

BPhO Computational Challenge

Chaos

Dr Andrew French.
December 2023.

British Physics Olympiad

A computational cookbook of

1. What is chaos?
2. A short but chaotic history

The logistic map and population modelling
4. Pendulums and phase space
5. Lorenz and Rössler strange attractors
6. Shaw's dripping faucet
7. Fractals

- Koch snowflake
- Fractal dimension

Lorenz attractor

- Barnsley fern and Sierpinski triangle

8. Mandlebrot, complex numbers and iteration
9. Chaos in planetary systems
10. Chaos in fluid flow
11. Phase locking \& order from chaos
12. Further reading

What is Chaos?

Dynamics, the physics of motion, provides us with equations which can be used to predict the future position of objects if we know (i) their present position and velocity and (ii) the forces which act on each object.

This works very well for planetary motion, tides etc. Not so well for weather or indeed the position of pool balls....

This is because most systems cannot be solved exactly. An approximate numerical method is required to work out what happens next. Many systems, even really simple ones, are highly sensitive to initial conditions.

This means future behaviour becomes increasingly difficult to predict

What is Chaos?

"Simple deterministic systems with only a few elements can generate random behaviour. The randomness is fundamental; gathering more information does not make it go away. Randomness generated in this way has come to be called chaos."

Robert Shaw of
the "Santa Cruz
Chaos Cabal"
1970s-1980s

Key references for this lecture are: Shaw et al; "Chaos", Scientific American 54:12 (1986) 46-57 and Gleick. J., Chaos. Vintage 1998.

Does the flap of a butterfly's wings in Brazil set off a tornado

 in Texas?
\qquad

"Butterfly Effect" mean for Causality?
"... it is found that non-periodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states"
i.e. if I change pressure by even a tiny amount in a weather model, the effect may be profound after a relatively short time

A short but chaotic history
 Calculus Gravitation ...

Isaac Newton 1642-1727

Michel Hénon 1931-2013

The Uncertainty Principle indeed sets a limit on what we can know for certain

If we know the position and momentum of all particles in the Universe we could know the past and the future!
"Sensitive dependence on initial conditions"

Pierre Simon Laplace 1749-1827

Henri Poincaré 1854-1912 0

Edward Norton Lorenz
1917-2008

But we can only know the initial situation approximately. And small errors can often amplify with interactions between many particles

Gaston Julia 1893-1978

Doc Brown = Mitchell Feigenbaum?

Benoit Mandelbrot

The logistic map and population modelling

I published this

 model in 1976Robert May 1936-

Assume an ecosystem can support a maximum number of rabbits. Let x be the fraction of this maximum at year n.

To account for reproduction, next year's population is proportional to the previous.

To account for starvation, next year's population is also proportional to the fraction of the maximum population as yet unfilled.

$x_{n+1}=r x_{n}\left(1-x_{n}\right)$

Growth parameter

The population next year is predicted using this iterative equation called a logistic map

The pattern of x values with n is not always simple

$\mathrm{x}(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	0.1	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.15	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.2	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.3	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.35	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.4	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.45	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.5	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715
	0.55	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.6	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.65	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.7	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.75	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.8	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.85	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.9	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.95	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	1	-2.2E-16																	

$r=2 \quad x_{n+1}=r x_{n}\left(1-x_{n}\right)$

$x(n)$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.1	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.15	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.2	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.25	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.3	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.35	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.4	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.45	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.55	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.6	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.65	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.7	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.75	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.8	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.85	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.9	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.95	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-4.4E-16	-8.9E-16	-1.8E-15	-3.6E-15	-7.1E-15	-1.4E-14	-2.8E-14	-5.7E-14	-1.1E-13	-2.3E-13	-4.5E-13	-9.1E-13	-1.8E-12	-3.6E-12	-7.3E-12	-1.5E-11	-2.9E-11	-5.8E-11

$r=3 \quad x_{n+1}=r x_{n}\left(1-x_{n}\right)$

x(n)																			
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	0.1	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.15	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.2	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.25	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.3	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.35	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.4	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.45	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.5	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582
	0.55	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.6	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.65	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.7	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.8	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.85	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.9	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.95	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	1	-6.7E-16	-2E-15	-6E-15	-1.8E-14	-5.4E-14	-1.6E-13	-4.9E-13	-1.5E-12	-4.4E-12	-1.3E-11	-3.9E-11	-1.2E-10	-3.5E-10	-1.1E-09	-3.2E-09	-9.6E-09	-2.9E-08	-8.6E-08

$r=4$ $x_{n+1}=r x_{n}\left(1-x_{n}\right)$ n

$\mathrm{x}(\mathrm{n})$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
	0.1	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.15	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.2	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.25	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.7
	0.3	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.35	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.4	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.45	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.5	1	4.44E-16	$1.78 \mathrm{E}-15$	7.11E-15	$2.84 \mathrm{E}-14$	$1.14 \mathrm{E}-13$	$4.55 \mathrm{E}-13$	1.82E-12	$7.28 \mathrm{E}-12$	2.91E-11	$1.16 \mathrm{E}-10$	$4.66 \mathrm{E}-10$	1.86E-09	$7.45 \mathrm{E}-09$	2.98E-08	$1.19 \mathrm{E}-07$	4.77E-07	1.91E-06
	0.55	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.6	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.65	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.7	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	0.8	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.85	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.9	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.95	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
	1	-8.9E-16	-3.6E-15	-1.4E-14	-5.7E-14	-2.3E-13	-9.1E-13	-3.6E-12	-1.5E-11	-5.8E-11	-2.3E-10	-9.3E-10	-3.7E-09	-1.5E-08	-6E-08	-2.4E-07	-9.5E-07	-3.8E-0	1.5E-0

May Bifurcations Logistic map

Model breaks down for $r>4$

May Bifurcations Logistic map

May Bifurcations Logistic map probability

0.894Colour is the logarithm of the probability of finding an x value

Pendulums and phase space

Although we can't fully 'solve' a chaotic system, we can create a diagram which describes the motion. In phase space, patterns often emerge, which are hidden in the randomness of a time series.

We can use Newton's Second Law to write down differential equations for the motion of the pendulum bob

So that air resistance
always opposes motion
$m l \frac{d \dot{\theta}}{d t}=-m g \sin \theta-k l^{2} \dot{\theta}|\dot{\theta}|$
$\therefore \frac{d \dot{\theta}}{d t}=-\frac{g}{l} \sin \theta-\frac{k l}{m} \dot{\theta}|\dot{\theta}|$
If angles are small and we ignore air resistance:

$$
\frac{d \dot{\theta}}{d t} \approx-\frac{g}{l} \theta \quad \begin{aligned}
& \theta=\theta_{0} \cos \left(2 \pi \frac{t}{P}\right) \quad P=2 \pi \sqrt{\frac{l}{g}}
\end{aligned}
$$

To keep things simple (!) let's use the period P of a frictionless, small angle ideal pendulum to define a time scale. We can then make our pendulum equation in terms of dimensionless numbers.
$t \rightarrow P \tau \quad \dot{\theta} \rightarrow \frac{\dot{\theta}}{P} \quad$ i.e. $\quad \dot{\theta}=\frac{d \theta}{d \tau} \quad$ using this dimensionless time scale $\quad P=2 \pi \sqrt{\frac{l}{g}}$

$$
\frac{1}{P^{2}} \frac{d \dot{\theta}}{d \tau}=-\frac{g}{l} \sin \theta-\frac{1}{P^{2}} \frac{k l}{m} \dot{\theta}|\dot{\theta}|
$$

$$
\therefore \frac{d \dot{\theta}}{d \tau}=4 \pi^{2} \sin \theta-a \dot{\theta}|\dot{\theta}|
$$

$$
a=\frac{g k}{4 \pi^{2} m}
$$

a is now simply a number which sets the effect of air resistance

Pendulum swing angle vs time

Perhaps a more informative picture of the motion is the phase portrait, or Poincaré diagram

Pendulum phase space

Recall 'Exact' means
small angles, and no air resistance

The frictionless oscillations are circles whereas air resistance causes an inspiralling to zero angle and zero angular speed

HARDCORE MATHS ALERT!!

The double pendulum

$x_{1}=l_{1} \sin \theta_{1}$
$y_{1}=-l_{1} \cos \theta_{1}$
$x_{2}=l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2}$
$y_{2}=-l_{1} \cos \theta_{1}-l_{2} \cos \theta_{2}$
$v_{x 1}=l_{1} \cos \theta_{1} \dot{\theta}_{1}$
$v_{y 1}=l_{1} \sin \theta_{1} \dot{\theta}_{1}$
$v_{x 2}=l_{1} \cos \theta_{1} \dot{\theta}_{1}+l_{2} \cos \theta_{2} \dot{\theta}_{2}$
$v_{y 2}=l_{1} \sin \theta_{1} \dot{\theta}_{1}+l_{2} \sin \theta_{2} \dot{\theta}_{2}$

Potential energy

x, y coordinates

Velocities
$V=m_{1} g y_{1}+m_{2} g y_{2}$
$V=-\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}-m_{2} g l_{2} \cos \theta_{2}$

Kinetic energy
$T=\frac{1}{2} m_{1}\left(v_{x 1}^{2}+v_{y 1}^{2}\right)+\frac{1}{2} m_{2}\left(v_{x 2}^{2}+v_{y 2}^{2}\right)$
$T=\frac{1}{2} m_{1} l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2}\left[l_{1}^{2} \dot{\theta}_{1}^{2}+l_{2}^{2} \dot{\theta}_{2}^{2}+2 l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)\right]$

Fixed, frictionless, rotation point

$$
g=9.81 \mathrm{~ms}^{-2}
$$

- Rods are rigid and massless
- No friction or air resistance
m_{2}

Ok. Time for a deep breath

We need to compute the
Lagrangian L and then solve the Euler-Lagrange equations!
$L=T-V$
$L=\frac{1}{2}\left(m_{1}+m_{2}\right) l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)$ $+\left(m_{1}+m_{2}\right) g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2}$

$$
\begin{equation*}
\left(m_{1}+m_{2}\right) l_{1} \ddot{\theta}_{1}+m_{2} l_{2} \ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+m_{2} l_{2} \dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+g\left(m_{1}+m_{2}\right) \sin \theta_{1}=0 \tag{1}
\end{equation*}
$$

Joseph Louis Lagrange 1736-1813

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{1}}\right)=\frac{\partial L}{\partial \theta_{1}}
$$

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}_{2}}\right)=\frac{\partial L}{\partial \theta_{2}} \\
& m_{2} l_{1} \ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)+m_{2} l_{2} \ddot{\theta}_{2}-m_{2} l_{1} \dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right)+m_{2} g \sin \theta_{2}=0 \tag{2}
\end{align*}
$$

$$
\begin{aligned}
& \frac{d \theta_{1}}{d t}=\omega_{1} \quad \text { Four coupled non-linear differential equations. A mere bagatelle! } \\
& \frac{d \omega_{1}}{d t}=\frac{m_{2} l_{1} \omega_{1}^{2} \sin \Delta \cos \Delta+m_{2} g \sin \theta_{2} \cos \Delta+m_{2} l_{2} \omega_{2}^{2} \sin \Delta-\left(m_{1}+m_{2}\right) g \sin \theta_{1}}{\left(m_{1}+m_{2}\right) l_{1}-m_{2} l_{1} \cos ^{2} \Delta} \\
& \frac{d \theta_{2}}{d t}=\omega_{2} \\
& \frac{d \omega_{2}}{d t}=\frac{-m_{2} l_{2} \omega_{2}^{2} \sin \Delta \cos \Delta+\left(m_{1}+m_{2}\right)\left(g \sin \theta_{1} \cos \Delta-l_{1} \omega_{1}^{2} \sin \Delta-g \sin \theta_{2}\right)}{\left(m_{1}+m_{2}\right) l_{2}-m_{2} l_{2} \cos ^{2} \Delta} \\
& \Delta=\theta_{2}-\theta_{1} \\
& \hline
\end{aligned}
$$

We can (approximately) solve the equations for the angles and angular velocities of the double pendulum using a numeric method. Runge-Kutta is a popular scheme. This has been implemented in MATLAB in order to generate the following plots.

But first a rather boring pendulum scenario to check my simulation makes sense....

Double pendulum $m_{1}=1 \mathrm{~kg} \mathrm{~m}_{2}=3 \mathrm{~kg} \mathrm{I}_{1}=3$ metres $\mathrm{I}_{2}=2$ metres

$$
\begin{aligned}
& \frac{d \theta_{1}}{d t}=\omega_{1} \\
& \frac{d \omega_{1}}{d t}=\frac{m_{2} l_{1} \omega_{1}^{2} \sin \Delta \cos \Delta+m_{2} g \sin \theta_{2} \cos \Delta+m_{2} l_{2} \omega_{2}^{2} \sin \Delta-\left(m_{1}+m_{2}\right) g \sin \theta_{1}}{\left(m_{1}+m_{2}\right) l_{1}-m_{2} l_{1} \cos ^{2} \Delta} \\
& \frac{d \theta_{2}}{d t}=\omega_{2} \\
& \frac{d \omega_{2}}{d t}=\frac{-m_{2} l_{2} \omega_{2}^{2} \sin \Delta \cos \Delta+\left(m_{1}+m_{2}\right)\left(g \sin \theta_{1} \cos \Delta-l_{1} \omega_{1}^{2} \sin \Delta-g \sin \theta_{2}\right)}{\left(m_{1}+m_{2}\right) l_{2}-m_{2} l_{2} \cos ^{2} \Delta} \\
& \Delta=\theta_{2}-\theta_{1}
\end{aligned}
$$

Pendulum bob x, y trajectories. Bob1 is blue, Bob2 is red

Pendulum bob x positions

Poincare diagram: bob1 is blue, bob2 is red

Pendulum bob 1 kinetic, potential energy

Total energies, per bob

Pendulum bob 2 kinetic, potential energy

Total energy of system

And now for chaotic motion!

> Double pendulum $\mathrm{m}_{1}=1 \mathrm{~kg} \mathrm{~m}_{2}=3 \mathrm{~kg} \mathrm{I}_{1}=3$ etres $\mathrm{I}_{2}=1$ metres
> time $=0 \mathrm{~s}$

Pendulum bob x, y trajectories. Bob1 is blue, Bob2 is red

Pendulum bob x positions

Poincare diagram: bob1 is blue, bob2 is red

Pendulum bob 1 kinetic, potential energy

Total energies, per bob

Pendulum bob 2 kinetic, potential energy

Total energy of system

Lorenz and Rössler strange attractors

Edward Lorenz was using a Royal McBee LGP-30 computer in 1961 to model weather patterns. He accidentally fed in 3 digit precision numbers into the model from a printout rather than the 6 digits used by the computer. These tiny errors created a hugely different weather forecast....

Lorenz's weather model was very sensitive to initial conditions.

Although x, y, z trajectories are chaotic, they tend to gravitate towards a particular region.

This region is called a strange attractor.

$$
\begin{aligned}
& \frac{d x}{d t}=s(y-x) \\
& \frac{d y}{d t}=x(r-z)-y \\
& \frac{d z}{d t}=x y-b z
\end{aligned}
$$

$$
s=10 \quad r=28 \quad b=\frac{8}{3}
$$

Lorenz attractor

Applying the Lorenz equations, a cluster of initial x, y, z values separated by a tiny random deviation will eventually spread out evenly throughout the strange attractor.

Lorenz attractor: iteration 2600

Shaw et al; "Chaos", Scientific American 54:12 (1986) 46-57

Another chaotic system with a strange attractor is the solution set of the Rössler equations

Rossler attractor

$$
\begin{aligned}
& a=\frac{1}{10} \\
& b=\frac{1}{10} \\
& c=14
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=-y-z \\
& \frac{d y}{d t}=x+a y \\
& \frac{d z}{d t}=z(x-c)+b
\end{aligned}
$$

Shaw's dripping faucet

Construct x, y, z coordinates from time differences between drips

Seemingly random drips form a strange attractor, whose shape depends on the flow rate

D
DATA
f DATA

Robert Shaw James
Crutchfield J. Doyne Farmer, Norman Packard
"Santa Cruz Chaos Cabal" 1970s-1980s

Fractals

A fractal is a structure which is geometrically similar over a wide range of scales. In other words, zoom in and it looks the same.

Fractals are everywhere in natural forms, from the branching structure of our lungs and trees, to the shape of coastlines, to river networks, to eddies in turbulent fluids

And it is also a feature of the bifurcation diagrams we have already met

May Bifurcations Logistic map

The Koch Snowflake

Niels Fabian Helge von Koch
(1870-1924)

```
Perhaps the earliest example of fractal geometry - before I even coined the term!
```

Area tends to $8 / 5$ of the area of the green triangle....
.... but the perimeter is infinite!

Koch snowflake iteration $=1$

1. Start with an equilateral triangle
2. Divide each edge into thirds
3. Add another equilateral triangle to each edge with base being the central third.

Iterate from step 2 ...

Koch snowflake iteration = 1

For each iteration:
Every side length grows from $3 x \rightarrow 4 x \quad$ i.e. a factor of $4 / 3$

Hence perimeter after n iterations is:

$$
P_{n}=P_{0}\left(\frac{4}{3}\right)^{n}
$$ where P_{0} is the perimeter of the original triangle.

i.e. as n becomes large, P tends to infinity!

Each triangle of edge $3 x$ gains another triangle of edge size x. i.e. gains a triangle of $\mathbf{1 / 9}$ the area of previous triangles added

Each iteration the number of sides increases by a factor of 4 , so number of sides after n iterations is 3×4^{n} \qquad
Hence area added in iteration k is: $\Delta A_{k}=3 \times 4^{k-1} \times \frac{A_{0}}{9^{k}}$
Original triangle area is A_{0}

Total area enclosed by Koch Snowflake is therefore:
$\Delta A_{k}=3 \times 4^{k-1} \times \frac{A_{0}}{9^{k}}$
$A_{n}=A_{0}+\sum_{k=1}^{n} \Delta A_{k}=A_{0}+3 \times 4^{1-1} \times \frac{A_{0}}{9^{1}}+3 \times 4^{2-1} \times \frac{A_{0}}{9^{2}}+3 \times 4^{3-1} \times \frac{A_{0}}{9^{3}}+\ldots$.
$\frac{A_{n}}{A_{0}}=1+\frac{3}{4}\left(\frac{4}{9}+\frac{4^{2}}{9^{2}}+\frac{4^{3}}{9^{3}}+\ldots .+\frac{4^{n}}{9^{n}}\right)$

Geometric progression

$\frac{A_{n}}{A_{0}}=1+\frac{3}{4} \frac{4}{9}\left(1+\frac{4}{9}+\frac{4^{2}}{9^{2}}+\ldots .+\frac{4^{n-1}}{9^{n-1}}\right) \quad a+a r+a r^{2}+\ldots+a r^{n-1}=a \frac{1-r^{n}}{1-r}$
$\frac{A_{n}}{A_{0}}=1+\frac{1}{3} \frac{1-\frac{4^{n}}{9^{n}}}{1-\frac{4}{9}}=1+\frac{1}{3} \frac{9}{5}\left(1-\frac{4^{n}}{9^{n}}\right)=\frac{5+3\left(1-\frac{4^{n}}{9^{n}}\right)}{5}$

So as n becomes infinite:

$$
\lim _{n \rightarrow \infty} \frac{A_{n}}{A_{0}}=\lim _{n \rightarrow \infty}\left\{\frac{5+3\left(1-\frac{4^{n}}{9^{n}}\right)}{5}\right\}=\frac{8}{5}
$$

Koch snowflake iteration $=5$

In the limit when n tends to infinity, the Koch Snowflake is self similar, i.e. has the same structure at all magnification scales.

The Koch Snowflake has a fractal structure. A bit like the coastline of the UK. It's perimeter depends on the lengths of our measuring sticks which map out greater (but similarly shaped) detail as we zoom in

http://fractalfoundation.org/OFCA/uks4.jpg

Although the perimeter is infinite, we can calculate the number of fixed length 'sticks' which make up the perimeter. Let stick size x for iteration n be the perimeter divided by the number of sides

$$
x_{n}=P_{n} / N_{n}=\frac{P_{0}\left(\frac{4}{3}\right)^{n}}{3 \times 4^{n}}=\frac{1}{3} P_{0} \times 3^{-n}
$$

Define the Fractal Dimension D such that the number of sticks can be defined in terms of the stick size:
$N_{n}=3 \times\left(\frac{1}{3^{n}}\right)^{-D}$
$\therefore 3 \times\left(\frac{1}{3^{n}}\right)^{-D}=3 \times 4^{n}$
$\left(3^{-n}\right)^{-D}=4^{n}$
$3^{n D}=4^{n}$
$\therefore D n \log 3=n \log 4$
$D=\frac{\log 4}{\log 3} \approx 1.2619$

The Koch curve has a 'fractional dimension' of about 1.2619

Koch snowflake iteration = 1

Barnsley fern

Intriguingly, fractal structures like the Koch curve can be generated using an iterated random process. This is called the ‘Chaos Game’
function fern
\%Define number of iterations $\mathrm{N}=1 \mathrm{e} 5$;

\%Pixel size

```
psize = 0.1;
```

\%Start x, y coordinates
$\mathrm{x}=0$;
$y=0$;
$\mathrm{xx}=0$;
$\mathrm{yy}=0$;
\%Generate Barnsley fractal
for $n=1: N$
r = rand;
if $r<=0.02$
\%Stem
$x x y y=[0,0 ; 0,0.16]$ *[xx;yy];
$x x=\operatorname{xxyy}(1) ; y y=\operatorname{xxyy}(2)$;
$\mathrm{x}=[\mathrm{x}, \mathrm{xx}]$;
$\mathrm{y}=[\mathrm{y}, \mathrm{yy}]$;
elseif $(r>0.01)$ \&\& $(r<=0.85)$
\%Smaller leaflets
xxyy $=[0.85,0.04 ;-0.04,0.85] *[x x ; y y]+[0 ; 1.60]$;
$x x=x x y y(1) ; ~ y y=x x y y(2) ;$
$\mathrm{x}=[\mathrm{x}, \mathrm{Xx}]$;
$\mathrm{y}=[\mathrm{y}, \mathrm{yy}] ;$
elseif $(r>0.85) \& \& \quad(r<=0.92)$
\%Largest left-hand leaflet
$\mathrm{xxyy}=[0.20,-0.26 ; 0.23,0.22]$ *[xx;yy] + [0;1.60] ;
$x x=x x y y(1) ; \quad y y=x x y y(2) ;$
$\mathrm{x}=[\mathrm{x}, \mathrm{xx}]$;
$y=[y, y y] ;$
else
\%Largest right hand leaflet
$x x y y=[-0.15,0.28 ; 0.26,0.24] *[x x ; y y]+[0 ; 0.44] ;$
$x x=\operatorname{xxyy}(1) ; \quad y y=\operatorname{xxyy}(2) ;$
$\mathrm{x}=[\mathrm{x}, \mathrm{xx}]$;
$\mathrm{y}=[\mathrm{y}, \mathrm{yy}] ;$
end
end
\%Plot fractal
figure('color', [1 1 1 1],'name','Barnsley fern','renderer','opengl');
plot(x,y,'g.','markersize',psize);
axis equal
axis off

\%End of code

print(gcf,'barnsley fern.png','-dpng','-r300');
for $n=1: N$
$r=r a n d ; ~ \% G e n e r a t e ~ a ~ r a n d o m ~ n u m b e r ~$
if ($r<=1 / 3$)
\%Move half way towards red star
$x=0.5^{*}(x R+x)$;
$y=0.5 *(y R+y) ;$
\%Plot a red dot
plot (x,y, 'r.') ;
elseif ($r>1 / 3$) \&\& ($r<=2 / 3$)
\%Move ... blue star $x=0.5^{*}(x B+x) ;$ $y=0.5^{*}(y B+y) ;$ \%Plot a blue dot plot (x,y, 'b.') ; else
\%Move ... green star $\mathrm{x}=0$. * $^{*}(\mathrm{xG}+\mathrm{x})$; $\mathrm{y}=0$. * $\left.^{*} \mathrm{yG}+\mathrm{y}\right)$; \%Plot a green dot plot (x,y, 'g.') ; end

The Sierpinski Triangle

Mandlebrot transformations of complex numbers

$$
\begin{aligned}
& i^{2}=-1 \\
& z=x+i y \\
& x=\operatorname{Re}(z) \\
& y=\operatorname{Im}(z) \\
& |z|=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$$
(1+i)(1+i)
$$

$$
=1+2 i+i^{2}
$$

$$
=1+2 i-1
$$

$$
=2 i
$$

Mandelbrot $z_{n+1}=z_{n}^{2}+z_{0}$

Gaston Julia (1893-1978)

julia

julia.m plot option abs diverge Plot a surface with height $h(x, y)$. This is the iteration number when $|z|$ exceeds a certain value e.g. 4

In this case colours indicate height $h(x, y)$. It is a 'colour-map'.
julia.m plot option plot z
Plot a surface with height $h(x, y)$

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

Mandelbrot Deep Zoom

The light bulb

$$
z_{n+1}=\log \left(z_{n}^{2}+z_{0}\right)
$$

7 steps to enlightenment $z_{n+1}=\tan ^{-1}\left(z_{n}^{2}+z_{0}\right)$

The Mandlerocket!

$$
z_{n+1}=\sin ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

Micro mandlebeast

$$
z_{n+1}=\left(z_{n}^{2}+z_{0}\right)^{2}
$$

The profusion of power

$$
z_{n+1}=\left(z_{n}^{2}+z_{0}\right)^{z_{n}}
$$

Remember $h(x, y)$ is a surface

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

Mandlebrot surface: iteration 8

$$
z_{n+1}=z_{n}^{2}+z_{0}
$$

Mandlebrot surface: iteration 64

$$
\begin{aligned}
& x=\operatorname{Re}(z), \quad y=\operatorname{Im}(z) \\
& h(x, y)=e^{-\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

7 steps to enlightenment

$$
z_{n+1}=\tan ^{-1}\left(z_{n}^{2}+z_{0}\right)
$$

The Mandlerocket

Chaos in planetary systems

The motion of a planet in a close binary star system can be chaotic

The 'three body problem' has no closed form solution!

The small moons of Pluto (Nix, Hydra, \qquad

Charon Styx, and Kerberos) rotate chaotically

Chaos in fluid flow

Phase locking - spontaneous order from chaos due to 'nonlinear feedback'

Further reading

Nonlinear Dynamics and ChaOs

With Applications to Physics, Biology, Chemistry, and Engineering

Steven H. Strogatz TED talk-The Science of Sync

THE FRACTAL GEOMETRY OF NATURE
Benoit B. Mandelbrot

Chaotic Modelling and Simulation

Analysis of Chaotic Models,
Attractors and Forms
(cig) CRC Press

www.eclecticon.info

Kicked rotor iteration. $\mathrm{N}=10000, \mathrm{k}=0.5$

Kicked rotor iteration. $\mathrm{N}=10000, \mathrm{k}=1$

Kicked rotor iteration. $\mathrm{N}=10000, \mathrm{k}=1.5$

