

Chaos

Dr Andrew French. December 2023.

A computational coekbook of

What is chaos?

- A short but chaotic history
- The logistic map and population modelling 3.
- Pendulums and phase space
- 5. Lorenz and Rössler strange attractors
- 6. Shaw's dripping faucet
- **Fractals**
 - Koch snowflake
 - **Fractal dimension**
 - Barnsley fern and Sierpinski triangle
- Mandlebrot, complex numbers and iteration
- Chaos in planetary systems
- 10. Chaos in fluid flow
- 11. Phase locking & order from chaos
- 12. Further reading

What is Chaos?

Dynamics, the *physics of motion*, provides us with *equations* which can be used to **predict the future position of objects** if we know (i) their present **position** and **velocity** and (ii) the **forces** which act on each object.

This works *very well* for planetary motion, tides etc. *Not so well* for weather or indeed the position of pool balls....

This is because *most* systems cannot be solved exactly. An *approximate numerical method* is required to work out what happens next. Many systems, even really simple ones, are *highly sensitive to initial conditions*.

This means future behaviour becomes increasingly difficult to predict

Nonlinearity is often the problem!

What is Chaos?

"Simple deterministic systems with only a few elements can generate random behaviour. The randomness is fundamental; gathering more information does not make it go away. Randomness generated in this way has come to be called chaos."

Robert Shaw of the "Santa Cruz Chaos Cabal" 1970s-1980s

Key references for this lecture are: Shaw et al; "Chaos", Scientific American 54:12 (1986) 46-57 and Gleick. J., Chaos. Vintage 1998.

Edward Norton Lorenz 1917-2008

Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?

Hmmm. What does this "Butterfly Effect" mean for Causality?

"... it is found that non-periodic solutions are ordinarily unstable with respect to small modifications, so that slightly differing initial states can evolve into considerably different states"

i.e. if I change pressure by even a tiny amount in a weather model, the effect may be profound after a relatively short time A short but chaotic history

I give you: Laws of motion Calculus Gravitation ...

Pierre Simon Laplace 1749-1827

If we know the position and momentum of all particles in the Universe we could know the **past** and the **future!**

"Sensitive dependence on initial conditions"

Henri Poincaré 1854-1912

Edward Norton Lorenz 1917-2008

Planetary dynamics can often be **chaotic**

The Uncertainty Principle indeed sets a limit on what we can know for certain

But we can only know the initial situation approximately. And small errors can often amplify with interactions between many particles

Robert May 1936-

Chaos can be seen in very simple mathematical models, such as how an ecological population changes year on year

Mitchell Feigenbaum 1944-

I discovered universal mathematical truths about these systems

4.669201609...

You don't need complicated interactions to produce unpredictable behaviour

Gaston Julia 1893-1978

Very intricate geometry is hidden within the simplest of quadratic equations (if we use complex numbers and iteration)

1924-2010

Much of geometry in the

similar on all scales. We

dimensions to describe

these fractal objects.

natural world is self

can use fractional

Doc Brown = Mitchell Feigenbaum?

Benoit Mandelbrot

https://en.wikipedia.org/wiki/Chaos_theory

Jerry Gollub (1944-) & Harry Swinney (1939-)

Universality!

How to investigate nonlinear dynamics?

Edward Lorenz 1917-2008

I wrote this all up in a book

James Gleick 1954-

Robert Shaw James Crutchfield J. Doyne Farmer, Norman Packard "Santa Cruz Chaos Cabal" 1970s-1980s

The logistic map and population modelling

I published this model in 1976

Robert May 1936-

Assume an ecosystem can support a maximum number of rabbits. Let x be the fraction of this maximum at year n.

To account for **reproduction**, next year's population is proportional to the previous.

To account for **starvation**, next year's population is *also proportional* to the fraction of the maximum population as yet unfilled.

$$x_{n+1} = rx_n \left(1 - x_n \right)$$

Growth parameter

The population next year is predicted using this iterative equation called a logistic map

The pattern of x values with n is not always simple

$$r = 1 \qquad x_{n+1} = rx_n \left(1 - x_n \right)$$

x(n)	

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ı) [0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	0.1	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.15	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.2	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.3	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.35	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.4	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.45	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.5	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715
	0.55	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.6	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.65	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.7	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.75	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.8	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.85	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.9	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.95	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
Γ	1	-2.2E-16																	

$$r = 2 \qquad x_{n+1} = rx_n \left(1 - x_n \right)$$

x(n)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
) [0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.1	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.15	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.2	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.25	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.3	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.35	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.4	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.45	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.55	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.6	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.65	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.7	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.75	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
L	0.8	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.85	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.9	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.95	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-4.4E-16	-8.9E-16	-1.8E-15	-3.6E-15	-7.1E-15	-1.4E-14	-2.8E-14	-5.7E-14	-1.1E-13	-2.3E-13	-4.5E-13	-9.1E-13	-1.8E-12	-3.6E-12	-7.3E-12	-1.5E-11	-2.9E-11	-5.8E-11

$$r = 3 \qquad x_{n+1} = rx_n \left(1 - x_n \right)$$

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x(n)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	0.1	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.15	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.2	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.25	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.3	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.35	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.4	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.45	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.5	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582
	0.55	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.6	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.65	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.7	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.8	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.85	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.9	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.95	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	1	-6.7E-16	-2E-15	-6E-15	-1.8E-14	-5.4E-14	-1.6E-13	-4.9E-13	-1.5E-12	-4.4E-12	-1.3E-11	-3.9E-11	-1.2E-10	-3.5E-10	-1.1E-09	-3.2E-09	-9.6E-09	-2.9E-08	-8.6E-08

$$r = 4 \qquad x_{n+1} = rx_n \left(1 - x_n \right)$$

,1	'n	١I	
ч	щ	, ,	

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.05	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
0.1	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
0.15	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
0.2	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
0.25	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
0.3	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
0.35	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
0.4	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
0.45	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
0.5	1	4.44E-16	1.78E-15	7.11E-15	2.84E-14	1.14E-13	4.55E-13	1.82E-12	7.28E-12	2.91E-11	1.16E-10	4.66E-10	1.86E-09	7.45E-09	2.98E-08	1.19E-07	4.77E-07	1.91E-06
0.55	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
0.6	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
0.65	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
0.7	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
0.8	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
0.85	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
0.9	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
0.95	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
1	-8.9E-16	-3.6E-15	-1.4E-14	-5.7E-14	-2.3E-13	-9.1E-13	-3.6E-12	-1.5E-11	-5.8E-11	-2.3E-10	-9.3E-10	-3.7E-09	-1.5E-08	-6E-08	-2.4E-07	-9.5E-07	-3.8E-06	-1.5E-05

May Bifurcations Logistic map

May Bifurcations Logistic map

May Bifurcations Logistic map probability

Pendulums and phase space

 $\dot{\theta} = \frac{d\theta}{dt}$

Although we can't fully 'solve' a chaotic system, we can create a **diagram which describes the motion**. In **phase space**, patterns often emerge, which are hidden in the randomness of a **time series**.

 $y = 9.81 \text{ms}^{-2}$ This is a model of air resistance

We can use **Newton's Second Law** to write down **differential equations** for the motion of the pendulum bob

 $ml\frac{d\dot{\theta}}{dt} = -mg\sin\theta - kl^2\dot{\theta}\left|\dot{\theta}\right|$

$$\therefore \frac{d\dot{\theta}}{dt} = -\frac{g}{l}\sin\theta - \frac{kl}{m}\dot{\theta}|\dot{\theta}|$$

So that air resistance always *opposes* motion

If angles are small and we ignore air resistance:

$$\frac{d\dot{\theta}}{dt} \approx -\frac{g}{l}\theta$$

We can solve this!

$$\theta = \theta_0 \cos\left(2\pi \frac{t}{P}\right) \quad P = 2\pi \sqrt{\frac{l}{g}}$$

To keep things simple (!) let's use the **period** P of a frictionless, small angle ideal pendulum to **define a time** scale. We can then make our pendulum equation in terms of dimensionless numbers.

$$t \to P au \quad \dot{\theta} \to \frac{\dot{\theta}}{P}$$
 i.e. $\dot{\theta} = \frac{d\theta}{d\tau}$ using this dimensionless time scale

$$P = 2\pi \sqrt{\frac{l}{g}}$$

$$\frac{1}{P^2} \frac{d\dot{\theta}}{d\tau} = -\frac{g}{l} \sin \theta - \frac{1}{P^2} \frac{kl}{m} \dot{\theta} |\dot{\theta}|$$

$$\therefore \left| \frac{d\dot{\theta}}{d\tau} = 4\pi^2 \sin \theta - a\dot{\theta} \left| \dot{\theta} \right| \right|$$

$$a = \frac{gk}{4\pi^2 m}$$

a is now simply a *number* which sets the effect of air resistance

Perhaps a more informative picture of the motion is the **phase portrait**, or **Poincaré diagram**

Henri Poincaré 1854-1912

Recall 'Exact' means small angles, and no air resistance

The frictionless oscillations are circles whereas air resistance causes an inspiralling to zero angle and zero angular speed

HARDCORE MATHS ALERT!!

The double pendulum

$$x_1 = l_1 \sin \theta_1$$

$$y_1 = -l_1 \cos \theta_1$$

$$x_2 = l_1 \sin \theta_1 + l_2 \sin \theta_2$$

 $y_2 = -l_1 \cos \theta_1 - l_2 \cos \theta_2$

$$v_{x1} = l_1 \cos \theta_1 \, \dot{\theta}_1$$
$$v_{y1} = l_1 \sin \theta_1 \dot{\theta}_1$$

Velocities

$$v_{x2} = l_1 \cos \theta_1 \theta_1 + l_2 \cos \theta_2 \theta_2$$
$$v_{y2} = l_1 \sin \theta_1 \dot{\theta}_1 + l_2 \sin \theta_2 \dot{\theta}_2$$

Potential energy

$$V = m_1 g y_1 + m_2 g y_2$$

$$V = -(m_1 + m_2) g l_1 \cos \theta_1 - m_2 g l_2 \cos \theta_2$$

Kinetic energy

$$T = \frac{1}{2}m_1\left(v_{x1}^2 + v_{y1}^2\right) + \frac{1}{2}m_2\left(v_{x2}^2 + v_{y2}^2\right)$$

$$T = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\left[l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2)\right]$$

We need to compute the

 $\label{lagrangian} \textbf{L} \text{ and then solve the }$

Euler-Lagrange equations!

Joseph Louis Lagrange 1736-1813

 $\Delta = \theta_2 - \theta_1$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) = \frac{\partial L}{\partial \theta_1}$$

$$(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) + m_2l_2\dot{\theta}_2^2\sin(\theta_1 - \theta_2) + g(m_1 + m_2)\sin\theta_1 = 0$$
 [1]

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_2} \right) = \frac{\partial L}{\partial \theta_2}$$

$$m_2 l_1 \ddot{\theta}_1 \cos(\theta_1 - \theta_2) + m_2 l_2 \ddot{\theta}_2 - m_2 l_1 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + m_2 g \sin\theta_2 = 0$$
 [2]

$$\frac{d\theta_1}{dt} = \omega_1 \qquad \text{Four coupled non-linear differential equations. A mere bagatelle!}$$

$$\frac{d\omega_1}{dt} = \frac{m_2 l_1 \omega_1^2 \sin \Delta \cos \Delta + m_2 g \sin \theta_2 \cos \Delta + m_2 l_2 \omega_2^2 \sin \Delta - \left(m_1 + m_2\right) g \sin \theta_1}{\left(m_1 + m_2\right) l_1 - m_2 l_1 \cos^2 \Delta}$$

$$\frac{d\theta_2}{dt} = \omega_2$$

$$\frac{d\omega_2}{dt} = \frac{-m_2 l_2 \omega_2^2 \sin \Delta \cos \Delta + \left(m_1 + m_2\right) \left(g \sin \theta_1 \cos \Delta - l_1 \omega_1^2 \sin \Delta - g \sin \theta_2\right)}{\left(m_1 + m_2\right) l_2 - m_2 l_2 \cos^2 \Delta}$$

Oh dear these are so non-linear!

We can (approximately) solve the equations for the angles and angular velocities of the double pendulum using a *numeric method*. **Runge-Kutta** is a popular scheme. This has been implemented in MATLAB in order to generate the following plots.

But first a rather boring pendulum scenario to check my simulation makes sense....

Double pendulum $m_1=1 \text{kg} \ m_2=3 \text{kg} \ l_1=3 \text{ metres} \ l_2=2 \text{ metres}$

$$\frac{d\theta_{1}}{dt} = \omega_{1}$$

$$\frac{d\omega_{1}}{dt} = \frac{m_{2}l_{1}\omega_{1}^{2}\sin\Delta\cos\Delta + m_{2}g\sin\theta_{2}\cos\Delta + m_{2}l_{2}\omega_{2}^{2}\sin\Delta - (m_{1} + m_{2})g\sin\theta_{1}}{(m_{1} + m_{2})l_{1} - m_{2}l_{1}\cos^{2}\Delta}$$

$$\frac{d\theta_{2}}{dt} = \omega_{2}$$

$$\frac{d\omega_{2}}{dt} = \frac{-m_{2}l_{2}\omega_{2}^{2}\sin\Delta\cos\Delta + (m_{1} + m_{2})(g\sin\theta_{1}\cos\Delta - l_{1}\omega_{1}^{2}\sin\Delta - g\sin\theta_{2})}{(m_{1} + m_{2})l_{2} - m_{2}l_{2}\cos^{2}\Delta}$$

$$\Delta = \theta_{2} - \theta_{1}$$

Pendulum bob x,y trajectories. Bob1 is blue, Bob2 is red

Pendulum bob x positions

Poincare diagram: bob1 is blue, bob2 is red

And now for chaotic motion!

Pendulum bob x,y trajectories. Bob1 is blue, Bob2 is red

Pendulum bob x positions

Poincare diagram: bob1 is blue, bob2 is red

Lorenz and Rössler strange attractors

Edward Lorenz was using a Royal McBee LGP-30 computer in 1961 to model weather patterns. He accidentally fed in 3 digit precision numbers into the model from a printout rather than the 6 digits used by the computer. These tiny errors created a hugely different weather forecast....

Lorenz's weather model was very sensitive to initial conditions.

His equations looked a bit like these:

$$\frac{dx}{dt} = s\left(y - x\right)$$

$$\frac{dy}{dt} = x(r-z) - y$$

$$\frac{dz}{dt} = xy - bz$$

$$r = 28$$

$$b = \frac{8}{3}$$

Edward Lorenz 1917-2008

Although x,y,z trajectories are chaotic, they tend to gravitate towards a particular region.

This region is called a strange attractor.

$$\frac{dx}{dt} = s(y - x)$$

$$\frac{dy}{dt} = x(r - z) - y$$

$$\frac{dz}{dt} = xy - bz$$

$$s = 10$$
 $r = 28$ $b = \frac{8}{3}$

Lorenz attractor

Applying the Lorenz equations, a cluster of initial x,y,z values separated by a *tiny* random deviation will eventually spread out evenly throughout the strange attractor.

Shaw et al; "Chaos", Scientific American 54:12 (1986) 46-57

Another chaotic system with a **strange attractor** is the solution set of the **Rössler equations**

$$\frac{dx}{dt} = -y - z$$

$$\frac{dy}{dt} = x + ay$$

$$\frac{dz}{dt} = z(x - c) + b$$

Shaw's dripping faucet

Construct x, y, zcoordinates from time differences between drips

Seemingly random drips form a strange attractor, whose shape depends on the flow rate

Fractals

A *fractal* is a structure which is **geometrically similar over a wide** range of scales. In other words, zoom in and it looks the same.

Fractals are *everywhere* in **natural forms**, from the branching structure of our lungs and trees, to the shape of coastlines, to river networks, to eddies in turbulent fluids

And it is also a feature of the bifurcation diagrams we have already met

http://jap.physiology.org/content/110/4/1119 https://en.wikipedia.org/wiki/Fractal

It turns out the ratio of $x_{n+1} = rx_n \left(1 - x_n \right)$ successive bifurcation intervals 0.9 is a universal constant! 4.669201609... 0.895 0.89 Zooming in reveals $\times 0.885$ an 'infinite tree of bifurcations' 0.88 during chaotic regions 0.875 0.87 3.54 3.56 3.58 3.6 3.62 3.64 3.66 Growth parameter r

May Bifurcations Logistic map

http://fractalfoundation.org/resources/what-are-fractals/

The Koch Snowflake

Niels Fabian Helge von Koch (1870-1924)

Perhaps the earliest example of *fractal geometry* – before I even coined the term!

Area tends to 8/5 of the area of the green triangle.... but the perimeter is *infinite!*

- 1. Start with an equilateral triangle
- 2. Divide each edge into thirds
- 3. Add another equilateral triangle to each edge with base being the central third.

Iterate from step 2 ...

For each iteration:

Every side length grows from

$$3x \rightarrow 4x$$
 i.e. a factor of 4/3

Hence perimeter after n iterations is:

$$P_n = P_0 \left(\frac{4}{3}\right)^n$$

where P_0 is the perimeter of the original triangle.

i.e. as *n* becomes large, *P* tends to infinity!

Each triangle of edge 3x gains another triangle of edge size x. i.e. **gains a triangle** of 1/9 the area of previous triangles added

Each iteration the number of sides increases by a factor of 4, so number of sides after n iterations is 3×4^n This gives the number of extra triangles in iteration n+1

Hence area added in iteration k is:

$$\Delta A_k = 3 \times 4^{k-1} \times \frac{A_0}{9^k}$$

Original triangle area is A_0

Total area enclosed by Koch Snowflake is therefore:

$$\Delta A_k = 3 \times 4^{k-1} \times \frac{A_0}{9^k}$$

$$A_n = A_0 + \sum_{k=1}^n \Delta A_k = A_0 + 3 \times 4^{1-1} \times \frac{A_0}{9^1} + 3 \times 4^{2-1} \times \frac{A_0}{9^2} + 3 \times 4^{3-1} \times \frac{A_0}{9^3} + \dots$$

$$\frac{A_n}{A_0} = 1 + \frac{3}{4} \left(\frac{4}{9} + \frac{4^2}{9^2} + \frac{4^3}{9^3} + \dots + \frac{4^n}{9^n} \right)$$

$$\frac{A_n}{A_0} = 1 + \frac{3}{4} \frac{4}{9} \left(1 + \frac{4}{9} + \frac{4^2}{9^2} + \dots + \frac{4^{n-1}}{9^{n-1}} \right)$$

Geometric progression

$$a + ar + ar^{2} + ... + ar^{n-1} = a \frac{1 - r^{n}}{1 - r}$$

$$\frac{A_n}{A_0} = 1 + \frac{3}{4} \frac{4}{9} \left(1 + \frac{4}{9} + \frac{4^2}{9^2} + \dots + \frac{4^{n-1}}{9^{n-1}} \right) \qquad a + ar + ar^2$$

$$\frac{A_n}{A_0} = 1 + \frac{1}{3} \frac{1 - \frac{4^n}{9^n}}{1 - \frac{4}{9}} = 1 + \frac{1}{3} \frac{9}{5} \left(1 - \frac{4^n}{9^n} \right) = \frac{5 + 3\left(1 - \frac{4^n}{9^n} \right)}{5}$$

So as *n* becomes infinite:

$$\lim_{n \to \infty} \frac{A_n}{A_0} = \lim_{n \to \infty} \left\{ \frac{5 + 3\left(1 - \frac{4^n}{9^n}\right)}{5} \right\} = \boxed{\frac{8}{5}}$$

In the limit when *n* tends to infinity, the Koch Snowflake is **self similar**, i.e. has the same structure at all magnification scales.

The Koch Snowflake has a *fractal* structure. A bit like the coastline of the UK. It's perimeter depends on the *lengths of our measuring sticks* which map out greater (but similarly shaped) detail as we zoom in

Although the perimeter *is* infinite, we can calculate the number of fixed length 'sticks' which make up the perimeter. Let stick size x for iteration n be the perimeter divided by the number of sides

$$x_{n} = P_{n}/N_{n} = \frac{P_{0}\left(\frac{4}{3}\right)^{n}}{3 \times 4^{n}} = \frac{\frac{1}{3}P_{0} \times 3^{-n}}{3 \times 4^{n}}$$

Define the Fractal Dimension $\,D$ such that the number of sticks can be defined in terms of the stick size:

$$N_n = 3 \times \left(\frac{1}{3^n}\right)^{-D}$$

$$\therefore 3 \times \left(\frac{1}{3^n}\right)^{-D} = 3 \times 4^n$$

$$\left(3^{-n}\right)^{-D} = 4^n$$

$$3^{nD} = 4^n$$

$$\therefore Dn \log 3 = n \log 4$$

$$D = \frac{\log 4}{\log 3} \approx 1.2619$$

The Koch curve has a 'fractional dimension' of about 1.2619

 $\log n$

2.5

3

Fractal dimension=1.4647 (+/-) 0.045124

1.5 log(a_{max}/a)

Count the green squares that contain the points -

This is better for areas or volumes

0.5

4.5


```
function fern
                               The Barnsley Fern is a
%Define number of iterations
                               fractal named after the
N = 1e5;
                               British mathematician
%Pixel size
psize = 0.1;
                               Michael Barnsley who first
                               described it in his book
%Start x,y coordinates
                               Fractals Everywhere. He
y = 0;
                               made it to resemble the
xx = 0;
yy = 0;
                               Black Spleenwort,
%Generate Barnsley fractal
                               Asplenium adiantum-nigrum.
for n=1:N
   r = rand;
   if r <= 0.02
```

%Stem

```
xxyy = [0,0;0,0.16] * [xx;yy];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    elseif (r>0.01) && (r<=0.85)
        %Smaller leaflets
        xxyy = [0.85, 0.04; -0.04, 0.85] * [xx;yy] + [0;1.60];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    elseif (r>0.85) && (r<=0.92)
        %Largest left-hand leaflet
        xxyy = [0.20, -0.26; 0.23, 0.22] * [xx;yy] + [0;1.60];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    else
        %Largest right hand leaflet
        xxyy = [-0.15, 0.28; 0.26, 0.24] * [xx;yy] + [0;0.44];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    end
end
%Plot fractal
figure('color', [1 1 1], 'name', 'Barnsley fern', 'renderer', 'opengl');
plot(x,y,'g.','markersize',psize);
axis equal
axis off
%End of code
print(gcf, 'barnsley fern.png', '-dpng', '-r300');
```

```
for n=1:N
  r = rand; %Generate a random number
  if ( r <= 1/3 )
     %Move half way towards red star
     x = 0.5*(xR + x);
     y = 0.5*(yR + y);
     %Plot a red dot
     plot(x,y, 'r.');
  elseif (r > 1/3) \&\& (r <=2/3)
     %Move ... blue star
     x = 0.5*(xB + x);
     y = 0.5*(yB + y);
     %Plot a blue dot
     plot(x,y, 'b.');
  else
     %Move ... green star
     x = 0.5*(xG + x);
     y = 0.5*(yG + y);
     %Plot a green dot
     plot(x,y, 'g.');
  end
end
```


Julia mail matical options Julia function z->f(z,z0) z^2 + z0 Map creation rule abs diverge Convergence radius 4 50 Map function abs Written by Andy "Dijon" French Version 1. March 2011 Define size of Argand diagram xwidth x centre 0.10491 -1.7499 0.00084002 Update! Reset to Julia defauts STOP Output PNG image properties max # of tile pixels 800 600 Output PNG image properties image width image height 800 600

Mandlebrot, complex numbers and iteration

The *Mandlebrot Set* has infinite complexity!

... But a recursive fractal geometry

Benoit Mandlebrot (1924-2010)

Mandlebrot transformations of complex numbers

$$i^{2} = -1$$

$$z = x + iy$$

$$x = \text{Re}(z)$$

$$y = \text{Im}(z)$$

$$|z| = \sqrt{x^{2} + y^{2}}$$

$$(1+i)(1+i)$$

$$= 1+2i+i^2$$

$$= 1+2i-1$$

$$= 2i$$

$$z_{n+1} = z_n^2 + z_0$$

Gaston Julia (1893-1978)

julia

julia.m plot option abs diverge

Plot a surface with height h(x,y). This is the *iteration number* when |z| exceeds a certain value e.g. 4

In this case *colours* indicate height h(x,y). It is a 'colour-map'.

julia.m plot option plot z

Plot a surface with height h(x,y)

$$x = \text{Re}(z), \quad y = \text{Im}(z)$$

$$h(x, y) = e^{-\sqrt{x^2 + y^2}}$$

Mandelbrot Deep Zoom

The light bulb

$$z_{n+1} = \log(z_n^2 + z_0)$$

7 steps to enlightenment $z_{n+1} = \tan^{-1}(z_n^2 + z_0)$

The Mandlerocket!

$$z_{n+1} = \sin^{-1}\left(z_n^2 + z_0\right)$$

Micro mandlebeast

$$z_{n+1} = \left(z_n^2 + z_0\right)^2$$

The profusion of power

$$Z_{n+1} = \left(Z_n^2 + Z_0\right)^{z_n}$$

Selection from Day of Julia. Mathematicon Exhibition, 2014 $\mu^{\text{athematicon}}$

Chaos in planetary systems

The motion of a planet in a close binary star system can be chaotic

The 'three body problem' has no closed form solution!

The small moons of **Pluto** (Nix, Hydra, Styx, and Kerberos) *rotate chaotically*

Charon

Phase locking - spontaneous order from chaos due to 'nonlinear feedback'

Further reading

THE FRACTAL GEOMETRY OF NATURE
Benoit B. Mandelbrot

www.eclecticon.info

www.eclecticon.info

Kicked rotor iteration. N = 10000, k = 0.5

Kicked rotor iteration. N = 10000, k = 1

Kicked rotor iteration. N = 10000, k = 1.5

