

Epidemiology

Dr Andrew French.
December 2023.

British Physics Olympiad

The Epidemiology of Eyam and the pedagogical power of context

1. Context: The 1665 Plague of Eyam
2. The Eyam Equations
3. Iterative solution via the Euler numeric method
4. A semi-analytic solution, and Ebola
5. A stochastic model
6. COVID-19

The 1665 Plague

of Eyam

1665. A bale of damp cloth is delivered to the Derbyshire village of Eyam... George Viccars, the tailor's assistant, dries the cloth and releases fleas infected with Yersinia Pestis bacteria - Plague

Rector William Mompesson quarantines Eyam and records Infected, Susceptible and Dead populations as time progresses

Can we develop a mathematical model to predict I,S,D vs time? What does this tell us about Epidemiology in general? \qquad e.g Flu, Ebola

Calculus methods, differential equations numerical methods, line of best fit, iteration, loops ...

Figure 3. A flea containing a blood meal infected with the Yersinia Pestis bacterium (displayed at high magnification!) [13]

Yersinia Pestis

La Peste Bubonique à Hong-Kong
(Ann. Inst. Pasteur. 8: 662-667, 1894).

Alexandre Yersin 1863-1943

Unblocked, uninfected (panel A) and blocked, infected with an Hms $+Y$. pestis strain, (panel B) X. cheopis fleas immediately after an uninfected blood meal. Bright red (fresh blood) throughout the digestive tract is indicative of unblocked fleas, while a dark-colored midgut due to digestion products from previous blood meals is diagnostic of proventricular blockage. Fresh blood in the esophagus of the blocked flea (panel B) shows that it recently attempted to feed.

Plague Pathways

Thankfully these are not real ...

Real buboes ...

Date	Time /months	S	I	D	$\ln \left(S_{0} / S\right)$	$I_{0}+S_{0}-I-S$
July 3-4 1666	0.00	235	14.5	0	0.00	0.00
July 19 1666	0.51	201	22	26.5	0.16	26.50
Aug 3-4 1666	1.02	153.5	29	67	0.43	67.00
Aug 19 1666	1.53	121	21	107.5	0.66	107.50
Sept 3-4 1666	2.04	108	8	133.5	0.78	133.50
Sept 19 1666	2.55	97	8	144.5	0.88	144.50
Oct 20 1666	3.57	83	0	166.5	1.04	166.50

Rev. William Mompesson 1639-1709

$$
\frac{d(R+D)}{d t}=\alpha I \quad \frac{d S}{d t}=-\beta S I
$$

The Eyam Equations

$S+I+D+R=$ constant

$\frac{d I}{d t}=\beta S I-\alpha I$

Mompesson Eyam data

What is the simplest model that describes the key features of Mompesson's data?

A population 'flow' from Susceptibles, to Infectives, to Dead.

D Dead
S Susceptible I Infective

Assume $R=0$. Or to generalize let D be $k(R+D)$
$I+S+D=I_{0}+S_{0} \quad$ Fixed population constraint
$\therefore \frac{d I}{d t}+\frac{d S}{d t}+\frac{d D}{d t}=0 \quad \therefore \frac{d I}{d t}=-\frac{d S}{d t}-\frac{d D}{d t}$

$$
\therefore \frac{d I}{d t}=\beta S I-\alpha I
$$

Eyam Epidemiological model

The Eyam equation for Infectives I is:

$$
\frac{d I}{d t}=(\beta S-\alpha) I
$$

$d I$ $\frac{d I}{d t}=(\beta S-\alpha) I$

It is immediately apparent that $\frac{d I}{d t}=0$ if $I=0$ or $S=\frac{\alpha}{\beta}$. By performing a further time derivative, one can see that I is maximized when $S=\frac{\alpha}{\beta}$. This is the Susceptible population at the peak of the infection.

$$
\begin{aligned}
& \frac{d^{2} I}{d t^{2}}=(\beta S-\alpha) \frac{d I}{d t}+I \beta \frac{d S}{d t} \\
& \therefore \frac{d^{2} I}{d t^{2}}=(\beta S-\alpha)^{2} I-I^{2} \beta^{2} S \\
& \left.\therefore \frac{d^{2} I}{d t^{2}}\right|_{S=\frac{\alpha}{\beta}}=\left(\beta \frac{\alpha}{\beta}-\alpha\right)^{2} I-I^{2} \beta^{2} \frac{\alpha}{\beta}=-I^{2} \beta \alpha \\
& \left.\therefore \frac{d^{2} I}{d t^{2}}\right|_{S=\frac{\alpha}{\beta}}<0
\end{aligned}
$$

$\rho=\frac{\alpha}{\beta} \underset{\substack{\text { suscesible } \\ \text { threstold }}}{\substack{\text { n }}}$

$S>\rho$ Epidenic grows
$S<\rho_{\text {Eppamancmameses }}$

Iterative solution

via the
 Euler numeric

$\frac{d S}{d t}=-\beta S I$
$\frac{d I}{d t}=\beta S I-\alpha I$
$\frac{d D}{d t}=\alpha I$

See later on how
Euler numerical iterative we worked out α solution scheme

$$
\begin{aligned}
& \alpha=2.894, \quad \beta=\frac{\alpha}{163.3} \\
& t_{0}=0, S_{0}=235, I_{0}=14.5, D_{0}=0 \\
& t_{n+1}=t_{n}+\Delta t \\
& S_{n+1}=S_{n}-\beta S_{n} I_{n} \Delta t \\
& I_{n+1}=I_{n}+\left(\beta S_{n} I_{n}-\alpha I_{n}\right) \Delta t \\
& D_{n+1}=D_{n}+\alpha I_{n} \Delta t
\end{aligned}
$$

Leonhard Euler 1707-1783
\%Euler method solver for differential equations which \%describe model of Eyam epidemic.
function [t,I,S,D] = eyam_model(dt, I0, S0, alpha, beta, tmax)
\%Initialize output vectors for t,I,S,D
$\mathrm{t}=0$: dt : tmax;
$\mathrm{N}=$ length (t) ;
S = S0*ones (1,N);
$I=I 0$ *ones $(1, N)$;
D $=$ zeros $(1, N)$;

$$
\begin{aligned}
& \alpha=2.894, \quad \beta=\frac{\alpha}{163.3} \\
& t_{0}=0, S_{0}=235, I_{0}=14.5, \quad D_{0}=0 \\
& t_{n+1}=t_{n}+\Delta t \\
& S_{n+1}=S_{n}-\beta S_{n} I_{n} \Delta t \\
& I_{n+1}=I_{n}+\left(\beta S_{n} I_{n}-\alpha I_{n}\right) \Delta t \\
& D_{n+1}=D_{n}+\alpha I_{n} \Delta t
\end{aligned}
$$

\%Loop through vectors to compute t, I, S, D.
\%using the Euler first order differential equation method
for $\mathrm{n}=2: \mathrm{N}$

$$
\begin{aligned}
& \mathrm{t}(\mathrm{n})=\mathrm{t}(\mathrm{n}-1)+\mathrm{dt} ; \\
& \mathrm{I}(\mathrm{n})=\mathrm{I}(\mathrm{n}-1)+\mathrm{dt*}(\text { beta*S}(\mathrm{n}-1) \star \mathrm{I}(\mathrm{n}-1)-\operatorname{alpha*} \mathrm{I}(\mathrm{n}-1)) ; \\
& \mathrm{S}(\mathrm{n})=\mathrm{S}(\mathrm{n}-1)-d t^{\star} \text { beta*} \mathrm{S}(\mathrm{n}-1) \star \mathrm{I}(\mathrm{n}-1) ; \\
& \mathrm{D}(\mathrm{n})=\mathrm{D}(\mathrm{n}-1)+d t^{*} \text { alpha*} \mathrm{I}(\mathrm{n}-1) ;
\end{aligned}
$$

end

$$
\begin{array}{ll}
\frac{d S}{d t}=-\beta S I, \quad \frac{d I}{d t}=\beta S I-\alpha I & \text { Eyam Equations } \\
\therefore \frac{d I}{d S}=-\frac{\beta S I-\alpha I}{\beta S I}=\frac{\alpha}{\beta} \frac{1}{S}-1 & \begin{array}{l}
\frac{d S}{d t}=-\beta S I \\
\frac{d D}{d t}=\alpha I
\end{array} \\
\therefore I-I_{0}=\int_{S_{0}}^{S}\left(\frac{\alpha}{\beta} \frac{1}{S}-1\right) d S=\left[\frac{\alpha}{\beta} \ln S-S\right]_{S_{0}}^{S} & \begin{array}{l}
\frac{d I}{d t}=\beta S I-\alpha I
\end{array} \\
I=I_{0}+\frac{\alpha}{\beta} \ln \frac{S}{S_{0}}-S+S_{0} & \begin{array}{l}
\text { Note we can integrate } \\
\text { to find } I(S) \text { analytically }
\end{array} \\
\frac{\alpha}{\beta} \ln \frac{S_{0}}{S}=\underbrace{I_{0}+S_{0}-I-S}_{y} & \begin{array}{l}
\text {... But not } I(t), S(t), D(t)
\end{array}
\end{array}
$$

alpha/beta $=163$


```
%Line of best fit function yfit = m*x, with product moment correlation
%coefficient r
function [yfit,xfit,r,m] = bestfit(x,y)
%Find any x or y values that are NaN or Inf
ignore = isnan(abs(x)) | isnan(abs(y)) | isinf(abs(x)) | isinf(abs(y));
x(ignore) = [];
y(ignore) = [];
```

\%Compute line of best fit
alpha/beta $=163$
xybar $=$ mean (x.*y) ;
xxbar $=$ mean (x.^2);
yybar $=\operatorname{mean}(y . \wedge 2)$;
$\mathrm{m}=$ xybar/xxbar;
r = xybar/(xxbar*yybar);
yfit $=m * x ;$
xfit = x;

alpha $=2.89$ for minimum SSD

Eyam model: alpha $=2.89$, beta $=0.0177, \mathrm{dt}=0.1$

Note $1 / \alpha$ is a measure of a time constant for the Eyam plague.

In days it is:

$$
\tau=\frac{1}{\alpha}=\frac{365}{12} \times \frac{1}{2.894}=10.5
$$

This could be used as a crude measure of 'fatality time' - i.e. an approximate number of days from infection till death.

We performed the Eyam analysis in Python, then in MATLAB.

You can also construct an Euler model via a spreadsheet (Excel).

Black Death Epidemiological model using the Eyam data Andy French \& John Cullerne. 24th February 2018.

Initial population NO	249.5
Initial number of succeptables SO	$\mathbf{2 3 5}$
Initial number of infectives IO	$\mathbf{1 4 . 5}$
Transmission rate constant beta	0.017759
Death rate constant alpha	$\mathbf{2 . 9}$

$\mathbf{t} / \mathbf{m o n t h s}$	\mathbf{S}	\mathbf{I}	\mathbf{D}	\mathbf{N}	$\mathrm{N}+\mathrm{D}=\mathrm{NO}$
0	235.0	14.5	0.0	249.5	249.5
0.1	228.9	16.3	4.2	245.3	249.5
0.2	222.3	18.3	8.9	240.6	249.5
0.3	215.1	20.2	14.2	235.3	249.5
0.4	207.4	22.0	20.1	229.4	249.5
0.5	199.3	23.7	26.5	223.0	249.5
0.6	190.9	25.3	33.4	216.1	249.5
0.7	182.3	26.5	40.7	208.8	249.5
0.8	173.7	27.4	48.4	201.1	249.5
0.9	165.3	27.9	56.3	193.2	249.5
1	157.1	28.0	64.4	185.1	249.5
1.1	149.3	27.7	72.5	177.0	249.5
1.2	141.9	27.0	80.6	168.9	249.5
1.3	135.1	26.0	88.4	161.1	249.5
1.4	128.9	24.7	95.9	153.6	249.5
1.5	123.3	23.2	103.1	146.4	249.5
1.6	118.2	21.5	109.8	139.7	249.5

Eyam population during 1666 plague outbreak

Euler Eyam solver implemented in MATLAB with a Graphical User Interface (GUI). Change the inputs via the sliders or edit boxes, and the curves are computed automatically.

Implementation of an Eyam model GUI by Barton Peveril student Alfie Baxter using the Game Engine development environment.

A semi-analytic

$$
\begin{aligned}
& z_{+}=-\ln (1-\eta)-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right) \\
& z_{-}=-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right) \\
& x_{\max }=-\frac{\ln (1-\eta)}{\eta}-1-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right) \\
& \rho=\frac{I_{\max }}{x_{\max }} \\
& \tau(z)=\int_{0}^{z} \frac{d z^{\prime}}{x_{\max }+1-e^{-z^{\prime}}-z^{\prime}} \\
& x=x_{\max }+1-e^{-z}-z \\
& y=e^{-z} \\
& t=\frac{\tau}{\alpha}+t_{\max }, I=\rho x S=\rho y, D=\rho\left(z-z_{-}\right) \\
& N=I_{\max }+\rho-\rho z_{-} \\
& R_{0}=\frac{N}{\rho}
\end{aligned}
$$

solution,

and Ebola

Eyam model fit
$\mathrm{N}=275, \mathrm{I}_{\max }=26.76, \mathrm{R}_{0}=1.68, \mathrm{t}_{\max }=0.9$
$\alpha=2.987, \rho=163.3, \eta=0.6851, S_{0}=235, I_{0}=14.48$

$$
z_{+}=-\ln (1-\eta)-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right)
$$

$$
z_{-}=-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right)
$$

$$
x_{\max }=-\frac{\ln (1-\eta)}{\eta}-1-\ln \left(-\frac{\ln (1-\eta)}{\eta}\right)
$$

$$
\rho=\frac{I_{\max }}{x_{\max }}
$$

$$
\tau(z)=\int_{0}^{z} \frac{d z^{\prime}}{x_{\max }+1-e^{-z^{\prime}}-z^{\prime}}
$$

$$
x=x_{\max }+1-e^{-z}-z
$$

$$
y=e^{-z}
$$

$$
t=\frac{\tau}{\alpha}+t_{\max }, I=\rho x S=\rho y, D=\rho\left(z-z_{-}\right)
$$

$$
N=I_{\max }+\rho-\rho z_{-}
$$

$$
R_{0}=\frac{N}{\rho}
$$

Define $\eta=\frac{z_{+}-z_{-}}{N / \rho}$, which must be in the range $[0,1]$.

Exam model fit
$\mathrm{N}=275, \mathrm{I}_{\text {max }}=26.76, \mathrm{R}_{0}=1.68, \mathrm{t}_{\text {max }}=0.9$
$\alpha=2.987, \rho=163.3, \eta=0.6851, S_{0}=235, I_{0}=14.48$

A much better fit if you use I, S, D data as well in the SSD computation and use $t_{\max }$ and $I_{\max }$ not eta and alpha as the SSD surface variables

In this case a more clearly defined minimum of the SSD surface

Liberia Jul-Oct 2014

World Health
Organization

EBOLA RESPONSE ROADMAP SITUATION REPORT

A

 stochastic

model

$\log (P(D, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

Stochastic Eyam model

Obviously the changes to S, I, D are discrete, not continuous values. Also, one expects the spread of infection to be a random process. Returning to Brauer's model, we can use the expected values of S, I and D changes within time interval Δt to be the mean (and variance) of a Poisson distribution. If we can sample this distribution, then between each time step we should have a representative discrete change of S, I, D that incorporates both the model and the idea of randomness.

$$
\begin{aligned}
& \Delta S=-x, \quad \Delta I_{1}=x \\
& x \sim \operatorname{Po}(\beta S I \Delta t) \\
& \Delta D=y \\
& y \sim \operatorname{Po}(\alpha I \Delta t) \\
& \Delta I_{2}=-y \quad \therefore \Delta I=\Delta I_{1}+\Delta I_{2}
\end{aligned}
$$

Poisson distribution

The random variable x is the number occurrences (e.g. goals, telephone calls) in a set interval of time, given a mean rate of occurrence λ.

Normalized histogram of 100000 samples of $x \sim \operatorname{Po}(7.4)$
$x \sim \operatorname{Po}(\lambda)$
$p(x, \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}$
$M_{x}(t)=e^{\lambda\left(e^{t}-1\right)}$
$\mu=\lambda$
$\sigma^{2}=\lambda$

\%Poisson distribution probabilities (x is an array of integers >=0)
function $P=$ poisson($x, l a m b d a)$
$\mathrm{P}=\left(\mathrm{lambda}.{ }^{\wedge} \mathrm{x}\right) .{ }^{\star} \exp (-\mathrm{lambda}) . /$ factorial(x);

Generating random integers from discrete probability distributions

The fact that the sum of the probabilities in a discrete distribution must sum to unity can be used to generate random integers, assuming it is possible to generate a random number within the range $[0,1]$.

Use the probabilities to form the edges of a series of 'boxes' which span the interval $[0,1]$. For every random fraction $\sim \mathrm{U}(0,1)$, determine the box number which encloses the fraction. This box number is the random variable.

so in this case the random number $x=4$ is selected.
\%Stochastic model of Eyam SID model
function [t,I,S,D] = eyam_stochastic_model(dt, I0, S0, alpha, beta, tmax)
\%Initialize output vectors for $\mathrm{t}, \mathrm{I}, \mathrm{S}, \mathrm{D}$
$\mathrm{t}=0$: dt : tmax;
$\mathrm{N}=$ length (t);
S = S0*ones (1,N);
I = I0*ones ($1, \mathrm{~N}$);
D $=$ zeros $(1, \mathrm{~N})$;
\%Loop through vectors to compute t, I, S, D.
\%using a Poisson probabilistic rule for S,I,D changes during timestep dt
for $\mathrm{n}=2$:N
$t(n)=t(n-1)+d t ;$
\%Poisson probabalistic rule for transition from S to I
lambda $=d t * \operatorname{beta}^{*} \mathrm{~S}(\mathrm{n}-1)$ *I($\left.\mathrm{n}-1\right)$;
dS = -poisson_samples(lambda,1);
dI = -dS;
\%Update I and S
$I(\mathrm{n})=\mathrm{I}(\mathrm{n}-1)+\mathrm{dI}$;
$S(n)=S(n-1)+d S ;$
\%Probabilistic rule for transition from I to D populations
lambda = dt*alpha*I(n);
dD = poisson_samples(lambda, 1);
dI = -dD;
\%Update I and D (note I(n) is to be modified)
I(n) = I(n) + dI;
$D(n)=D(n-1)+d D ;$
end

Eyam model: $\alpha=2.99, \beta=0.0183, \Delta \mathrm{t}=0.005$

Eyam model: $\alpha=2.99, \beta=0.0183, \Delta t=0.005$

Eyam model: alpha $=2.89$, beta $=0.0177, \mathrm{dt}=0.1$

Eyam model: alpha $=2.98$, beta $=0.0182, \mathrm{dt}=0.01$

Eyam model: alpha $=2.94$, beta $=0.018, \mathrm{dt}=0.05$

Eyam model: alpha $=2.99$, beta $=0.0183, \mathrm{dt}=0.005$

$\log (P(D, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$
$\log (P(I, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

Probability map, computed from 200 iterations. Black circles are Mompesson data and black dashed lines correspond to the Euler model.
$\log (P(D, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

$\log (P(1, t)): \alpha=2.99, \beta=0.0183, \Delta t=0.005$

Probability map, computed from 50,000 iterations. Black circles are Mompesson data and black dashed lines correspond to the Euler model.

Eyam model fit for

Wuhan (China) COVID-19 outbreak Jan 22 - Mar 162020
From Oxford World in data

EYAM EQUATIONS
Susceptible, Infective
Removed (either Recovered or Dead) Assumes S to I to $R+D$ flow (one way) and a fixed total at-risk population N

Eyam model fit

Model predicts a Basic Reproduction number R_{0} of 3.00
SEMI ANALYTIC EYAM MODEL. JPC/AF 2019

\[

\]

Time constant (from Wuhan data):
Assume this is a function of basic human biology and therefore an approximate constant, rather than something that might vary due to the proximity and social mixing of human populations.
$T=1 / \alpha$
i.e. not like β
$T=\frac{1}{3.63}$ months
$T=\frac{365122}{3.263}$ days
$T=9.32$ days
i.e. a measure of the characteristic time from infection till recovery (or death). Assume Recovered population can no longer spread COVID-19, and also have immunity so cannot become Susceptibles again.

The EYAM MODEL predicts the S and R curves from the Infectives vs time data

$$
\begin{gathered}
\text { Eyam model fit } \\
N=192, I_{\text {max }}=57.65, R_{0}=3, t_{\text {max }}=0.849
\end{gathered}
$$

UK COVID-19 curve of cumulative deaths (from Oxford World in data)

https://github.com/owid/covid-19-data/tree/master/public/data Hasell, J., Mathieu, E., Beltekian, D. et al. A cross-country database of COVID-19 testing. Sci Data 7, 345 (2020).

Compare 'first wave' COVID-19 deaths

Scale by population

To make sense of the COVID-19 epidemic, and for the epidemiology to match the narrative of "infection peaks" and "flattening the curve" (e.g. via a lockdown and increased social distancing and other interventions), we ought to present the time variation of Infective population vs time. Other graphs are potentially confusing. The graph of positive tests vs time (per day) is particularly problematic - since a rise might simply result from greater testing capacity rather than a rise in infective population.*

However, since testing is not comprehensive, i.e. the entire population is not tested regularly, which was certainly true at the start of the "first wave", we can only estimate I vs t.

The Eyam equations give us a means of achieving this, but only if we know the time constant T and hence α, and also the mortality fraction k. I shall assume both are biological in nature and therefore constant. Note the constancy of k is probably a poor assumption, since this will certainly vary among the population. Death from COVID-19 for a young healthy person is very likely to be much less probable than for someone elderly and frail, with possible multiple preexisting health conditions. However, taking a crude average, let us assume $k=0.01$. This is an educated guess, but informed by anecdotal evidence from NHS colleagues. Note the t vs I curve will look the same though, (just scaled slightly differently) as long as k is deemed to be a constant with time.
*The only other graph I think is useful to present is new hospital admissions per day, or perhaps even better, fraction of maximum intensive care capacity per day. This would give a sobering sense of the true human impact of COVID at the sharp end of things. Note to compare different countries, one should plot Infective population divided by total population, i.e. 'per capita.'

$$
\begin{aligned}
& d(R+D) \\
& \text { Third "Eyam equation" } \\
& D=k(R+D) \\
& \therefore R+D=\frac{D}{k} \\
& \therefore D(1-k)=k R \\
& \therefore R=\frac{1-k}{k} D \\
& \text { Recovered population, assuming } \\
& \text { a fixed mortality fraction. } \\
& \frac{d D}{d t}=k \alpha I \quad \therefore I=\frac{1}{k \alpha} \frac{d D}{d t} \\
& I_{n}=\frac{1}{k \alpha} \frac{d D}{d t} \approx \frac{1}{k \alpha} \frac{D_{n+1}-D_{n-1}}{t_{n+1}-t_{n}} \\
& \text { If we assume the cumulative deaths } \\
& \text { due to COVID-19 are accurate, then } \\
& \text { numerically differentiating this curve, } \\
& \text { and dividing by } k \alpha \text {, should yield an estimate } \\
& \text { for the Infective I population. } \\
& \text { The cumulative deaths vs time is probably } \\
& \text { the most accurate statistic in the World in Data resource, } \\
& \text { since one assumes all UK deaths must have a death } \\
& \text { certificate and therefore a recorded cause of death (which } \\
& \text { if due to COVID-19, is represented in the data set). }
\end{aligned}
$$

Cumulative UK CV-19 deaths /thousands 05/03/2020-15/12/2021

Find the gradient and scale by:

$$
k \alpha=0.01 \times \frac{1}{9.32} \text { days }^{-1}
$$

Note mortality fraction k and disease
time constant α may vary considerably within a population and indeed post-vaccination - so treat with caution!

Note: as per the 'daily death rate' graphs in World in Data, we also apply a seven-day moving average to smooth the numerical derivative.

One can estimate the number of CV-19 infectives from the cumulative deaths:

$$
I_{n}=\frac{1}{k \alpha} \frac{d D}{d t} \approx \frac{1}{k \alpha} \frac{D_{n+1}-D_{n-1}}{t_{n+1}-t_{n-1}}
$$

Estimated UK COVID-19 infectives 05/03/2020-15/12/2021

Eyam COVID-19 analysis for UK. $\alpha=1.7088, k=0.014$

The Basic Reproduction number R_{0} has been extensively quoted by UK Government during the COVID-19 pandemic - but what does it mean?

Well according to Pandit, it can have several meanings!
Mathematical notes on (various) meanings of Basic Reproduction number \mathbf{R}_{0} Pandit, J.J., "Managing the RO of COVID-19: mathematics fights back." Anaesthesia 2020. doi:10.1111/anae. 15151

During the pandemic, $R_{0}>1$ seemed to imply "the infectives rising" and $R_{0}<1$ implying "infectives falling". Although annoyingly rarely defined rigorously, this seems to imply the following definition: the fractional change in infective population (per day), plus 1.

Basic reproduction number $R_{0}=N / \rho$

R_{0} can be thought of as the number of susceptibles converted to infectives, for every one infective, per unit of time $\frac{1}{\alpha}$. You can see this from the 'Eulerization' of the Eyam equation $d S / d t=-\beta S I$:

$$
\begin{gathered}
\Delta S \approx-\beta S I \Delta t \\
\therefore \Delta S \approx-\beta S \times 1 \times \frac{1}{\alpha}=-\frac{S}{\rho} \approx-\frac{N}{\rho}=-R_{0}
\end{gathered}
$$

So for $R_{0}=1.85$, this means Ebola will cause slightly less than two susceptibles to becomes infected for every infective, per unit time $\frac{1}{\alpha}$, which for our Ebola analysis is $\frac{1}{2.84}=0.35$ months or ≈ 10.7 days.
R_{0} is also directly related to a very important quantity, the minimum fraction $F_{\min }$ of the population to be immunized in order for 'herd immunity' (essentially a lack of susceptibles to catalyse an epidemic) to prevent the liklihood of a major epidemic.

$$
F_{\min }=P(\text { epidemic spreads })=1-\frac{1}{R_{0}}
$$

Herd immunity as partial resistance, reflected in reductions in frequency of disease due to reductions in numbers of source cases and of susceptibles.

$$
F_{\min }=P(\text { epidemic spreads })=1-\frac{1}{R_{0}}
$$

Ebola: $\quad F_{\min }=1-\frac{1}{1.85}=45.9 \%$
Plague: $\quad F_{\min }=1-\frac{1}{1.68}=40.5 \%$

Measles: $\quad F_{\min }=1-\frac{1}{18}=94.4 \%$
COVID-19?: $\quad F_{\text {min }}=1-\frac{1}{3.00}=66.7 \%$
Using Wuhan
vaccines.gov
A federal government Website managed by the U.S.
Department of Health and Human Services

