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The Epidemiology  
of Eyam 



“How best to motivate students to expand their 
mathematical toolbox, and perhaps more importantly, 
gain experience of applying these ideas in the 
construction of quantitative models? A narrow focus 
on memorizing a long list of abstract procedures 
sufficient to pass an examination is a poor mechanism 
for producing the original thinkers of the future. It is 
also particularly harsh on those who have to struggle 
more than their peers to embed syllabus content in 
their minds. In this paper we celebrate the pedagogical 
power of context and storytelling, with the 
introduction of calculus ideas in an epidemiological 
scenario as an example.”  

“The Pedagogical Power of Context: Iterative Calculus Methods and the Epidemiology of Eyam.”  
(French et al 2018 J. Phys.Educ.) 



The Epidemiology of Eyam and  
the pedagogical power of context 
 

1. Context: The 1665 Plague of Eyam 
2. The Eyam Equations 
3. Iterative solution via the Euler 

numeric method 
4. A semi-analytic solution, and Ebola 
5. A stochastic model 
6. COVID-19 



Context:  
The 1665 Plague 

of Eyam 



1665. A bale of damp cloth is delivered to the 
Derbyshire village of Eyam... George Viccars, the tailor's 
assistant, dries the cloth and releases fleas infected 
with Yersinia Pestis bacteria – Plague 
 
 
 
 
Rector William Mompesson quarantines Eyam and 
records Infected, Susceptible and Dead populations 
as time progresses 

Can we develop a mathematical model to 
predict I,S,D vs time? What does this tell us 
about Epidemiology in general? 

Calculus methods, differential equations 
numerical methods, line of best fit, iteration, loops ... 

e.g Flu, Ebola 



A flea containing a blood meal infected 
with Yersinia Pestis 
https://en.wikipedia.org/wiki/Yersinia_pestis 
 

Yersinia 
Pestis 

St Lawrence’s Churchyard in Eyam 
https://en.wikipedia.org/wiki/Eyam 

https://en.wikipedia.org/wiki/Yersinia_pestis
https://en.wikipedia.org/wiki/Eyam
https://en.wikipedia.org/wiki/Eyam
https://en.wikipedia.org/wiki/Eyam
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Alexandre Yersin  1863 - 1943 

Yersinia Pestis 
La Peste Bubonique à Hong-Kong  
(Ann. Inst. Pasteur. 8: 662-667, 1894). 







Buboes. A swollen 
inflamed lymph node 
in the armpit or groin. 



Thankfully these are not real ... 



Real buboes ... 



Date 
Time 

/months 
S I D ln( S0 / S ) I0+S0 – I - S 

July 3-4 1666 0.00 235 14.5 0 0.00 0.00 

July 19 1666 0.51 201 22 26.5 0.16 26.50 

Aug 3-4 1666 1.02 153.5 29 67 0.43 67.00 

Aug 19 1666 1.53 121 21 107.5 0.66 107.50 

Sept 3-4 1666 2.04 108 8 133.5 0.78 133.50 

Sept 19 1666 2.55 97 8 144.5 0.88 144.50 

Oct 20 1666 3.57 83 0 166.5 1.04 166.50 

Rev. William Mompesson 
1639-1709 
 



The Eyam 
Equations 
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What is the simplest model that describes the 
key features of Mompesson’s data? 
 
A population ‘flow’ from Susceptibles, to 
Infectives, to Dead. 
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Eyam Epidemiological model 

Fixed population constraint 

Assume R = 0. Or to generalize let D be k(R + D) 
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Iterative solution 
via the  

Euler numeric 
method 
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Euler numerical iterative 
solution scheme 

Leonhard Euler 
1707-1783 

See later on how 

we worked out  



MATLAB code for Euler Eyam model 
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Note we can integrate  
to find I(S) analytically 
 
.... But not I(t), S(t), D(t) 

Eyam Equations 
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Performing linear regression 
using Mompesson’s data 
allows us to determine 
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Run model in a loop for a range of alpha values. 
Find the alpha that correspond to the minimum 
‘sum of squared differences’ between model 
and Mompesson data values. (Interpolate 
model at Mompesson times). 



Mompesson data (+) underlaid with 
Euler model, computed with a time interval 
of 0.1 months 



3651 1
12 2.894

10.5    

This could be used as a crude measure of ‘fatality 
time’ – i.e. an approximate number of days from 
infection till death. 

Note 1/  is a measure of a time constant for the Eyam plague.  
 
In days it is:  



We performed the Eyam analysis in Python, then in MATLAB.  
You can also construct an Euler model via a spreadsheet (Excel).  



Euler Eyam solver implemented in MATLAB with a Graphical User Interface (GUI). 
Change the inputs via the sliders or edit boxes, and the curves are computed automatically.  



Implementation of an Eyam model GUI by Barton Peveril student Alfie Baxter using the 
Game Engine development environment. 



A semi-analytic 
solution,  

and Ebola 



Dashed lines are K&K 
approximation 

K&K approximation 



Note symmetry 
of K&K, and skew 
of actual curve 

K&K approximation 
 





Run model over a range of  
alpha and eta parameters 
and determine sum of 
squared differences 
between model and data. 
 
The surface minimum is the 
optimum parameter pair. 

In this case the SSD is 
only computed using I(t). 
 
This is not a good fit to the 
Mompesson S, D data. 



A much better fit if you use I,S,D data as well in the SSD computation 
and use tmax and Imax not eta and alpha as the SSD surface variables 



In this case a more clearly 
defined minimum of the 
SSD surface 



https://en.wikipedia.org/wiki/Zaire_ebolavirus 

Ebola virus 

https://en.wikipedia.org/wiki/Zaire_ebolavirus




Can use the WHO Situation Report 
to plot infectives vs time 





Optimizing parameters 
by finding the SSD surface 
minimum 



A stochastic 
model 



Stochastic Eyam model 
Obviously the changes to S, I, D are discrete, not continuous values. Also, 
one expects the spread of infection to be a random process. Returning to 
Brauer’s model, we can use the expected values of S,I and D changes within 
time interval t to be the mean (and variance ) of a Poisson distribution. If 
we can sample this distribution, then between each time step we should 
have a representative discrete change of S,I,D that incorporates both the 
model and the idea of randomness. 
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Black dashed lines 
are Euler model. 
Black circles are 
Mompesson’s data 

Solid lines are 
mean average of 
200 stochastic runs 
(underlaid as dots) 
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Note entire Eyam model 
is run, so expect slightly 
different , given t size 



Probability map, computed 
from 200 iterations. Black 
circles are Mompesson data 
and black dashed lines 
correspond to the Euler 
model. 



Probability map, computed 
from 50,000 iterations. Black 
circles are Mompesson data 
and black dashed lines 
correspond to the Euler 
model. 



COVID-19 



SEMI ANALYTIC EYAM MODEL. JPC/AF 2019 
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EYAM EQUATIONS 
Susceptible, Infective 
Removed (either Recovered or Dead) 

Assumes S to I to R + D flow (one way) 
and a fixed total at-risk population N 

Model predicts a Basic Reproduction number R0 of 3.00 

Eyam model fit for 
Wuhan (China) COVID-19 outbreak 
Jan 22 – Mar 16 2020 
From Oxford World in data 

https://github.com/owid/covid-19-data/tree/master/public/data
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Time constant (from Wuhan data): 
 
Assume this is a function of basic 
human biology and therefore an approximate 
constant, rather than something that might 
vary due to the proximity and social mixing of 
human populations. 
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“Eyam equations” an S,I,R,D model of 
population flows to model an epidemic. 

i.e. a measure of the characteristic 
time from infection till recovery (or death). 
Assume Recovered population can no longer 
spread COVID-19, and also have immunity so 
cannot become Susceptibles again. 

This might not be true! 

i.e. not like  



The EYAM MODEL predicts the S and R curves from the Infectives vs time data 

Change the sliders 
to vary the model 
parameters 



Dashed curves correspond to 
the ‘K&K approximate model’, 
which assumes a time 
symmetric I(t) curve 

Black data points are 
cumulative deaths 
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UK COVID-19 curve of cumulative deaths  
(from Oxford World in data) 

https://github.com/owid/covid-19-data/tree/master/public/data 
Hasell, J., Mathieu, E., Beltekian, D. et al. A cross-country database of COVID-19 testing.  
Sci Data 7, 345 (2020). 

First wave 

Second wave 

https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data
https://github.com/owid/covid-19-data/tree/master/public/data


Compare ‘first wave’ COVID-19 deaths 

Scale by population 



To make sense of the COVID-19 epidemic, and for the epidemiology to match the narrative of 
“infection peaks” and “flattening the curve” (e.g. via a lockdown and increased social distancing 
and other interventions), we ought to present the time variation of Infective population vs 
time. Other graphs are potentially confusing. The graph of positive tests vs time (per day) is 
particularly problematic – since a rise might simply result from greater testing capacity rather 
than a rise in infective population.* 
 
However, since testing is not comprehensive, i.e. the entire population is not tested regularly, 
which was certainly true at the start of the “first wave”, we can only estimate I vs t. 
 
The Eyam equations give us a means of achieving this, but only if we know the time constant T 
and hence , and also the mortality fraction k. I shall assume both are biological in nature and 
therefore constant. Note the constancy of k is probably a poor assumption, since this will 
certainly vary among the population. Death from COVID-19 for a young healthy person is very 
likely to be much less probable than for someone elderly and frail, with possible multiple pre-
existing health conditions. However, taking a crude average, let us assume k = 0.01. This is an 
educated guess, but informed by anecdotal evidence from NHS colleagues. Note the t vs I curve 
will look the same though, (just scaled slightly differently) as long as k is deemed to be a 
constant with time. 
 
*The only other graph I think is useful to present is new hospital admissions per day, or 
perhaps even better, fraction of maximum intensive care capacity per day. This would give a 
sobering sense of the true human impact of COVID at the sharp end of things. 
Note to compare different countries, one should plot Infective population divided by total 
population, i.e. ‘per capita.’ 
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If we assume the cumulative deaths 
due to COVID-19 are accurate, then 
numerically differentiating this curve, 
and dividing by k, should yield an estimate 
for the Infective I population. 
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Third “Eyam equation” 

The cumulative deaths vs time is probably 
the most accurate statistic in the World in Data resource, 
since one assumes all UK deaths must have a death 
certificate and therefore a recorded cause of death (which 
if due to COVID-19, is represented in the data set). 

Recovered population, assuming 
a fixed mortality fraction. 
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Find the gradient and 
scale by: 
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Note: as per the ‘daily death rate’ 
graphs in World in Data, we also apply 
a seven-day moving average to 
smooth the numerical derivative. 

One can estimate the 
number of CV-19 
infectives from the 
cumulative deaths: 

From Oxford World in data 

Note mortality fraction k and disease 
time constant  may vary considerably within a population 
and indeed post-vaccination – so treat with caution! 

COVID-19 

https://github.com/owid/covid-19-data/tree/master/public/data


1 11 1

1 1

n n
n k k

n n

D DdD
I

dt t t
 

 

 


 



Find the gradient and 
scale by: 

-11
9.32

0.01 daysk  

( )D t

( )I t

Note: as per the ‘daily death rate’ 
graphs in World in Data, I also apply 
a seven-day moving average to 
smooth the numerical derivative. 

The vertical black line represents 
when the UK went into lockdown. 

FIRST CV-19 WAVE IN UK 





MATLAB UK COVID-19 data processing pipeline 

This is what we have 
discussed so far… 
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Plan: 
 
Do K&K ten days either side of the 
peak* to find beta, and hence find S at 
peak = alpha/beta. 
 
Then use Eyam equations forwards and 
backwards in time, and find beta from 
data. 

To estimate  we can attempt a K&K curve fit near the peak. The K&K approximation 
works well near the Infective peak, but is less appropriate beyond it. (See “Extending 
The Epidemiology of Eyam”) 

*We’ll do 10 days before, and then 
10 days after separately. 

i.e. perform a line of best fit to find  



K&K fit 
10 days before 
peak 



Post-peak, I curve is higher 
than expected, so this  
implies   
rises with time. 

This doesn’t 
make much 
sense! 

This statistic is perhaps 
only meaningful during a 
smooth rise to a peak. 



K&K fit 
10 days after 
peak 



Pre-peak, I curve is 
lower than expected, 
so this implies   
falls with time. 



Finding   vs time, and applying the 
Eyam equations numerically, allows 
us to estimate the S population, and also 
the total N = S + I + R + D vs time. 
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i.e. just under a tenth of the 
UK population of about 67.9 million. 



The Basic Reproduction number R0 has been extensively quoted by UK Government 
during the COVID-19 pandemic – but what does it mean? 
 
Well according to Pandit, it can have several meanings! 
 
 
 
 
 
 
During the pandemic, R0 >1 seemed to imply “the infectives rising” and R0 <1 implying 
“infectives falling”. Although annoyingly rarely defined rigorously, this seems to imply the  
following definition: the fractional change in infective population (per day), plus 1. 
 
 
 

Mathematical notes on (various) meanings of Basic Reproduction number R0 

Pandit, J.J., “Managing the R0 of COVID-19: mathematics fights back.”  
Anaesthesia 2020. doi:10.1111/anae.15151 
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Alternative interpretations are on 
the following pages…. 

Peak infection 
R0 =1 



Basic reproduction number 
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R N  [From analysis of Liberia Ebola outbreak] 

https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59 

https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59
https://iopscience.iop.org/article/10.1088/1361-6552/ab4a59
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Herd immunity as partial resistance,  
reflected in reductions in frequency 
of disease due to reductions in numbers 
of source cases and of susceptibles.    

vaccines.gov 

A federal government Website managed by the U.S. 
Department of Health and Human Services 
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Using Wuhan 
curve fit 



• Suggested homework 
• Q&A 


