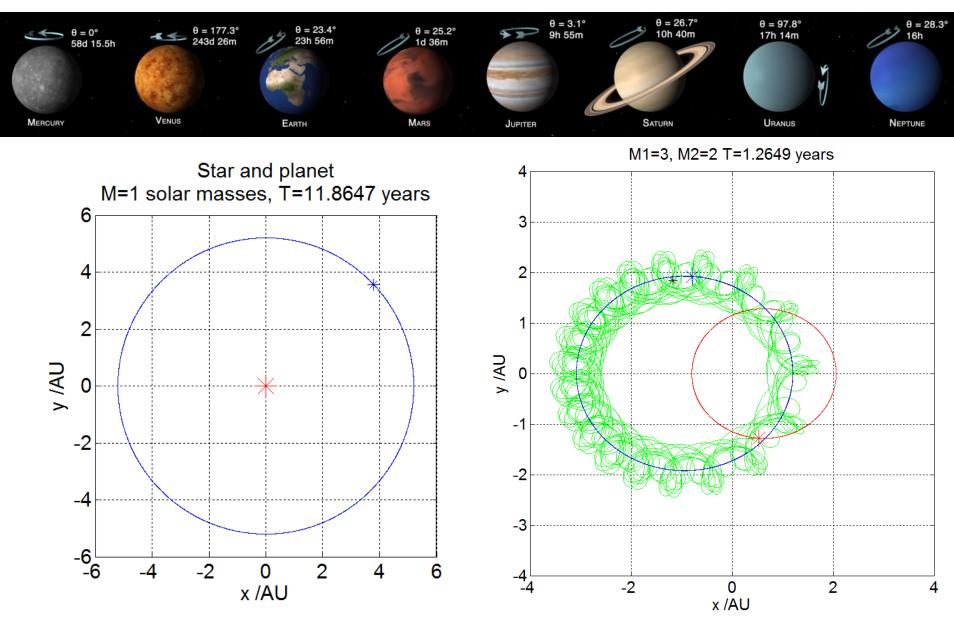
BPhO Computational Challenge

Seminar 08: Dynamic simulations of Gravity using the Verlet method

Dr Andrew French. December 2021.

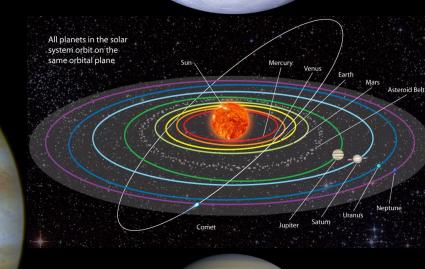
The Planets

Make a gravity simulation based upon one the solar system planets and its moons (or the Solar System itself). Learn how to make animated plots.



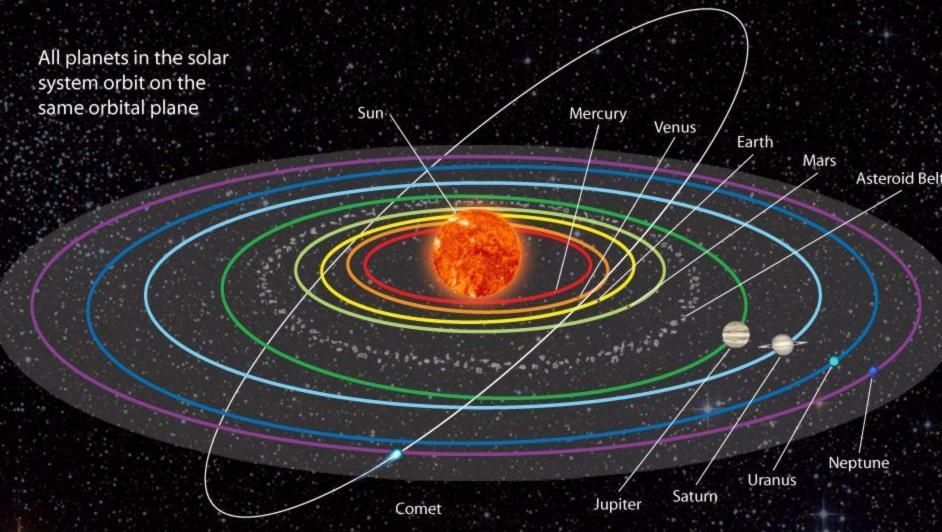
Solar System orbits Albert to the set

the second of the second second second

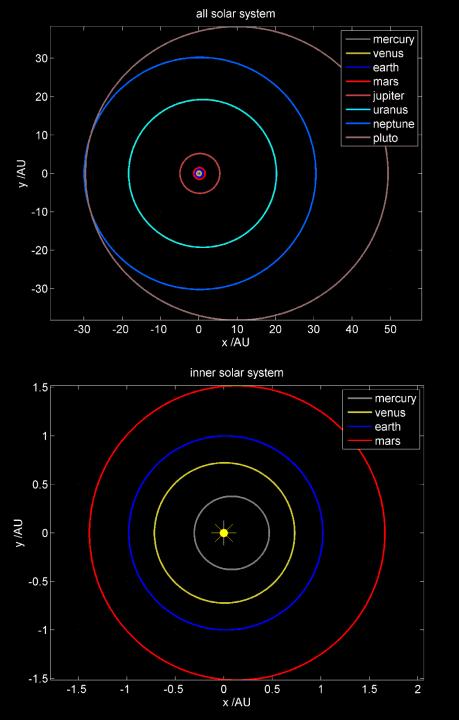


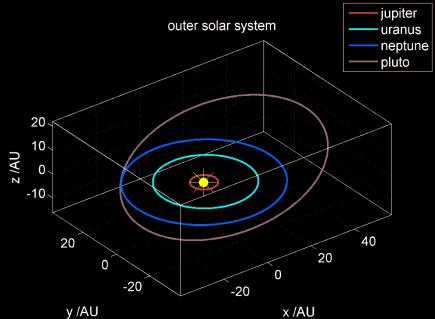
ttps://www.nationalgeographic.org/media/orbital-plane/

Orbital Plane

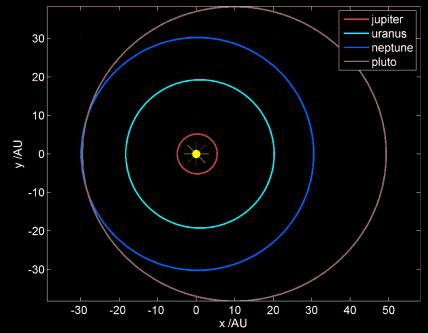


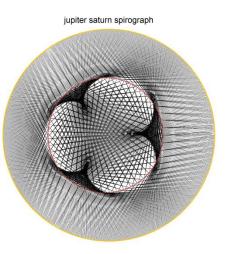
* Many comets exist outside the orbital plane

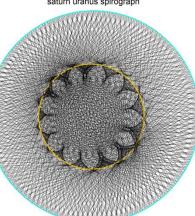




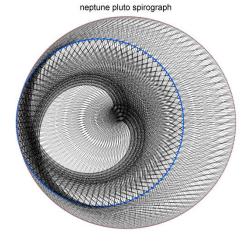
outer solar system

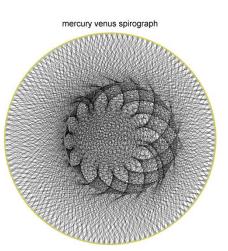


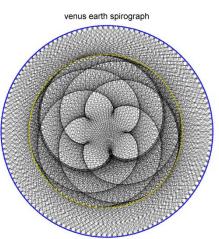


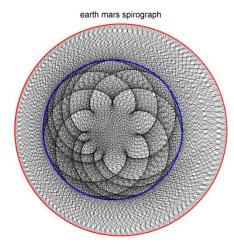


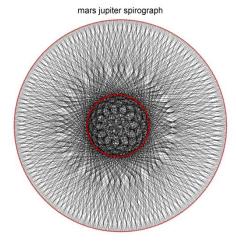
uranus neptune spirograph

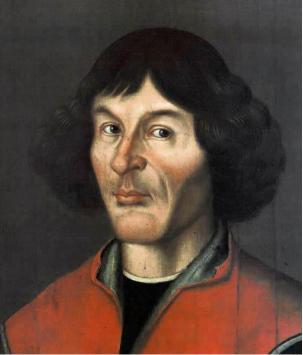




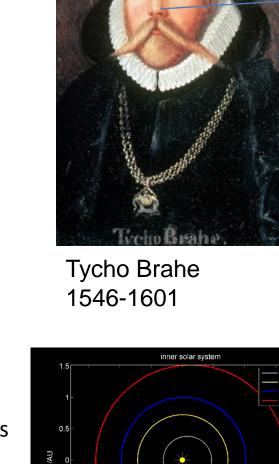








Nicolaus Copernicus 1473-1543



Nose lost in 1566 following a sword duel with third cousin Manderup Parsberg over the legitimacy of a mathematical formula!

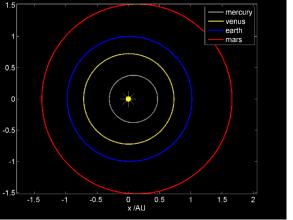
Isaac

Newton

1642-

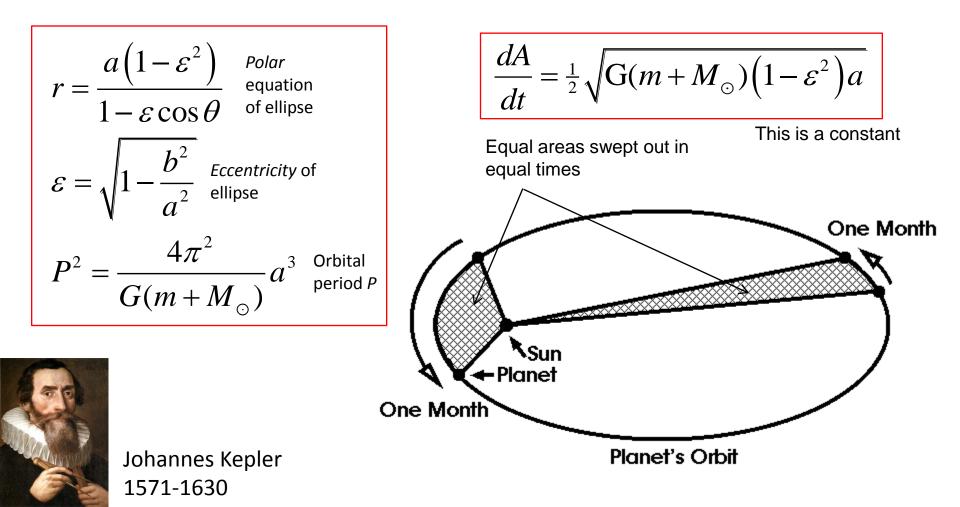
1727

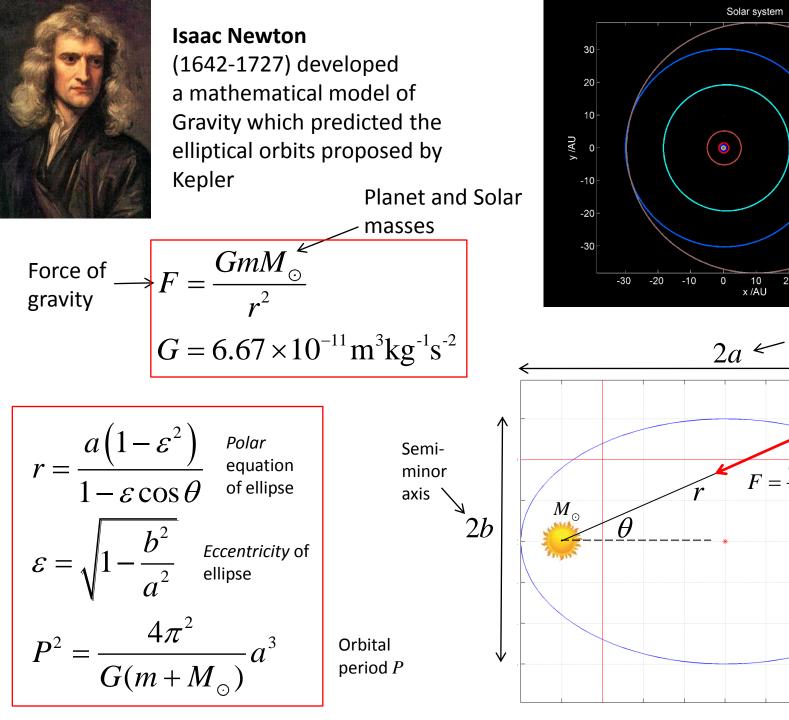
Johannes Kepler 1571-1630

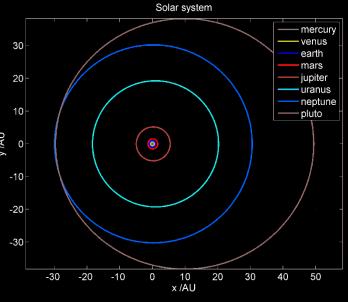


Kepler's three laws are:

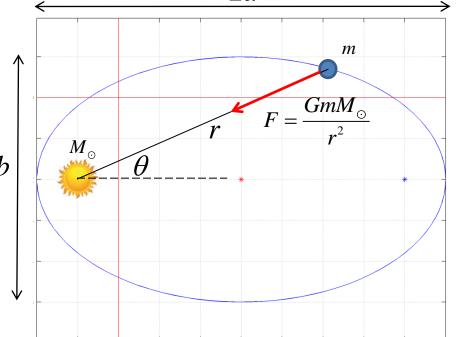
- 1. The orbit of every planet in the solar system is an ellipse with the Sun at one of the two foci.
- 2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.
- 3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. The wording of Kepler's laws implies a specific application to the solar system. However, the laws are more generally applicable to any system of two masses whose mutual attraction is an inverse-square law.







Semi-major axis

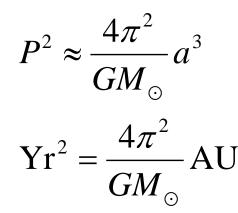


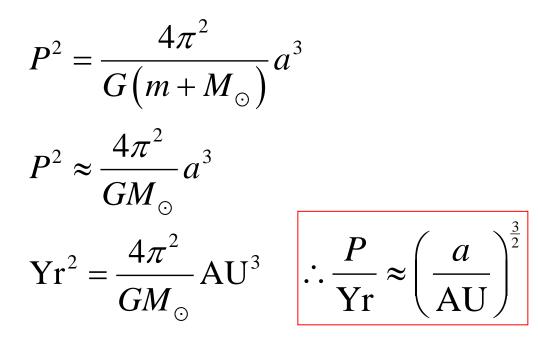
Object	Mass in Earth	Distance from Sun in	Radius in Earth radii	Rotational period /days	Orbital period /years
	masses	AU			
Saturn	95.16	9.58	9.45	0.44	29.63
Uranus	14.50	19.29	4.01	0.72	84.75
Jupiter	317.85	5.20	11.21	0.41	11.86
Sun	332,837	-	109.12	-	-
Neptune	17.20	30.25	3.88	0.67	166.34
Pluto	0.00	39.51	0.19	6.39	248.35
Mars	0.107	1.523	0.53	1.03	1.88
Venus	0.815	0.723	0.95	243.02	0.62
Mercury	0.055	0.387	0.38	58.65	0.24
Earth	1.000	1.000	1.00	1.00	1.00

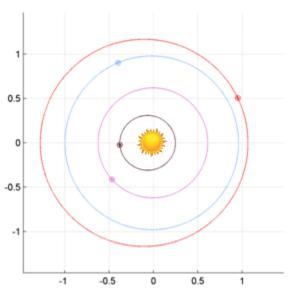
Gravitational field					
(in terms of g =					
9.81 ms^-2)					
1.07					
0.90					
2.53					
27.95					
1.14					
0.09					
0.38					
0.90					
0.37					
1.00					

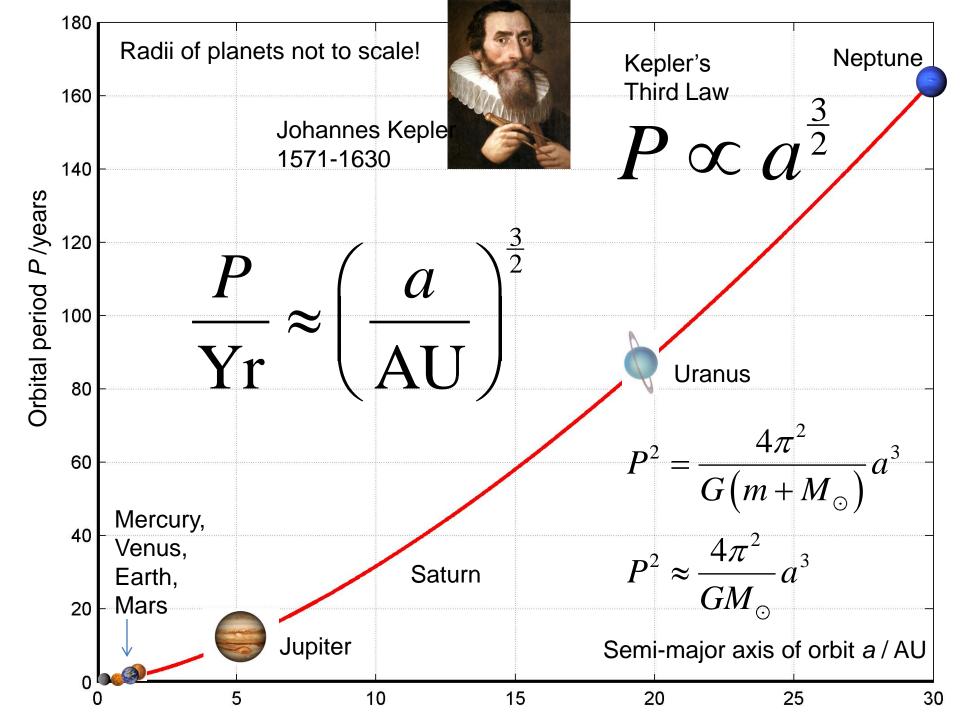
For our Solar System:

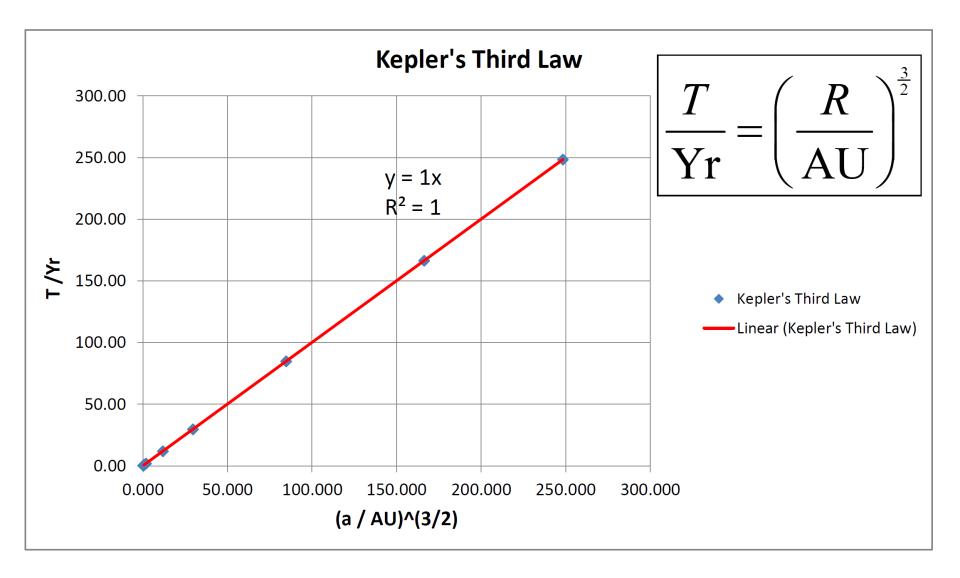
 $m \ll M_{\odot}$











A very strong correlation of Kepler III to orbital data for planets in our solar system!

Object	M/M_{\oplus}	a /AU	ε	θ_0	β	I	R/R_\oplus	T_{rot} / days	P/Yr
Sun	332,837	-	-	-	-	Î	109.123	-	-
Mercury	0.055	0.387	0.21	*	7.00		0.383	58.646	0.241
Venus [†]	0.815	0.723	0.01	*	3.39		0.949	243.018	0.615
Earth	1.000	1.000	0.02	*	0.00		1.000	0.997	1.000
Mars	0.107	1.523	0.09	*	1.85	I	0.533	1.026	1.881
Jupiter	317.85	5.202	0.05	*	1.31		11.209	0.413	11.861
Saturn	95.159	9.576	0.06	*	2.49		9.449	0.444	29.628
$Uranus^{\dagger}$	14.500	19.293	0.05	*	0.77	Î	4.007	0.718	84.747
Neptune	17.204	30.246	0.01	*	1.77	Ī	3.883	0.671	166.344
Pluto [†]	0.003	39.509	0.25	*	17.5	Ī	0.187	6.387	248.348

 β is the orbital inclination /degrees. In all cases the semi-major axis pointing direction is

$$r = \frac{a(1-\varepsilon^2)}{1-\varepsilon\cos\theta}$$
$$\varepsilon = \sqrt{1-\frac{b^2}{a^2}}$$
$$P^2 = \frac{4\pi^2}{G(m+M_{\odot})}a^3$$

 $\mathbf{d} = d_x \hat{\mathbf{x}} + d_y \hat{\mathbf{y}} + d_y \hat{\mathbf{z}} = \cos \beta \hat{\mathbf{x}} + \sin \beta \hat{\mathbf{z}}$

$$M_{\odot} = 1.9891 \times 10^{30} \text{ kg}$$

 $R_{\odot} = 6.960 \times 10^8 \text{ m}$
 $M_{\oplus} = 5.9742 \times 10^{24} \text{ kg}$
 $R_{\oplus} = 6.37814 \times 10^6 \text{ m}$
 $1\text{AU} = 1.495979 \times 10^{11} \text{ m}$

* For the current orbital polar angle θ_0 (and indeed more accurate values for solar system parameters) see the website of the Jet Propulsion Laboratory (JPL) http://ssd.jpl.nasa.gov/

[†]These planets rotate clockwise about their own internal polar axis. ("Retrograde"). All the other planets rotate anti-clockwise about their own internal axis. All the planets orbit the sun in an anticlockwise direction.

Assume all orbits are **ellipses** with the Sun at the (left) focus. Let this sun position be the origin of a Cartesian coordinate system, and assume the sun is stationary.

Semi-

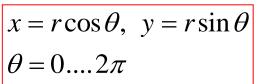
minor

axis

$$r = \frac{a(1 - \varepsilon^2)}{1 - \varepsilon \cos \theta}$$
$$\varepsilon = \sqrt{1 - \frac{b^2}{a^2}} \therefore b = a(1 - \varepsilon^2)$$
$$P^2 = \frac{4\pi^2}{G(m + M_{\odot})}a^3$$
$$x = r\cos\theta, \ y = r\sin\theta$$

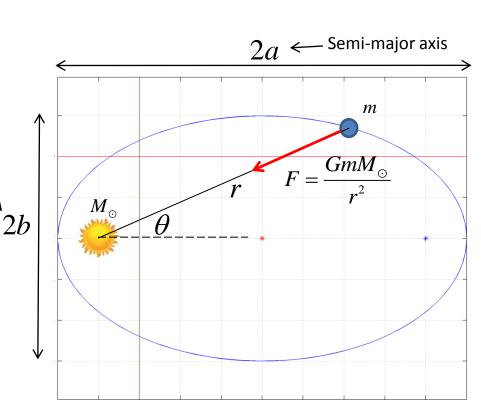
Plot the inner five planets on a separate scale to the outer planets

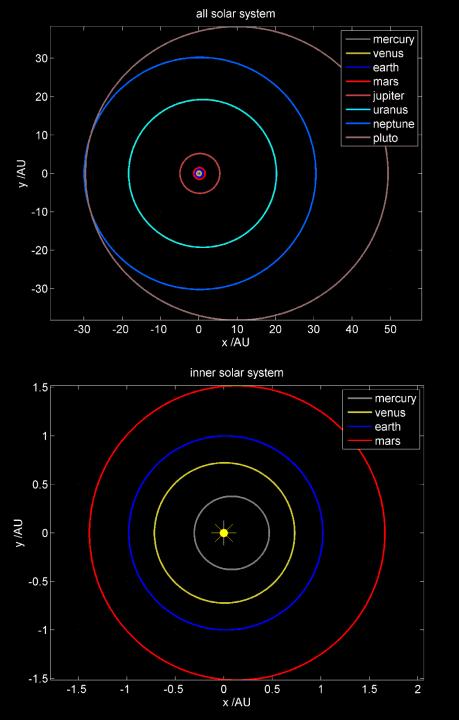
Ignore the inclination angle β (i.e. set it to be zero for now)

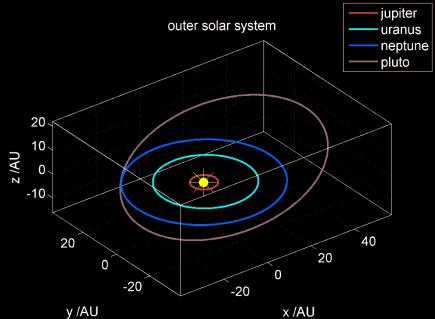


Use the data in the table on the previous slide. Use a 1,000 linearly spaced angles θ for each orbit.

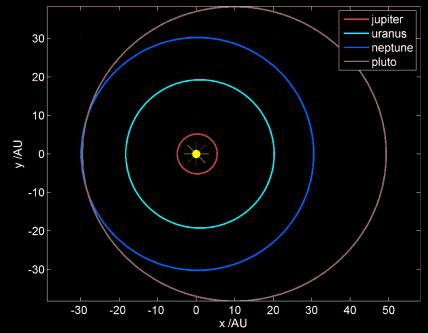
Use an axis scale of AU







outer solar system



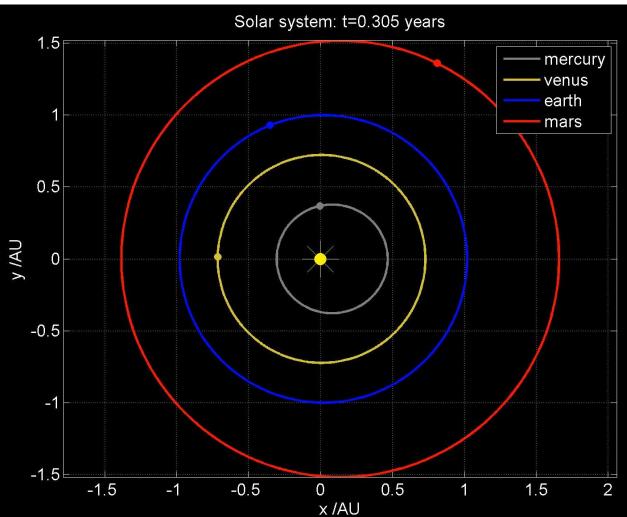
Create a 2D animation of the solar system orbits

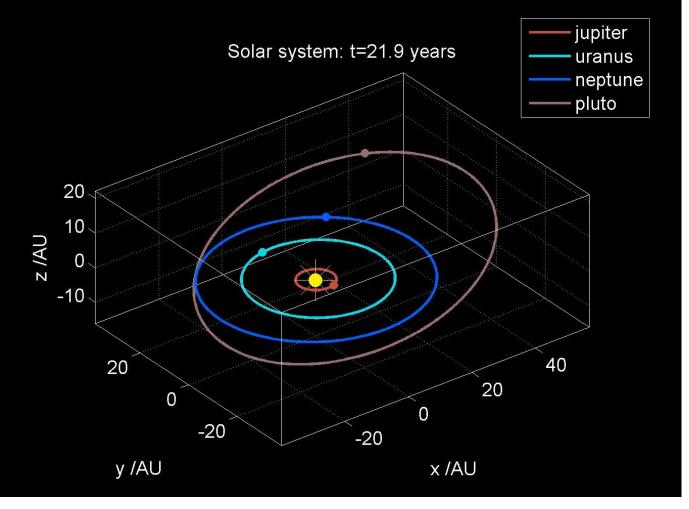
Plot the inner five planets on a separate scale to the outer planets

For the *inner* planets, set a frame rate such that one orbit of the Earth takes a second i.e. **one year is one second.** For the *outer* planets, **set the orbit of** *Jupiter* **to take one second**.

$$x = r\cos\theta, \ y = r\sin\theta$$
$$\theta = \frac{2\pi t}{P}$$

Run the simulation till the outermost planet completes at least one orbit.





Create a 3D animation of the solar system orbits

YouTube example video

Use the elliptical inclination angle β . Most orbits won't change much, but Pluto is the exception! The coordinate change is:

$$x' = x \cos \beta$$
 $z' = x \sin \beta$ $y' = y$

 β is the orbital inclination /degrees. In all cases the semi-major axis pointing direction is

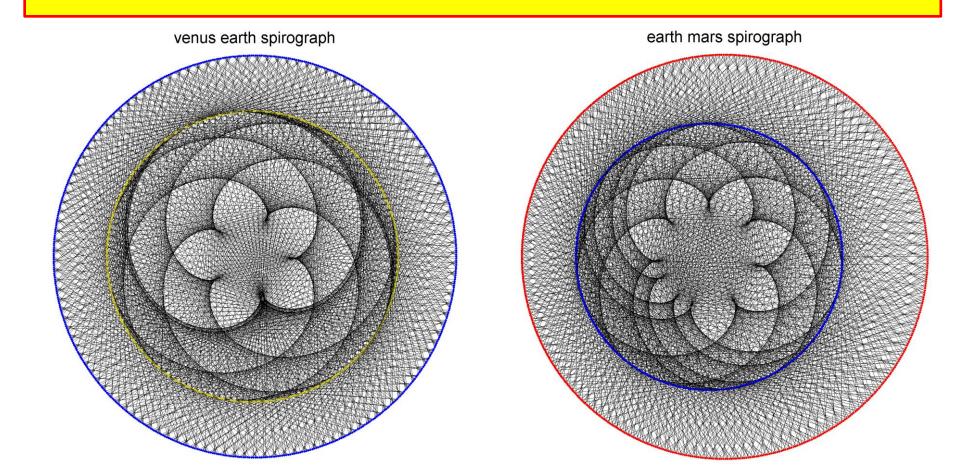
$$\mathbf{d} = d_x \mathbf{\hat{x}} + d_y \mathbf{\hat{y}} + d_y \mathbf{\hat{z}} = \cos\beta \mathbf{\hat{x}} + \sin\beta \mathbf{\hat{z}}$$

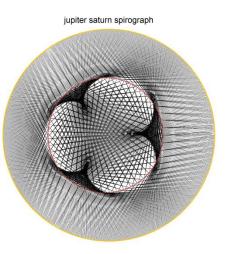
Solar system spirograph!

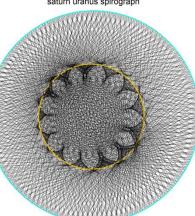
inspired by: <u>https://engaging-data.com/planetary-spirograph</u>

Choose a pair of planets and determine their orbits vs time. At time intervals of Δt , draw a line between the planets and plot this line. Keep going for *N* orbits of the outermost planet.

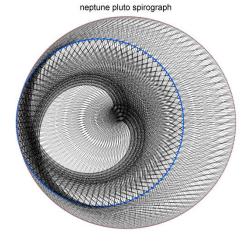
N = 10, $\Delta t = N \times maximum$ orbital period /1234, might be sensible parameters.

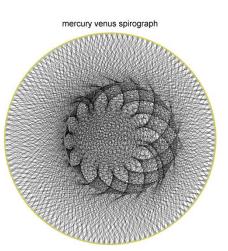


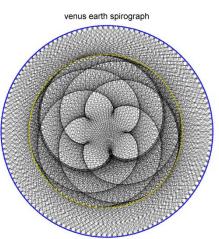


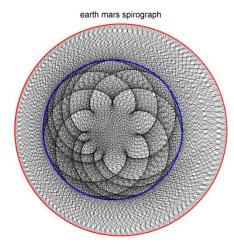


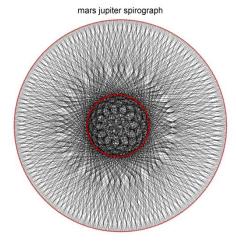
uranus neptune spirograph

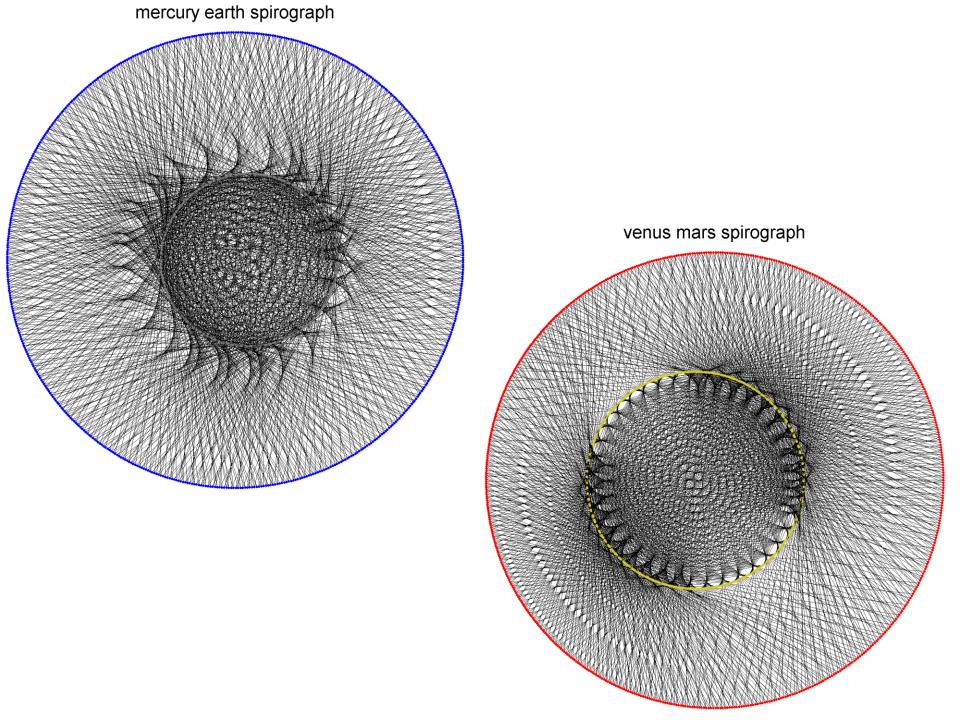






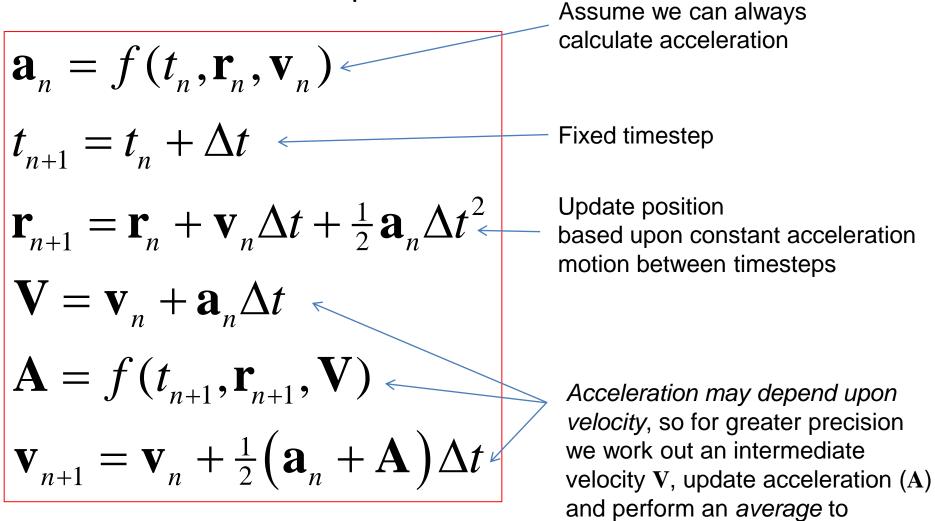






What about systems of *more than* two stars or planets? We need a numeric method!

The **Verlet Method** implies *constant acceleration motion* between fixed timesteps.



calculate the velocity update.

Verlet method

$$\mathbf{a}_{n} = f(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n})$$

$$t_{n+1} = t_{n} + \Delta t$$

$$\mathbf{r}_{n+1} = \mathbf{r}_{n} + \mathbf{v}_{n}\Delta t + \frac{1}{2}\mathbf{a}_{n}\Delta t^{2}$$

$$\mathbf{V} = \mathbf{v}_{n} + \mathbf{a}_{n}\Delta t$$

$$\mathbf{A} = f(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V})$$

$$\mathbf{v}_{n+1} = \mathbf{v}_{n} + \frac{1}{2}(\mathbf{a}_{n} + \mathbf{A})\Delta t$$

Newton's Law of Gravitation

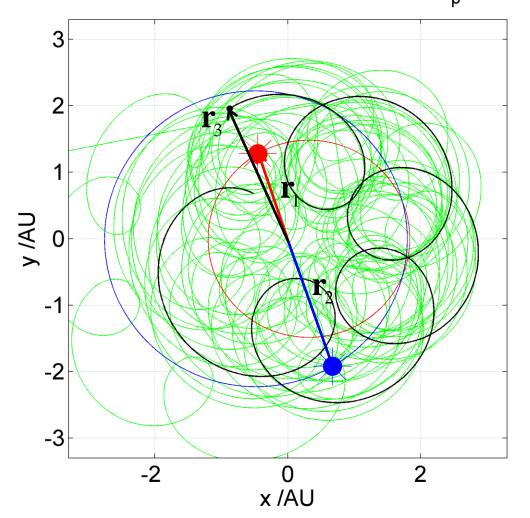
$$\mathbf{a}_{n,i} = -G\sum_{j\neq i}^{N} M_{j} \frac{\mathbf{r}_{i} - \mathbf{r}_{j}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}\right|^{3}}$$

$$\mathbf{r}_{m} \mathbf{r}_{M} \mathbf{r}_{M} \mathbf{r} = \mathbf{r}_{M} - \mathbf{r}_{m}$$
$$\mathbf{r} = |\mathbf{r}|$$

$$M_{1} = 3M_{\odot}$$

n this simulation:
$$M_{2} = 2M_{\odot}$$
$$M_{3} \ll M_{\odot}$$

M1=3, M2=2 T=2.32 years, a=3AU, k=1.1, a_p=0.965AU.



$$\mathbf{a}_{n} = f(t_{n}, \mathbf{r}_{n}, \mathbf{v}_{n})$$

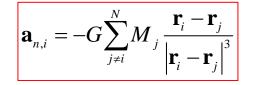
$$t_{n+1} = t_{n} + \Delta t$$

$$\mathbf{r}_{n+1} = \mathbf{r}_{n} + \mathbf{v}_{n}\Delta t + \frac{1}{2}\mathbf{a}_{n}\Delta t^{2}$$

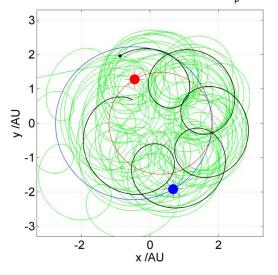
$$\mathbf{V} = \mathbf{v}_{n} + \mathbf{a}_{n}\Delta t$$

$$\mathbf{A} = f(t_{n+1}, \mathbf{r}_{n+1}, \mathbf{V})$$

$$\mathbf{v}_{n+1} = \mathbf{v}_{n} + \frac{1}{2}(\mathbf{a}_{n} + \mathbf{A})\Delta t$$



M1=3, M2=2 T=2.32 years, a=3AU, k=1.1, a =0.965AU.



function gravity sim 2 binary stars and planet

१९ INPUTS ११

%Semi-major axis of mutual star orbit in AU
a = 3;

%Planet (initial) circular orbit radius about star 1
ap = a/3.11;

%Initial angle from x axis (anticlockwise) of planet /radians theta0 = pi/4;

%Masses of stars in solar masses
M1 = 3; M2 = 2;

%Initial vy velocity multiplier from mutually circular of stars
k = 1.1;

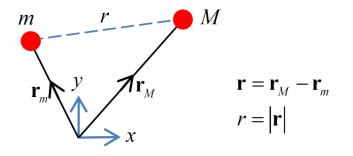
```
%Number of orbital periods
num periods = 50;
```

%Timestep in years
dt = 0.001;

%Fontsize fsize = 18;

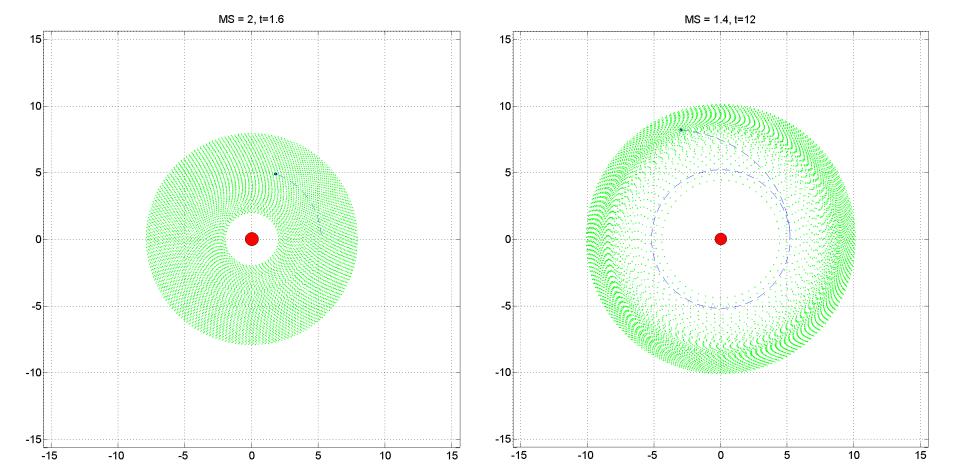
%Axes limits limit = 1.1*a;

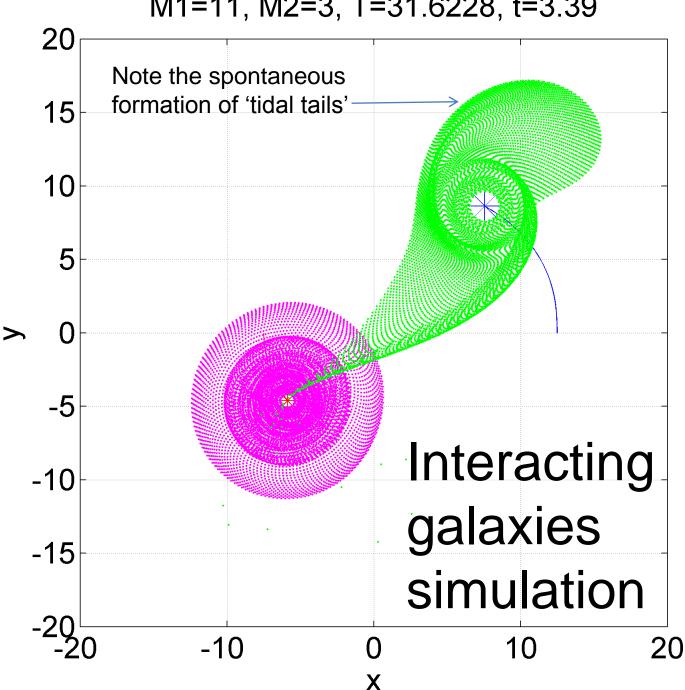
%Starting period for plot
Pstart = 1.23;



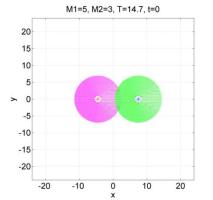
% Gravity simulation which begins with a single Jupiter-like planet % orbiting a sun-like star, plus concentric circles of 'masslets' that act % like an accretion disc or dust cloud around the star. The planet and % masslets don't interact, and the star mass is assumed to be much larger % than then mass of the planet, even after it has shed mass.

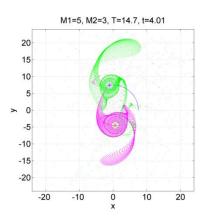
% After N planet rotations, the star loses fraction f of it's mass. The simulation % uses Verlet integration to determine the subsequent dynamics for another % M planet periods, before resetting.

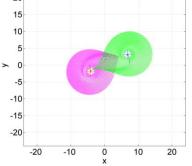


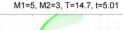


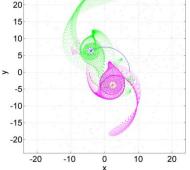
M1=11, M2=3, T=31.6228, t=3.39

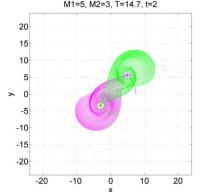


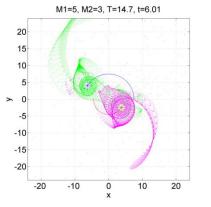


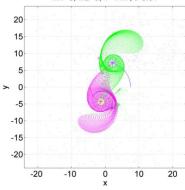


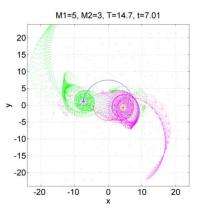


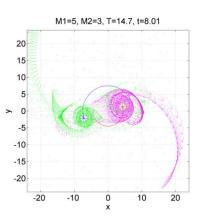




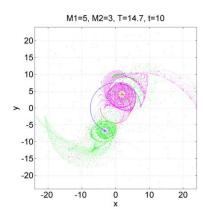


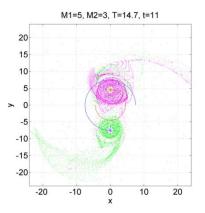






M1=5, M2=3, T=14.7, t=9.01 20 15 > -5 -10 -15 -20 -20 20 -10 10 0



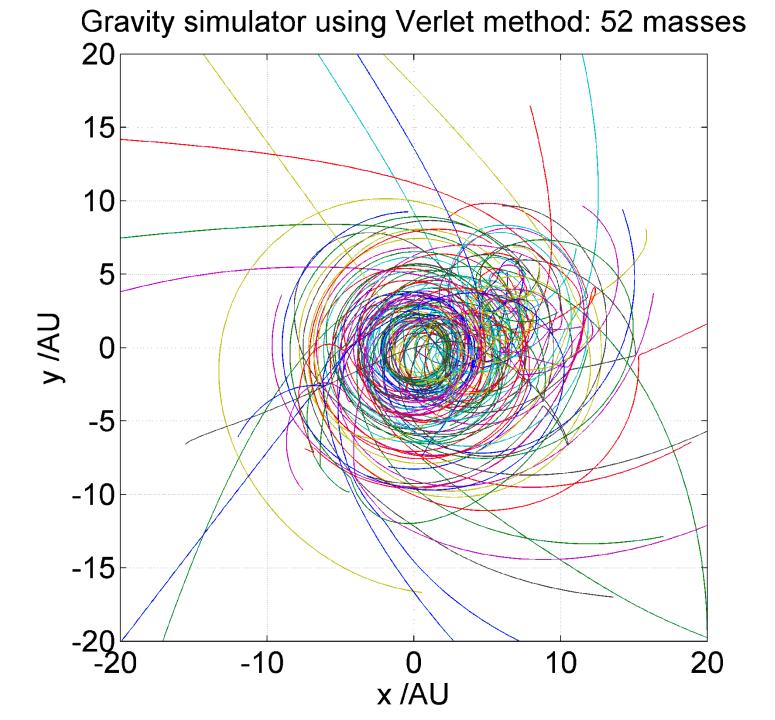


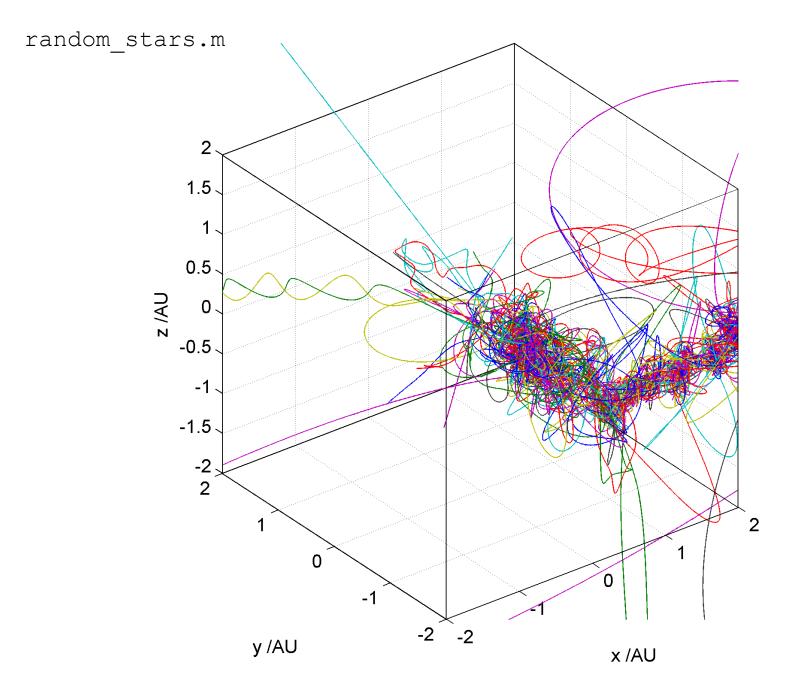
A possible explanation for common spiral galactic forms

M1=5, M2=3, T=14.7, t=2

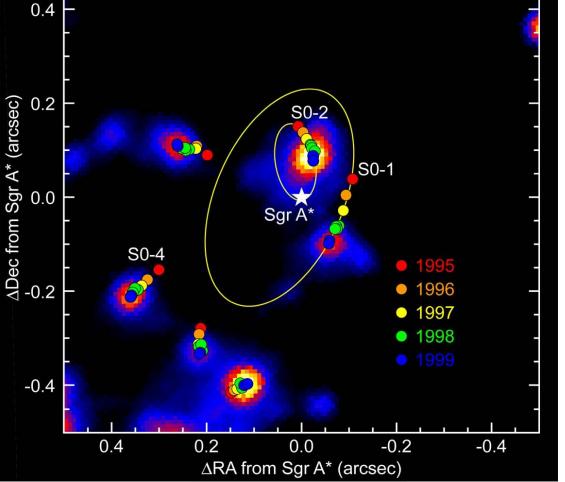
M1=5, M2=3, T=14.7, t=3.01

Messier 83 galaxy

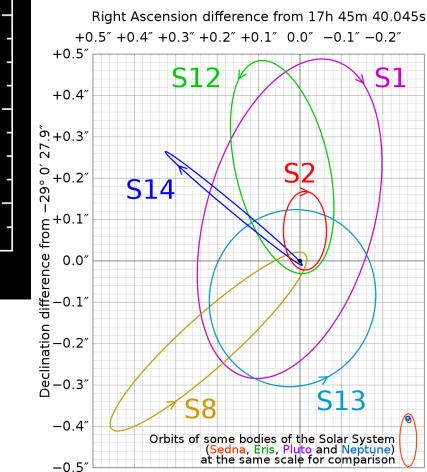


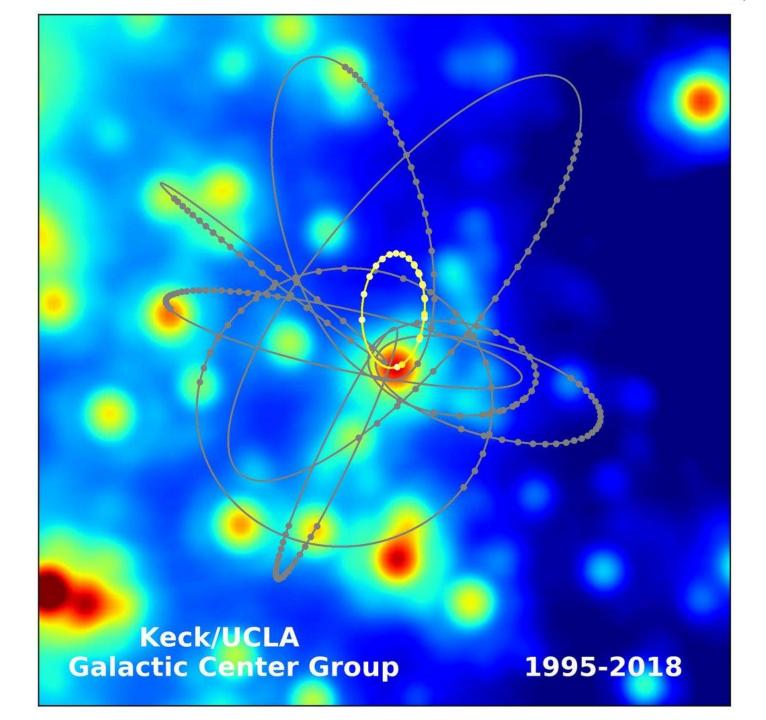


Although nearby star orbits look complex, the distances involved (and the relative mass of the black hole) mean you can model each as an elliptical orbit in a two-body system.



Sagittarius A* is a *supermassive black hole* in the centre of the Milky Way galaxy. It has a mass of about 4.2 million solar masses.





- Suggested homework
- Q&A

