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“How best to motivate students to expand their
mathematical toolbox, and perhaps more importantly,
gain experience of applying these ideas in the
construction of quantitative models? A narrow focus
on memorizing a long list of abstract procedures
sufficient to pass an examination is a poor mechanism
for producing the original thinkers of the future. It is
also particularly harsh on those who have to struggle
more than their peers to embed syllabus content in
their minds. In this paper we celebrate the pedagogical
power of context and storytelling, with the
introduction of calculus ideas in an epidemiological
scenario as an example.”

“The Pedagogical Power of Context: Iterative Calculus Methods and the Epidemiology of Eyam.”
(French et al 2018 J. Phys.Educ.)



The Epidemiology of Eyam and
the pedagogical power of context .=

1.
2.
3.

1

Context: The 1665 Plague of Eyam
The Eyam Equations

Iterative solution via the Euler
numeric method

A semi-analytic solution, and Ebola
A stochastic model

COVID-19
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1665. A bale of damp cloth is delivered to the
Derbyshire village of Eyam... George Viccars, the tailor's
assistant, dries the cloth and releases fleas infected
with Yersinia Pestis bacteria — Plague

Rector William Mompesson quarantines Eyam and
records Infected, Susceptible and Dead populations

as time progresses

l

Eyam model: alpha = 2.99, beta = 0.0183, dt = 0.005
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Can we develop a mathematical model to
predict I,S,D vs time? What does this tell us

about Epidemiology in general? —

e.g Flu, Ebola

J

\Calculus methods, differential equations

numerical methods, line of best fit, iteration, loops ...



Yersinia
Pestis

St Lawrence’s Churchyard in Eyam
https://en.wikipedia.org/wiki/Eyam

‘ A flea containing a blood meal infected

. with Yersinia Pestis
https://en.wikipedia.org/wiki/Yersinia pestis
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Figure 3. A flea containing a blood meal infected with the Yersinia

Pestis bacterum (displayed at high magnification!) [13]

Yersinia Pestis

La Peste Bubonique a Hong-Kong
(Ann. Inst. Pasteur. 8: 662-667, 1894). o=
Alexandre Yersin 1863 - 1943




I

Unblocked, uninfected (panel A) and blocked, infected with an Hms+ Y. pestis strain,
(panel B) X. cheopis fleas immediately after an uninfected blood meal. Bright red (fresh
blood) throughout the digestive tract is indicative of unblocked fleas, while a dark-colored
midgut due to digestion products from previous blood meals is diagnostic of proven-
tricular blockage. Fresh blood in the esophagus of the blocked flea (panel B) shows that
It recently attempted to feed.



Plague Pathways




Buboes. A swollen
inflamed lymph node
in the armpit or groin.




Thankfully these are not real ...




Real buboes ...




Time
Date Imonths S I D In(S,/S) | 1,+S,—1-S
July 3-4 1666 0.00 235 14.5 0 0.00 0.00
July 19 1666 0.51 201 22 26.5 0.16 26.50
Aug 3-4 1666 1.02 153.5 29 67 0.43 67.00
Aug 19 1666 1.53 121 21 107.5 0.66 107.50
Sept 3-4 1666, 2.04 108 38 133.5 0.78 133.50
Sept 19 1666 2.55 97 8 144.5 0.88 144 .50
Oct 20 1666 3.57 83 0 166.5 1.04 166.50
Mompesson Eyam data
250 ‘ . ‘ —
S
200} — Dl
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1639-1709 0 1 2 5 4
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d(R+D)
dt

ol

dS

dt

BSI

The Eyam
Equations

S+ 1+ D+ R =constant

dl

— = [BS] —al

dt




Eyam population

— 1

Susceptibles Infectives | Recovered |

Mompesson Eyam data

250

200}

150+

100! What is the simplest model that describes the
key features of Mompesson’s data?

50} .
A population ‘flow’ from Susceptibles, to
0 ‘ ‘ Infectives, to Dead.
0 1 2 3 4

t /months



dD dsS D Dead
— =l — IBSI S Susceptible

dt at ,
| Infective

Assume R = 0. Or to generalize let D be k(R + D)
I —I— S —|— D — I —|— S Fixed population constraint

di ds dd_, d_ dS dD

"dt  dt  dt Tdt - dt dt
dl

2~ BSl —al

i P e

Eyam Epidemiological model



The Eyam equation for Infectives / is:

dl (,85 a)

. o o dl .
[t 1s immediately apparent that i 0 if /=0 or

S =< . By performing a further time derivative, one
can see that / 1s maximized when S =% . This 1s the

Susceptible population at the peak of the infection.

d*1 dl as
— :S_ _+I
dﬁ (5 )dr ’8

= (S - )21—12,325

94

p — —  Susceptible
ﬂ threshold

S > IO Epidemic grows
S < IO Epidemic shrinks




Iterative solution
via the
Euler numeric

¥ method




dS See later on how

— _IBSI Euler numerical iterative - e Werked out &
solution scheme

dI —
— =Sl —al | «=2894, p=—2_

dt 1633

dD I t0=0, 802235, IO:14-51 DO:O

— = t :t n At

dt n+1 n

Sn+1 = Sn _ﬂSnInAt
lhia =1, +(IBSnIn _aln)At
D =D, +al At

Leonrd Euler
1707-1783
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describe model of Evyvam epidemic.

Euler method solver for differential equations which

function [t,I,S5,D] = eyam model( dt, IO, 50, alpha, beta, tmax )

$Initialize output wvectors for t,I,5,D
= 0 : dt : tmax;

= length(t):

S0*ones (1,N) :

= I0*ones(1,N):

= zeros (1,N);

0 H = ot
I

%Loop through wvectors to compute t, I,

a
_2894 p=_9%_
¢ P=1T633

t,=0, S, =235, 1,=14.5, D, =0
t =t +At

S,.,=S, —S,1 At

.. =1, +(BS,1,—al,)At

D, =D, +al At

s, D.

Zusing the Euler first order differential equation method

for n=2:N
t(n) = t(n-1) + dt:
I(n) = I(n-1) + dt*( beta*S(n-1)*I(n-1) - alpha*I(n-1) ):
S(n) = S(n-1) - dt*beta*S(n-1)*I(n-1):
D(n) = D(n-1) + dt*alpha*I(n-1):
end

MATLAB code for Euler Eyam model



dS dl Eyam Equations
—=—-p3l, — =5l -«al
dt P dt P ?j_?:_lgm
°d_l—_ﬂSI_al—ﬁi_1 dD |
- dS ASI 7S dt

S 1 S %:,BSI—QI
=1 szO(%g—lde =[%InS—S]SO

| = IO+%Ini—S+SO

Note we can integrate
to find I(S) analytically

... But not I(t), S(t), D(t)



IO+SO-I-S

1507

507

alpha/beta = 163

— Linéar fit
+ Data

|0+so—|—5=%|n(%j

Performing linear regression
using Mompesson'’s data
allows us to determine

o
p=—~=~163
154

0.2

04 06 08 :
In(S,/S)




%tLine of best fit function yfit = m*x, with product moment correlation
scoefficient r
function [yfit,xfit,r,m] = bestfit(x,vy)

%Find any % or y values that are NaN or Inf

ignore = isnan(abs(x)) | isnan(abs(y)) | isinf(abs(x)) | isinf (abs(y)):
% (ignore) = [];
y (ignore) = []7

ZCompute line of best fit

alpha/beta = 163

xybar = mean (x.*y): —Linéar fit | l
xxbar = mean(x.”2 ): 1501 + Data
yybar = mean(y."2 ):
m = xybar/xxbar; _+
r = xybar/( xxbar*yybar );
yfit = m*x; — 100
®xfit = x; IO
(0))]
+
_o
50+
0 ' ' | '

0 02 04 06 08 1
In(S,/S)
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alpha = 2.89 for minimum SSD

Run model in a loop for a range of alpha values.
Find the alpha that correspond to the minimum
‘sum of squared differences’ between model
and Mompesson data values. (Interpolate
‘model at Mom-p-esson -ti-m-e-s).- _____________ _______________________




Eyam model: alpha = 2.89, beta = 0.0177, dt = 0.1

Mompesson data (+) underlaid with |
Euler model, computed with a time interval S
200_ .- of0.1months. o o D_
C
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Note 1/« is a measure of a time constant for the Eyam plague.

In days it is:

SR _
T ===32x52-=10.5

94

This could be used as a crude measure of ‘fatality
time’ — i.e. an approximate number of days from
infection till death.



We performed the Eyam analysis in Python, then in MATLAB.
You can also construct an Euler model via a spreadsheet (Excel).

WO (00|~ | B W N

A B C D F G
Black Death Epidemiological model using the Eyam data
Andy French & John Cullerne. 24th February 2018.

Initial population NO 249.5

Initial number of succeptables S0 235

Initial number of infectives 10 14.5
Transmission rate constant beta 0.017759

Death rate constant alpha 2.9

timestep dt /months

t /months N N+D = NO
0 249.5 249.5
0.1 245.3 249.5
0.2 240.6 249.5
0.3 235.3 249.5
0.4 229.4 249.5
0.5 223.0 249.5
0.6 216.1 249.5
0.7 208.8 249.5
0.8 201.1 249.5
0.9 193.2 249.5
1 185.1 249.5
1.1 177.0 249.5
1.2 168.9 249.5
1.3 161.1 249.5
1.4 153.6 249.5
1.5 146.4 249.5
1.6 139.7 249.5

Eyam population

250.0

200.0

._.
n
ot
=

100.0

0.0

Eyam population during 1666 plague outbreak

—_—Ss —I

0.5 1

—D

1.5

+ Sdata + Idata

_|_

2

time /months

+ Ddata




Euler Eyam solver implemented in MATLAB with a Graphical User Interface (GUI).
Change the inputs via the sliders or edit boxes, and the curves are computed automatically.

<Student Version= ; eyam E [=] @
Eyam Euler model: o = 2.99, g = 0.0183, At = 0.005 10 S0 s s
| : : : I 14.5 235 2.987 163.3
; i s S : : : :
200 f-o- - S R T e Rl %4 »
[ H H .
o : : i
@ 150 [ s AR et T .
= s s |
o 1
(@] .
Q |
% 0 T L L .
) ;
L :
BO f-oreeeeee ------------------- -
0 i I 1 |
0 1 2 3 4 - - - -
t /months
Imax = 26.76, timax = 0.9 ‘ '
\ Overlay Mompesson data Smin = 86.72
Dmax = 162.8 Timestep /months 0.005
‘ Save PNG ‘ Max time /months 4 EYAM MODEL. A French Jun 2019.




Implementation of an Eyam model GUI by Barton Peveril student Alfie Baxter using the

Game Engine development environment.

m EyamMuodelPlotter

M Infectious
B Dead
M Susceptible

Alpha:

=
o
e
o
=
o
o
o
b
o
o
Z

Alpha/Beta:

Max Time:

Max Infectious: 26.868844
Min Susceptibles: 86.397121
Max Dead: 163.102879




A semi-analytic

=] '
sQlUtlﬂn)
=" and Ebola




S,1,D population

250

200

RN
o)
-

RN
-
o

Eyam model fit

N=275, | =26.76, R =1.68,t =0.9
max 0 max
a=2.987, p=163.3, n=0.6851, S =235, | =14.48

x~x_ _sech’

max

z~./2x _ tanh

‘max

y=e-

(Vxa?) s

+ max ——
ix T o D_
2 ““max

z ~+.[2x

<« K&K approximation

T \
t:_+tnmx9]:px9 ‘S:py
(94

D = p(z + f2xnm )

N:]lllﬂX—I_p_p
R =X
yo,

\4 2 xlllﬂX

"""

Dashed lines are K&K
approximation

[1] KERMACK, W.O. AND MCKENDRICK, A.G. (1927) A
contribution to the mathematical theory of epidemics.
Proceedings of the Royal Society of London 115(A), pp700—

1 2 3 4
t /months
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N=2542, |
max

Eyam model fit

=3233,R =1.85,t
0=2.84, p=1373, 1=0.751, S =2467, | =

=1.6
34.06

. Note symmetry
- of K&K, and skew
< of actual curve

........ —1

2 v
t:_—l_tmzl:{?]:p'x? *S:/Oy
(94

D= p(z +42x )
N=1__+p—p. ,&23«7lnax

sech ( X z')

2x,.. tanh(af X, z')

y=e’

0 1

2 3
t /months

K&K approximation



z, =—In(1-7)-In In{l-77) 250

}7 200

In(1- s 1

z =—In| - n(1-n) 8 0
n

<Student Version> : eyam

-1 0 1 2 3 4 25 0.5 2 0.05

Qverlay S and D Il as I?
T —— T
‘ Import 1,S,D vs t data Optimize alpha eta | RO =1.6842 rho = 163.28

saePNG | SSD = 39.075 N =275 beta = 0.018294

b @ [

Eyam model fit Iph t
N=275.1  =26.76,R.=168,t _=0.9 max - tmax - akhe st
max 0 max
0=2.987, p=163.3, 1=0.6851, 8,=235, | =14.48 3 15 4 0.95
—
.................................................................. S H
1—b

t /months
Uses.D? []30? 26.76 0.9 2.987 0.6851

p — max
X pax e |1 Maxtme | 4 EYAM MODEL. A French Aug 2019,
\ Eyam model fit
z dz N=275,1 =26.76,R =1.68,t =0.9
7(2) :I = =2.987, p=163.3, 1=0.6851, S, =235, | =14.48
Oxlllax+1_e-_z' o< L 2 7Y '~o o
250
— ' =% —"
x=x_ +l-e -z s
_ = c 200+ —DJ|
y=¢ o
©
T . = 150
t:_+tllla}i’[:px ‘S:Py,D:P(Z—Z_) 8‘
(04 o
o) 100+
N:[max+p_pz— (7)-
N ENL
RO - Define |7 22 hich must be in the range [0,1] :
= W 151 1. ‘ P
£ Nip 0 1 2 3 4

t /months




B <Student Version= : eyam
20 | neseq ETOWEML. . o me wa wm o« | Run model over a range of
u=3895,p=2336,n=06184,80=3226,%=1318 35 1.5 4 095
250 ==—=1 alpha and eta parameters
200 and determine sum of
§ 150 squared differences
& 100 between model and data.
? 50
0 - v . .| Thesurface minimum is the
t /months . .
S optimum parameter pair.
e | 50 =2083% NESSHMM GEEEOOSTANN | booteasooies bestatias
mons | -1 s seale L EYAM MODEL. A French Aug 2019

1500

1000<.-~

In this case the SSD is
only computed using /(t).

500+

This is not a good fit to the
Mompesson S, D data.

eta



Bl -Student Version> : eyam = ol <"
Eyam model fit | t loh t
250 N=270,| _=26.76,R =1.69,t _=0.9 max max apha =
0=2.737, p=159.5, 1=0.6895, S ,=226.3, | =15.73 3 15 4 0.95
250 R A = =
200
|
S
T 150
30
o
QO
o
A 100
a..
50
. .
-1 25 0.5 2 0.5
t /months
0 [7] Overlay S and D as well as [2  [¥|Use S.0? [¥]3D? 26.76 0.8 2.7368 0.68947
Optimize Imax tmax Euler
oo | SSD = 41653 N=20  beta-o0mie3
e -1 IFmssca»e Maxtme | 4 EYAM MODEL. A.French Aug 2019.

A much better fit if you use ,S,D data as well in the SSD computation
anduset, _ and|__ not eta and alpha as the SSD surface variables



Bl <Student Version> : eyam
Eyam model fit I 4 Inh "
250 N=270,1 _=26.76, R =1.69,t _=0.9 mex max apha -
35 1.5 4 0.95
250 - - = =
200
c
S
T 150
=
o
(]
(=%
o 100
a..
50
. . . . :
-1 25 05 2 05
t /months
srlay S and D as well sz 17 [¥1Use .07 .3m 26.76 0.9 27368 0.68947
et e Optimize Imax,tmax Euler
sesrto | $D = 41653 N=20  bem-ooi7ies
e =1 Maxtime | 4 EYAM MODEL. A.French Aug 2019.

In this case a more clearly
defined minimum of the
SSD surface

800~
600.

400

SSD surface for n=0.6851, «=2.987
Best Imax=26.58, Best tmax=0.868

0.5 1
tmax
SSD surface for n=0.6851, «=2.987
Best Imax=26.58, Best tmax=0.868

2000

800

1500

1400

800

700

600

1500

400

300



Nucleoprotein (N)

X § Transcription
VIRION e factor VP30

5%

Polymerase \
cofactor VP3S\\__-. X

i

Polymerase (L)

Matrix VP40

Ebola virus

https://en.wikipedia.org/wiki/Zaire ebolavirus



https://en.wikipedia.org/wiki/Zaire_ebolavirus

Total Cases
() 1-5
@ 6-20
@ 21-100
@ 101-500
@ 501 -4000

Number of Cases
(Past 21 Days)

1-5

O 51-250
Q 251-500

NEWLY INFECTED - New cases in
previous 7 days (in previously
uninfected areas)

Data Current As of:
LR: 2014-25-10
SL: 2014-26-10
Gl: 2014-26-10
ML: 2014-27-10

Publication 2014-10-29 17:16

RIVERCESS

MARYLAN

XN World Health EBOLA RESPONSE ROADMAP
¢
I

———

% Organization SITUATION REPORT

29 OCTOBER 2014



Number of cases

Liberia

i
500 '
\, World Health EBOLA RESPONSE ROADMAP i
¥ 8 Organization SITUATION REPORT |
29 OCTOBER 2014 :
|
400 :
|
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I
|
300 :
I
I
Can use the WHO Situation Report i
to plot infectives vs time |
200 :
|
|
|
|
I
|
100 |
I
|
|
I
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Liberia Jul-Oct 2014

@ World Health EBOLA RESPONSE ROADMAP
)
I\

T T T T W H H
/ 14
;;4\\ n | ¢ Organization SITUATION REPORT
300¢ ;’/ \ - ‘\\ . 29 OCTOBER 2014
/f AN
S .‘f Liberia
-— 250 B f/" N - 500
‘—U f: .\\
3 / \
Q_ 400 :
& 200 /f \] |
—~ / 37 g 300 g
= / 3 i Wcormes
] 1 50 | // 1 ( g 2 Probable
> i m |
2 100} v : || ‘
j«/"‘é . L _llllllll i-..
50 r p // 1 A A A A AN R

0 05 1 15 2 2.5

time (t) /months Eyam model fit
N=2542,1 =323.3,R =185t =16
‘l' max 0 max

0=2.84, p=1373, n=0.751, So=2467, I0=34.06

B <Student Versions : eyam E’@
Eyam model fit | 4 Iph " T T T T T
2800 N=2542,1 =3233,R =185t =16 max - mex o @pna b El
a=2.84, p=1373, 1=0.751, 5 =2467, 1 =34.06 498 1.73 4 0.85 300
: = — > C
.y p— ﬁ o
2500 o H 9O
: —3 — & 250
D ©
b= 2000 5
3 \ il o
2 1600 8200
(=) -
= o
2 1000 \z
= 7 ~~
1] 7 —
=150
500 ,;’ (0]
& m = | —— L= Z
0 — + 100
0 1 2 3 4 | 166 0.575 2 0.05 (&]
t /months q(];)
0 ey SandDaswellasty  [JUsesD? []ap? 323263 1.6049 284 0.751
FlowmeySund0 s w1 mize ok | [ | i - 50
Default model —
Import 1,8, vs t data | | opimize sshacts | ROISHCONIIE tho=13733 .
S50 = 0424 Nez2  bela-ooooest o
Imonme | 0.5 Maxtime 4 EYAM MODEL. A French Aug 2019.

t /months



] <Student Version> : eyam
Eyam model fit I 4 iph "
2800  N=2542,| _=323.3,R =185t =16 mex mex alpha e
a=2.84, p=1373, n=0.751, SO=2467, I0=34.06 498 1.73 4 0.95
2500 “-"-';‘-‘-' oz ------------------ —
| | | |—s
I . i 1 :
o 15004 e N o
Q H H | |
o : : . 3
2 1000
w -
500
0 . - . .
4 166 0.575 2 0.05
t /months
7] Overlay S and D as well as 17 Use 5.0? Dsm 323.263  1.6049 284 0.751
Optimize Imax tmax Euler
M I Import 1,S,D vs t data ] Optimize alpha.ta | _ _
SSD = 9424 SSD surface for n=0.751, a=2.84
. Best Imax=323.3, Best tmax=1.6
Wniee 05 Maxime 4 EYAM MODEL . A French Aug 2019.

Optimizing parameters
by finding the SSD surface

minimum

450

400

350

Imax

300

250

200

0.6 0.8 1 1.2 1.4 1.6
tmax



log( P(S,t) ) : a=2.99, =0.0183, At=0.005

Susceptibles (S)

0.16;

0.14

0.12;

0.

-

o
o
®

Probability

o
(=)
)

0.0

B

0.02
0

1 2 3 .

t /months

A stochas
model

Normalized histogram of 100000 samples of x ~ Po(7.4)

5 10 16 20
X

Infectives (1)

250

200

log( P(L,t) ) : «=2.99, p=0.0183, At=0.005

t /months

log( P(D,t) ) : 0=2.99, 3=0.0183, At=0.005

t /months



Stochastic Eyam model

Obviously the changes to S, |, D are discrete, not continuous values. Also,
one expects the spread of infection to be a random process. Returning to
Brauer’s model, we can use the expected values of S,| and D changes within
time interval At to be the mean (and variance ) of a Poisson distribution. If
we can sample this distribution, then between each time step we should
have a representative discrete change of S,1,D that incorporates both the
model and the idea of randomness.

AS =-X, Al =X

X ~ Po( SSIAt)

AD =y

y ~ Po(alAt)

Al,=-y Al =Al + Al




Poisson distribution

The random variable x is the number occurrences (e.g. goals,
telephone calls ....) in a set interval of time, given a mean rate
of occurrence A.

Normalized histogram of 100000 samples of x ~ Po(7.4)

x~Po() 0.16
Ae” 0.14
p(x,A)=—of
(x-) 0.12
Ale -1
p=A 3
® 0.08
o’ =1 [
% 0.06-
0.04-
0.02+
0 :
0 5 10 15 20
%Polsson distribution probabilities ( % is an array of integers >=0 )

function P = poisson(x, lambda)
P = (lambda.”x).*exp(-lambda)./factorial (x):



Generating random integers from discrete probability distributions

The fact that the sum of the probabilities in a discrete distribution must sum to unity
can be used to generate random integers, assuming it is possible to generate

a random number within the range [0,1].

Use the probabilities to form the edges of a series of ‘boxes’ which span the interval
[0,1]. For every random fraction ~ U(0, 1), determine the box number which encloses
the fraction. This box number is the random variable.

Po

Ps Ps

Example: consider a discrete distribution of eight possible
probabilities, for the random integers 0...7 as show above.
The widths of the boxes correspond to the probabilities.

A random number 7 ~ U(0,1) is chosen. *
This happens to be in the range:

3 4
2P ET<p,
i=0 i=0

Cumulative
distribution function

so in this case the random number x = 4 is selected.

| Note this is in essence the
| same process as random

| number generation from

: continuous distributions.

| i.e. the output of the

| inverse cumulative

| distribution function with
I input being a random

I

number from U(0,1)



%5tochastic model of Eyam SID model
[l function [t,I,S,D] = eyam stochastic model( dt, IO, 50, alpha, beta, tmax )

%$Initialize output wvectors for t,I,5,D
=0 : dt : tmax;

length(t):

S0*ones (1,N) ;

I0*ones (1,N)

= zeros(1,N);

0 H = o
Il

%Loop through wvectors to compute t, I, 5, D.

%using a Poisson probabilistic rule for 5,I,D changes during timestep dt
I for n=2:N

t(n) = t(n-1) + dt:

%Poisson probabalistic rule for transition from S to I
lambda = dt*beta*S(n-1)*I(n-1):

dS = -poisson samples( lambda,l );

dI = -d5;

FUpdate I and S5

I(n) = I(n-1) + dI; Eyam model: =2.99, 3=0.0183, At=0.005
S(n) = S(n-1) + ds; R | =
$Probabilistic rule for transition from I to D populations C200>
lambda = dt*alpha*TI(n); %
dD = poisson samples( lambda, 1 ): §f5°’
dI = —dD: 8
€ 100f
g
%Update I and D ( note I(n) is to be modified ) w
I(n) = I(n) + dI; 50¢

D(n) = D(n-1) + dD;

-end

t /months



Eyam model: «=2.99, 3=0.0183, At=0.005

@\ Black dashed lines I
T g are Euler model. S
200+ \Q ; Black circles ’are e D
Mompesson’s data
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— X ~ Po( SSI At :
T 150" ==
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Eyam model: alpha = 2.89, beta = 0.0177, dt = 0.1

:_S -
200 o
o , . m
® 45o.  ISTun, so expect slightly  —
§ different «, S given At size
o P PN
£ 100 i
©
>
N
50 :
05 ; Bt — ;

t /months

Eyam model: alpha = 2.98, beta = 0.0182, dt = 0.01

200t

Eyam population

o)
o

-
n
(=)

-
o
o

t /months

Eyam model: alpha = 2.94, beta = 0.018, dt = 0.05

200}

Eyam population

-
(9))]
(=

-
o
o

t /months

Eyam model: alpha = 2.99, beta = 0.0183, dt = 0.005

200t

-
o
o

Eyam population

-
n
(=)

t /months



log( P(D,t) ) : =2.99, 3=0.0183, At=0.005 log( P(I,t) ) : «=2.99, B=0.0183, At=0.005

Infectives (I)

t /months t /months

log( P(S,}) ) : 0=2.99, =0.0183, At=0.005

Probability map, computed
from 200 iterations. Black
circles are Mompesson data
and black dashed lines
correspond to the Euler
model.

Susceptibles (S)

t /months



log( P(D,t) ) : «=2.99, p=0.0183, At=0.005 log( P(l,t) ) : «=2.99, 3=0.0183, At=0.005

250
200
i 150 1.4
[
P
8
= 100 -6

t /months

t /months

log( P(S,1) ) : a=2.99, $=0.0183, At=0.005

Probability map, computed
from 50,000 iterations. Black
circles are Mompesson data
and black dashed lines
correspond to the Euler
model.

Susceptibles (S)

t /months






Eyam model fit for EYAM EQUATIONS_ das |
Wuhan (China) COVID-19 outbreak  Susceptible, Infective dt —p
Jan 22 — Mar 16 2020 Removed (either Recovered or Dead)
From Oxford World in data Assumes Sto | to R + D flow (one way) d_l — (S _ﬁ) |
and a fixed total at-risk population N dt P
Eyam model fit
=192,1 =57.65 R =3,t =0.849 d (R + D) =l
max 0 max
0=3.263, pF63.92, n=0.9405, SO=189.4, 1,=1.588 dt
60 ! T I T T _
—i| | _—In(l—n)—ln(—MJ
n
= >0 7 z ——In(——ln(l_n)j
-9 - 77
5 40 | In(1 In(1
8- X ax __M_l_m(_MJ
o
=30 | | n n
m p: max
>
'.§ 20 | Xmax d I
“— _ [ z
- 10 | ") _'[0 Xpax +1-€7° =2
X=X, +t1-e" -z
0F y=e
0 0.5 1 1.5 2 2.5 3 T
t /months t:;+tmax, l=px S=py, R+D=p(z-27)

Model predicts a Basic Reproduction number R, of 3.00 / N=lo+p-p2

SEMI ANALYTIC EYAM MODEL. JPC/AF 2019 R, =

0

N
o,



https://github.com/owid/covid-19-data/tree/master/public/data

dS

dt

dt

d(R+ D)

—BSl

a_z Sl

dt

=l

“Eyam equations” an S,|,R,D model of
population flows to model an epidemic.

This might not be true!

[

Time constant (from Wuhan data):

Assume this is a function of basic

human biology and therefore an approximate
constant, rather than something that might
vary due to the proximity and social mixing of

human populations. v\

T :]/a i.e. not like 3
T _ 1

= 75 months
T _ 365/12

— 3.263 days

T =9.32days

i.e. a measure of the characteristic

time from infection till recovery (or death).
Assume Recovered population can no longer
spread COVID-19, and also have immunity so
cannot become Susceptibles again.



Imax tmax alpha eta

60 Eyam model fit
N=192,| _=57.65,R =3,t _=0.849
o=3.263, p=63.92, 1=0.9405, S =189.4, | =1.588 87.02 1.28 6 0.99
60 - - a —=
BQ frraeeeeeneanhes Change the sliders
L | : : : to vary the model
s 40 iy ; parameters
@ : - -
E_ :
2 301 |
o .
o |
o0y 20
10}--
Ml i — =
0 0.5 1 1.5 2 2.5 3 29.01 0.427 2 0.05
t /months
0 7] Overlay S and Ras well as 17 [ ]Use SR? []3D? 57.65 0.849 3263  0.9405
Save Optimize Imax,tmax |
[—J ‘ Import I,S,R vs t data ‘ Optimize alphaeta |
SSD = 179.07
Min time 0 [Fix axis scale| | Defautt model | Maxtime 3 EYAM MODEL. A.French Mar 2020.

The EYAM MODEL predicts the S and R curves from the Infectives vs time data



S,I,R population

Eyam model fit
N=192,1 =57.65 R =3,t =0.849
max 0 max

a=3.263, p=63.92, n=0.9405, 5 =189.4, | =1.588

200+

—

(@)

-
|

RN

o

)
|

50+

t:£+tmax, | =pX, S=py
(04

R:p(z+\/2Xmax)’ N :Imax+p_p 2Xmax’ R0:ﬂ _R
P

Dashed curves correspond to -
the ‘K&K approximate model,
which assumes a time
symmetric I(t) curve

X~ X__ sech’ (1/5 xmaxr) |
Z~\2X tanh(«/% Xmaxf)
=z

y=¢e

Black data points are
cumulative deaths




UK COVID-19 curve of cumulative deaths

(from Oxford World in data)
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https://github.com/owid/covid-19-data/tree/master/public/data

Hasell, J., Mathieu, E., Beltekian, D. et al. A cross-country database of COVID-19 testing.
Sci Data 7, 345 (2020).
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Compare ‘first wave’ COVID-19 deaths

Deaths. a=1.71, k=0.014, PWD=36.01 million.
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To make sense of the COVID-19 epidemic, and for the epidemiology to match the narrative of
“infection peaks” and “flattening the curve” (e.g. via a lockdown and increased social distancing
and other interventions), we ought to present the time variation of Infective population vs
time. Other graphs are potentially confusing. The graph of positive tests vs time (per day) is
particularly problematic — since a rise might simply result from greater testing capacity rather
than a rise in infective population.*

However, since testing is not comprehensive, i.e. the entire population is not tested regularly,
which was certainly true at the start of the “first wave”, we can only estimate | vs t.

The Eyam equations give us a means of achieving this, but only if we know the time constant T
and hence ¢, and also the mortality fraction K. | shall assume both are biological in nature and
therefore constant. Note the constancy of k is probably a poor assumption, since this will
certainly vary among the population. Death from COVID-19 for a young healthy person is very
likely to be much less probable than for someone elderly and frail, with possible multiple pre-
existing health conditions. However, taking a crude average, let us assume k = 0.01. This is an
educated guess, but informed by anecdotal evidence from NHS colleagues. Note the t vs | curve
will look the same though, (just scaled slightly differently) as long as k is deemed to be a
constant with time.

*The only other graph | think is useful to present is new hospital admissions per day, or
perhaps even better, fraction of maximum intensive care capacity per day. This would give a
sobering sense of the true human impact of COVID at the sharp end of things.

Note to compare different countries, one should plot Infective population divided by total
population, i.e. ‘per capita’



d(R+D) . D(A-k)=kR

= I Third “Eyam equation”

dt R_l kD

D=k ( R+ D) R+D= % / Recovered populla<tion, assuming

a fixed mortality fraction.

d_D — kal I dD dD 1 Dn+1_ Dn—l

a In
dt 2 dt T T

UK COVID-19 cumulative deaths since 06/03/2020

If we assume the cumulative deaths
due to COVID-19 are accurate, then
numerically differentiating this curve,
and dividing by ke, should yield an estimate :
for the Infective | population.

w 30000

The cumulative deaths vs time is probably

the most accurate statistic in the World in Data resource,
since one assumes all UK deaths must have a death
certificate and therefore a recorded cause of death (which R — . .

if due to COVID-19, is represented in the data set). fevsnespemne




Cumulative UK CV- 19 deaths fthousands 05/03/2020 15/12/2021

One can estimate the
number of CV-19
infectives from the
cumulative deaths:

, dD

ka dt T tn+1_tn—1

150
[42]
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a 50+
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O
From Oxford World in data
05" 100 200 300 400 500 600 700
Time in days since 05/03/2020 14
Find the gradient and 10l

scale by:

kae =0.01x 5% days™

Note mortality fraction k and disease

time constant e may vary considerably within a population
and indeed post-vaccination — so treat with caution!

Note: as per the ‘daily death rate’
graphs in World in Data, we also apply

a seven-day moving average to

smooth the numerical derivative.

Estimated UK COVID-19 |nfect|ves 05/03/2020 - 15/12/2021
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https://github.com/owid/covid-19-data/tree/master/public/data

UK COVID-19 cumulative deaths since 06/03,/2020

FIRST CV-19 WAVE IN UK
””””” b)) -

1 Dn+1 - Dn—l
“ dt “ 1:n+l _tn—l

w 30000
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The vertical black line represents
when the UK went into lockdown.
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Per-capita infectives. a=1.71, k=0.014

time /months
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MATLAB UK COVID-19 data processing pipeline

$Get cumulative dead (D) and recovered (R) (in millions) from data.
%Time t in days.

t,D,R] = get D R from data(k): ..
[ I'= get D R from data(k) This is what we have
¥Estimate Infective population vs time discussed so far...
[I,tmax, Imax] = estimate I( t, D, k, a, W )

tDetermine the beta walue at the infection peak using a K&K model fit
bpeak = beta from peak( t,I,tmax,Imax,a,k )

%Use Eyam equations to step forward, and backward from peak to calculate S
Fand beta (b) vs time

[b,5] = eyam from peak( t,I,tmax,Imax,bpeak,a )}

tDetermine 'at risk' population N
N=I+5+ R+ D;

%$Define effective susceptible threshold at epidemic peak = alpha/beta
rho = a*(b.”-1):

%Apply Eyam numerical model for whole outbreak, using variable beta (b).
[tm, Im, Sm] = eyam variable b( I,S,a,b )

%Estimate basic reproduction number RO vs time
R0 = estimate RO(t,I);

$Calculate effective 'double-time' t din days for infective population.
td = calculate doubling time( t,I );



To estimate S we can attempt a K&K curve fit near the peak. The K&K approximation
works well near the Infective peak, but is less appropriate beyond it. (See “Extending

The Epidemiology of Eyam”)

|
| ~ max
cosh’ %|max§(t—tmax)a
|
cosh %|max§(t—tmax)a = ”I‘ax

Plan:

Do K&K ten days either side of the
peak* to find beta, and hence find S at
peak = alpha/beta.

Then use Eyam equations forwards and
backwards in time, and find beta from
data.

<<

BX =Y

i.e. perform a line of best fit to find S

K&K peak fit: f=(0.0291+/-0.00499)
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*We'll do 10 days before, and then
10 days after separately.



Y =(0.144 +/- 0.00377)X, R = 0.9977
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B vs time
3
51 Post-peak, | curve is higher
, than expected, so this

51 rises with time.

implies S

1L This doesn’t
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05 B I :

sense!

0 1 L

0 50 100 150
time /days
N, S and | vs time
5

N, S and |

100
time /days

0 50

—
o0 )

—_—
(o)

—_—
N

fractional | gain per day
~

o
o

N
o

N
o

| doubling time /days
o

A
[S)

—
T

R0 =3I/l + 1 vs time

50 100
time /days

150

o

| doubling time vs days
N ] I T

This statistic is perhaps
only meaningful during a
smooth rise to a peak.

|

0 50 100
time /days

150



Y = (0.0291 +/- 0.00499)X, R = 0.9323

(cosh™'(sqrt(1__/1)))
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B vs time
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Estimated UK COVID-19 S,I,R,D 06/03/2020 - 03/08/2020

6 | |
o |—S
i.e. just under a tenth of the |
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The Basic Reproduction number R, has been extensively quoted by UK Government
during the COVID-19 pandemic — but what does it mean?

Well according to Pandit, it can have several meanings!

Mathematical notes on (various) meanings of Basic Reproduction number R,
Pandit, J.J., “Managing the RO of COVID-19: mathematics fights back.”
Anaesthesia 2020. doi:10.1111/anae.15151

During the pandemic, R,>1 seemed to imply “the infectives rising” and R, <1 implying
“infectives falling”. Although annoyingly rarely defined rigorously, this seems to imply the
following definition: the fractional change in infective population (per day), plus 1.

il
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[From analysis of Liberia Ebola outbreak]

Ba S I c re p rOd u Ct I o n n u m b e r RO — N /p https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59

Ry can be thought of as the number of susceptibles converted to infectives, for every
one infective, per unit of time é You can see this from the ‘Eulerization’ of the

Eyam equation dS/dt = —[351T : R
AS ~ —3STAt P
/"/‘/ \‘\ \~
S0\
/ .
- / / \
- N - l JLS* N '_\‘ \"[‘\ } )] }‘)
.. ALST ~ _ffjkg X l X—=———~x —— = —RO N 7 P /f‘}
(1{ p p e . //I \'\ h \
VRN

So for Ry = 1.85, this means Ebola will cause slightly less than two susceptibles
to becomes infected for every infective, per unit time ﬁ which for our Ebola analysis
is Tlgél = (.35 months or ~ 10.7 days.

Ry is also directly related to a very important quantity, the minimum fraction
Finin of the population to be immunized in order for ‘herd immunity’ (essentially

a lack of susceptibles to catalyse an epidemic) to prevent the liklihood of a major

epidemic.

|:min — P(epidemiCSpreadS) =:|_—Ri

0



https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59
https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59
https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59

= immunized and = not immunized,

= not immunized but
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