
v1 Jul 2023

2024
Projectiles

Instructions: Welcome to the British Physics Olympiad Computational Challenge 2024. The goal is to build

computer models based upon the instructions in this document. Much can be achieved using a spreadsheet such as
Microsoft Excel, although you are encouraged to use a programming language of your choice* for the more
sophisticated models and graphical visualizations.

The challenge runs from Easter 2024 till August 2024. To submit an entry you will need to fill in a web form. There
may be a small administration charge of, payable online as per other BPhO competition entries.

The deliverable of the challenge is to produce a screencast of maximum length two minutes which describes your
response to the challenge, i.e. the graphs and the code & spreadsheets and your explanation of these. The videos
must be uploaded to YouTube, and we recommend you set these as Unlisted with Comments disabled. Your entry
will comprise a YouTube link. Instructions how to do this are at the end of this presentation. To produce the
screencast, we recommend the Google Chrome add-on Screencastify.

You can enter the challenge individually or in pairs. If you opt for the latter, both of you must make equal
contributions to the screencast.

Gold, Silver or Bronze e-certificates will be emailed to each complete entry, and the top five Golds will be invited to
present their work at a special ceremony. You should receive a result by December 2024. Note no additional
feedback will be provided, and the decision of the judges is final.

Bronze: Initial spreadsheet-based challenge elements completed, some basic coding.
Silver: All the spreadsheet-based elements completed, and a commendable attempt at the
 programming-based elements. Most tasks completed to a reasonable standard.
Gold: All tasks completed to a high standard, with possible extension work such as the construction of

apps (i.e. programs with graphical user interfaces), significant development of the models, attempt at
extension work, short research papers etc.

*MATLAB or Python is recommended, although any system that can easily execute code in loops and plot graphs will do. e.g. Octave, Java,
Javascript, C#, C++... Use what you can access and feel comfortable with. Programming resources

https://www.screencastify.com/
http://www.eclecticon.info/programming.htm

How to make a screencast using Screencastify and upload this to Youtube

1. Download the Google Chrome web browser
2. Download the Screencastify add-on to Chrome. The free educational version will allow

up to 5 minutes of video.
3. When you are ready to make your video (have all the program windows open in

advance, and prepare what you are going to say), click on the Screencastify arrow in the
corner of your browser. Follow the instructions to record a screen, and a three second
countdown will begin.

4. Record your video!
5. Export your video to a .webm or .mp4 file. There is also a direct to YouTube upload

option.
6. Upload your video to YouTube (you will need to set up an account first and establish a

Channel).
7. Navigate to your video and copy to the clipboard the YouTube weblink. Submit this link

in your submission form in the BPhO website.
8. It is recommended that (i) you don’t have a presenter image in your video (you can turn

off this in Screencastify) , i.e. only have a voice-over. Also turn off Comments in YouTube
and make the video Unlisted. This means nobody can leave comments, and only those
with the link will find your video.

https://www.google.com/intl/en_uk/chrome/
https://www.screencastify.com/
https://www.youtube.com/

Exact model (no air resistance) using constant acceleration motion of a particle of mass m

21
2

2 2

x

y

x x

y y

x y

x u t

y h u t gt

v u

v u gt

v v v

=

= + −

=

= −

= +

cos

sin

x

y

u u

u u

=

=

u

xv

yvv

h

Initial x and y velocities

The only acceleration is g downwards!

i.e. an inverted
parabolic trajectory

mg

m

Challenge #1: Create a simple model of drag-free projectile
motion in a spreadsheet or via a programming language. Inputs
are: launch angle from horizontal , strength of gravity g,
launch speed u and launch height h. Use a fixed increment of
time. The graph must automatically update when inputs are
changed.

21
2

2 2

x

y

x x

y y

x y

x u t

y h u t gt

v u

v u gt

v v v

=

= + −

=

= −

= +

cos

sin

x

y

u u

u u

=

=

u

h

i.e. ignore air resistance

Challenge #2: Create a more sophisticated exact (‘analytic’) model using equations for the
projectile trajectory. In this case define a equally spaced array of x coordinate values
between 0 and the maximum horizontal range R. Plot the trajectory and the apogee.

fraction of range R

Challenge #3: Create a new projectile model which is based upon calculating trajectories
that are launched from (0,0) and pass through a fixed position (X,Y). Calculate the minimum
launch speed to achieve this, and hence determine ‘low ball’ and ‘high ball’ trajectories.
Derivations of the associated mathematics are on the next few slides.

2 2u g Y X Y + +

2 2

1tan
Y X Y

X
 −

 + +
=

2 2

2

2

2 2

2 2

2

1

tan (1 tan)
2

tan tan 0
2 2

4
tan

2

g
Y h X X

u

g gX
a b c a X b X c Y h

u u

b b ac

a

 −

= + − +

 + + = = = − = − +

 − −
=

(,)X Y

Note in this example I have

set h = 0. But you don’t have to!

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 1

Projectiles are typically modelled as point masses (i.e. ‘particles’) falling under gravity. In other words, internal motion and rotation is ignored and only the centre of
mass of the projectile is considered. Air resistance is often ignored to enable analysis to proceed without a computer. Note this assumption may be significantly invalid
for many real projectiles! Hence this system reduces to a two dimensional kinematics problem, where acceleration is constant.

Let the coordinates of the projectile be (x,y) on a Cartesian grid. Let the initial velocity be u at an elevation of and let the projectile be launched from (0,h)
Since acceleration is constant:

x

y

v

v

=

v

-29.81msg =

u

(,)x y

2 2 2

21
2

cos

sin

sin 2 ()

cos

sin

x

y

y

v u

v u gt

v u g y h

x ut

y h ut gt

=

= −

= − −

=

= + −

Note this means the x direction
velocity is always constant
throughout the motion!

We can therefore combine these equations to find various properties of the projectile’s trajectory

2 2

2

cos

cos

tan (1 tan)
2

x ut

x
t

u

g
y h x x

u

=

 =

 = + − +

2

2

1
1 tan

cos

= +

i.e. a projectile trajectory is an
inverted parabola

If the projectile is required to pass through (or collide with!) a particular coordinate (X,Y), we

can solve the quadratic trajectory equation to determine the elevation angle, given speed u is
known. This calculation relates to models of all ball sports, gunnery (ballistics) etc.

2 2

2

2

2

2

2

2

2

1

tan (1 tan)
2

tan tan 0

2

2

4
tan

2

g
Y h X X

u

a b c

g
a X

u

b X

gX
c Y h

u

b b ac

a

 −

= + − +

+ + =

=

= −

= − +

 − −
=

Note multiple solutions are possible,
depending on the sign of the
discriminant 2 4b ac−

The apogee of the trajectory is when vy = 0

2

2 2 2 2

2

sin 0 sin

sin 2 () 0 sin
2

cos sin cos

y y a

y y a

a a a

u
v u gt v t

g

u
v u g y h v y h

g

u
x ut x

g

= − = =

= − − = = +

= =

The speed v of the projectile is:

2 2

2 2 2 2

0

2

0

cos sin 2 ()

2 ()

x y
v v v

v u u g y y

v u g y y

= +

= + − −

= − −

Compute angle of
velocity using:

1tan
y

x

v

v
 −

=

Elevation angles which give
rise to a zero discriminant
define the bounding
parabola for the projectile
(see next page).

x

y

v

v

=

v

(,)x y

http://www.eclecticon.info/

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 2

2 2

2

2

2

2

2

2

2

1

tan (1 tan)
2

tan tan 0

2

2

4
tan

2

g
Y h X X

u

a b c

g
a X

u

b X

gX
c Y h

u

b b ac

a

 −

= + − +

+ + =

=

= −

= − +

 − −
=

Possible values for u and the bounding parabola

For real values of : 2 4 0b ac−

Without loss of generality, set a coordinate system
such that 0h =

()

()

2

2 2

2 2

4 2 2 2 2

4 2 2 2

2
2 2 2 2 2

2 2 2

2 2 2

2 2

4 0
2 2

2 2 2 0

2 0

0

gX g
X Y X

u u

u X gX Yu gX

u Ygu g X

u Yg Y g g X

u Yg g X Y

u Yg g X Y

u g Y X Y

− − − −

− +

− −

− − −

 + +

 − +

 + +

Non physical, since u is real
and positive

The minimum u parabola is defined by the
trajectory corresponding to the minimum
velocity required to generate a projectile
trajectory which intersects with (X,Y).

()2 2 2u g Y X Y= + +

2 2

2

2

2 2

2 2

2

1

1

2

2

2

1

2 2

1

2 2

2 2

2

2 2

tan (1 tan)
2

tan tan 0

, ,
2 2

4 0

tan
2

tan

tan

tan

tan

tan (1 tan)
2

g
y x x

u

a b c

g g
a X b X c Y X

u u

b ac

b

a

X

g
X

u

u

gX

Y X Y

X

Y X Y

X

g
y x x

u

Y X Y
y x

X

−

−

−

−

= − +

+ + =

= = − = +

− =

−
 =

=

=

 + +
=

+ +
 =

= − +

+ +
=

()
()

()

2
2 2

2

2
2 2

2 2 2 2 2 2 2 2

2

2
2 2

2 2 2 2 2 2

2

22 2

2 2 2 2 2 2

22 2

1
2

2

2

1

Y X Yg
x

Xg Y X Y

Y X Y g X Y Y X Y X Y
y x x

X Xg Y X Y

Y X Y X Y Y X Y
y x x

X XY X Y

Y X Y X Y X Y Y
y x

X XY X Y

+ +

− + + +

 + + + + + + +
= −

 + +

 + + + + +
= −

 + +

 + + + + +
= −

 + +

2

2 2 2 2

2

2

x

Y X Y X Y
y x x

X X

 + + +
= −

minimum u parabola. Only one value of
 is possible, since the trajectory equation
discriminant is zero.

Trajectory
equation

The bounding parabola
is slightly different – this bounds
the possible set of trajectories
given a value of u

2 2

2

2 2 2 2 2

2 2 2 2 2

tan (1 tan)
2

2 2 tan tan

tan 2 tan 2 0

g
y x x

u

u y u x gx gx

gx u x u y gx

= − +

= − −

− + + =

For positive discriminant:

()4 2 2 2 2

4

2 2

2

2

2

4 4 2 0

2

2 2

u x gx u y gx

u
u y gx

g

u g
y x

g u

− +

 +

 −

Bounding parabola

2

2

22 2

u g
y x

g u
= −

(,)X Yminimum u parabola
elevation angle

-1

o

94.3ms

48.56

u

=

=

minimum u parabola

i.e. vary the target coordinates X,Y
instead, by shifting the origin

Trajectory equation for

minimum u parabola

http://www.eclecticon.info/

Challenge #4: Create a new projectile model which compares a trajectory to the trajectory
which maximizes horizontal range given the same launch height and launch speed. Inputs
are u,h,g and . For the maximum range trajectory you need to calculate the optimum angle.
For h > 0 note this is not 45o... Derivation in the next few slides.

2

2

2

2
sin cos cos sin

u gh
R

g u

= + +

1

max
2

1
sin

2 2gh u
 −

 =
 +

2

max 2

2
1

u gh
R

g u
= +

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 3

u

R

(,)x y

g

The maximum range problem

Given a fixed projectile launch speed
what angle maximises range?

21
2

cos

sin

x ut

y ut gt

=

= −

()1
2

1
2

2

2

, 0

0 sin

0 sin 0

2 sin

cos

2
sin cos

sin 2

x R y

t u gt

t u gt

u
t

g

R ut

u
R

g

u
R

g

= =

 = −

 − =

 =

=

 =

=

Hence maximum range is:

2

o

max
, 45

u
R

g
= =

Let us now extend the problem to a starting
height which is not at ground level.

u

R

(,)x y

g
h

21
2

cos

sin

x ut

y ut gt h

=

= − +

21
2

2

2
2 2

2 2

2

2

2

2

2

, 0

0 sin

2 2
sin 0

sin sin 2
0

sin 2
sin

cos

2
sin cos cos sin

x R y

ut gt h

ut h
t

g g

u u gh
t

g g g

u u gh
t

g g u

R ut

u gh
R

g u

= =

 = − +

− − =

− − − =

= + +

=

= + +

To maximize R we need to find such that:

2
0

d Rg

d u

=

For brevity define
2

2gh

u
 =

Note:
2 21

2

2 GPE

KE

gh mgh

u mu
 = = =

()

() () ()

() () ()

2

1
22

2

2

2 2 2

2

2 2 2 2

3

2

2

2

sin cos cos sin 0

cos
sin sin cos cos 2sin cos sin sin 0

sin

sin cos
sin cos sin sin

sin

sin 1 2sin sin sin sin 1 sin

2sin (1)sin
sin

1 2sin

sin

d

d

+ + =

− + + − + =
+

− + = + −
+

+ − = + − −

+ −
+ =

−

+ =

()()

6 4 2 2

2 4

2 4 2 6 4 2 2

2 4 2 6 4

6 4 4 2 2

2 2 2

2

4sin 4(1)sin (1) sin

1 4sin 4sin

1 4sin 4sin sin 4sin 4(1)sin (1) sin

sin 4sin 4 sin 4sin 4 sin

4sin 4 sin 4sin (1) sin

(1 4)sin (1) sin

2

+ − + −

− +

− + + = + − + −

+ − − + + =

+ − + −

+ − = −

= −()

()

2

2 2

2

1
2

1 1 4 sin

2 sin

1
sin

2

1
sin

2

cos 1

1
cos

2

+

+ − +

= +

=
+

=
+

= −

+
=

+

1 1
sin

2

−
=

+

()

() ()

2

2

2

2

2

2

2

2

2

sin cos cos sin

1 1 1 1

2 2 22

1 1 1 2

2 2 2

1 1
1

2 2

1 1
1 1 2

2 2

1

Rg

u

Rg

u

Rg

u

Rg

u

Rg

u

Rg

u

= + +

+ +
= + +

+ + ++

+ + + +
= +

+ + +

+ +
= + +

+ +

+ +
= + + = +

+ +

= +

2

2

2

2 1
1 , sin

2
2

u gh
R

g u gh

u

= + =

+

The range-maximizing angle
is therefore:

positive
root since

0t

2 2cos 1 sin = −

Note there is a nicer way
of doing this!

http://www.eclecticon.info/

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 4

Given the maximum range problem
involves two parameters, to visualize
possible solutions we need to plot
a surface graph.

In the example plots,
colour is used to indicate
the height of the surface.

In all examples
-29.81msg =

2

2

2
1

u gh
R

g u
= +

2

1
sin

2
2

gh

u

 =

+

2 2

2
1

Rg gh

u u
= +

2

2
sin cos cos sin

Rg

u
 = + +

2

2gh

u
 =

This graph
demonstrates
that range has a
maximum value
as the launch
elevation is varied.

1
sin

2

=

+

The angle which results in the
maximum range is given by

http://www.eclecticon.info/

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 5

An elegant solution to the maximum range problem
There is an alternative, more geometric, method that arrives at the solution
to the maximum range problem without so much trigonometric horror!

u

R

(,)x y

g
h

t= +v u g

The largest R possible corresponds to

u

v

u

v

gt

2 2 21 1
2 2

2mgh mu mv v gh u+ = = +

The velocity at maximum

range R is given by the vector
equation:

By conservation of energy:

The area A of the vector triangle can be computed
in two different ways:

1
2

1
2

sin

cos

sin cos

A uv

A gt u

uv gut

=

=

 =

Since the projectile moves at constant speed horizontally: cosR ut =

Hence: 2

2

2

sin cos sin 2

2
1 sin

u
uv gut gh u R

g

u gh
R

g u

= + =

 = +

osin 1 90 = =

2

2

2
1

u gh
R

g u
= +

u

v

gt

At maximum range the velocity triangle is right angled, so using
Pythagoras’ theorem we can calculate the time of flight
corresponding to the maximum range

2 2 2 2 2 2 2 2

2

2

2
2

g t u v g t u gh u

u gh
t

g u

= + = + +

 = +

2

2 2

2

2

2 2

2
2

2

2 2
2

2

2

2

1

2

cos

2 2
1 2 cos

2
1

cos
2

2

sin 1 cos

2
1

sin 1
2

2

2 2
2 1

sin
2

2

1
sin

2
2

1
sin

2 2

R ut

u gh u gh
u

g u g u

gh

u

gh

u

gh

u
gh

u

gh gh

u u
gh

u

gh

u

gh u

 −

=

 + = +

+

 =

+

= −

+

 = −

+

+ − −

 =

+

 =

+

 =
 +

We can use this result, combined with the expression for R, to find the
required elevation angle to result in maximum range.

http://www.eclecticon.info/

Challenge #5: Update your projectile model of a trajectory which passes through (X,Y) with
the bounding parabola, in addition to minimum speed, max range and high and low ball
curves. The bounding parabola marks the region where possible (X,Y) coordinates could be
reached given u,h,g inputs.

The bounding parabola sets the limit of the possible set of trajectories given a value of u

2 2

2

2 2 2 2 2

2 2 2 2 2

tan (1 tan)
2

2 2 tan tan

tan 2 tan 2 0

g
y x x

u

u y u x gx gx

gx u x u y gx

= − +

= − −

− + + =

For positive discriminant of this quadratic:

()4 2 2 2 2

4

2 2

2

2

2

4 4 2 0

2

2 2

u x gx u y gx

u
u y gx

g

u g
y x

g u

− +

 +

 −

Bounding parabola

2

2

22 2

u g
y x

g u
= −

Shift y coordinates by h if launching a projectile from (0,h)

Challenge #6: Now update your projectile model with a calculation of the distance travelled
by the projectile i.e. the length of the inverted parabolic arc. The calculus for this is on the
next slide, and example MATLAB code follows.

() ()
2 2

0

2

0
1

X

X

s dx dy

dy
s dx

dx

= +

= +

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 7

Projectile distance travelled

The distance travelled by a particle undergoing projectile motion

from (0,h) is given by:

Now trajectory equation is:

u

R

g
h

2

2

2

2
sin cos cos sin

u gh
R

g u

= + +

x

y

2 2

2
tan (1 tan)

2

g
y h x x

u
 = + − +

2

2

2

2

20

tan (1 tan)

1 tan (1 tan)
X

dy gx

dx u

gx
s dx

u

 = − +

 = + − +

Consider a substitution:

2

2

2 2

2 2

2
tan (1 tan)

2

2 tan

tan (1 tan) (1 tan)

1
(1 tan)

gX

u

gx g
z dz dx

u u

u
s z dz

g

− +

= − + = − +

 = − +
+

Note standard integral:

2 2 21 1
2 2

1 ln 1 1z dz z x z z c+ = + + + + +

2

2

2 tan
2 21 1

2 22
tan (1 tan)

ln 1 1
(1 tan) gX

u

u
s z z z z

g

 − +

 = + + + +
 +

Consider a special case when projectile is launched from the origin (i.e. h = 0), and
22

sin cos
u

X R
g

 = =

Which can be calculated easily using MATLAB/Python/Excel etc,
and checked with a numeric approximate calculation using a

small discrete value of Dx.

2 2

2

2

tan (1 tan) tan 2sin cos (1 tan)

2sin cos
tan tan

cos

gX

u

 − + = − +

= − = −

()

2 tan
2 21 1

2 22
tan

2

2 2 2 21
2 2

2 2

21
22 2

2 2

1
2

ln 1 1
(1 tan)

ln 1 tan tan tan 1 tan ln 1 tan tan tan 1 tan
(1 tan)

1 tan tan
ln tan 1 tan

(1 tan) 1 tan tan

1 sin
cos cosln

u
s z z z z

g

u

g

u

g

u

g

−

 = + + + +
 +

= + + + + − + − + +
+

 + +
 = + +
 + + −

+

=
2 2

1
2 2

2

2

sin 1 cos 1 sin sincos ln
1 sin cos cos 1 sin cos

cos cos

1 sin
ln cos sin

cos

u

g

u
s

g

 +

+ = +
− −

 +
 = +

When R is maximized:

2

21
4 22

2
, sin cos , ,

u
R

g
 = = = = =

()()

12

2 21
2 21

2

2

1
2

2

1
ln

ln 1 2 2

1.15

u
s

g

u
s

g

u
s

g

 +
 = +

 = + +

() ()
2 2

2 2

1 sin 1 sin1 sin

1 sin 1 sin cos

+ ++
= =

− −

()ln 1 2 2 2.296+ +

Universal parabola constant

i.e. when the inverted parabolic trajectory crosses the horizontal axis after launch.

u

2

sin 2
u

R
g

=

(,)
a a

x y

g

2

21
2

, sin
2

a a

u
x R y

g
= =

2

21 sin
ln cos sin

cos

,
cos cos

u
s

g

x R
t T

u u

 +
= +

= =

x

y

2 2

2
tan (1 tan)

2

g
y x x

u
 = − +

http://www.eclecticon.info/

%Projectile trajectory calculator (no air resistance)
function p = pcalc(theta, u, g, h, N)

%Range /m
p.R = ((u^2)/g)*(sin(theta)*cos(theta) +...
 cos(theta)*sqrt(sin(theta)^2 + 2*g*h/(u^2)));

%x /m
p.x = linspace(0,p.R,N);

%t /s
p.t = p.x/(u*cos(theta));

%Time of flight /s
p.T = p.R/(u*cos(theta));

%y /m
p.y = h + p.x*tan(theta) - (g/(2*u^2))*(p.x.^2)*(1 + tan(theta)^2);

%Apogee (xa,ya in m, ta in s)
p.ta = u*sin(theta)/g;
p.xa = (u^2)*sin(2*theta)/(2*g);
p.ya = h + ((u^2)/(2*g))*sin(theta)^2;

%x,y velocities in m/s
p.vx = u*cos(theta)*ones(1,N);
p.vy = u*sin(theta) - g*p.t;

%Projectile speed /ms-1
p.v = sqrt(p.vx.^2 + p.vy.^2);

%Velocity angle /rad anticlockwise from horizontal
p.phi = atan2(p.vy,p.vx);

%Compute length of trajectory /m
a = (u^2)/(g * (1 + (tan(theta))^2));
b = tan(theta);
c = tan(theta) - g*p.R*(1 + (tan(theta))^2)/(u^2);
p.s = a * (z_func(b) - z_func(c));

%Trajectory length /m (numeric calculation)
dx = diff(p.x); dy = diff(p.y);
p.s_numeric = sum(sqrt(dx.^2 + dy.^2));

%Max range parabola given h,u,g
p.theta_m = asin(sqrt(1/(2 + 2*g*h/(u^2))));
p.T_m = (u/g)*sqrt(2 + 2*g*h/(u^2));
p.R_m = ((u^2)/g)*sqrt(1 + 2*g*h/(u^2));

%%

%Projectile trajectory length function
function y = z_func(z)
y = 0.5*log(abs(sqrt(1+z.^2) + z)) + 0.5*z.*sqrt(1+ z.^2) ;

MATLAB code to calculate a
projectile trajectory

Challenge #7: A curious fact is that the range of a projectile from the launch point (let’s set
this to be (0,0) for convenience) plotted against time can actually pass through a local
maximum and then a minimum, before increasing with increasing gradient. Use the
derivations on the next slide to recreate the above graphs. Work out the times, x, y, and r
values for these maxima and minima and plot these via a marker such as a *.

maximum minimum

()

()

2 8
9

1 o2 2

3

3
sin sin

2

sin 70.5

u
t

g

−

= −

2 2 2

21
2

sin

cos

r x y

y ut gt

x ut

= +

= −

=

Mathematics topic handout: Projectiles Dr Andrew French. www.eclecticon.info PAGE 7

Projectile range

The distance r of a particle undergoing projectile motion

from (0,0) is given by:

o90 −

u

2

sin 2
u

R
g

=

(,)x y
g

r

Hence:

()

()

2
2 2 2 2 21

2

2 2 2 2 2 2 2 2 2 41
4

2 2 2 2 2 3 2 41
4

2 2 2 3 2 41
4

2 2 3 2 41
4

cos sin

cos sin sin

cos sin sin

sin

sin

r u t ut gt

r u t u t gt ut g t

r u t gt u g t

r u t gt u g t

r u t gt u g t

= + −

= + − +

= + − +

= − +

 = − +

Is it possible to have a maximum or minimum in a graph of

r vs t (and hence, since they are proportional) x? Ignore

‘obvious’ minimum when t = 0.

()

2 2

2 2 2 3 2 41
4

2

2 2 2 3

2

2 2 2 3

2 2 2

2 2 2

2

2

2

2 if 0 then 0 if 0

sin

2 3 sin

0 2 3 sin 0

2 3 sin 0

Since 0 : 2 3 sin 0

3 2
sin 0

3
sin

2

dr dr dr dr
r r

dt dt dt dt

r u t gt u g t

dr
u t gt u g t

dt

dr
u t gt u g t

dt

t u gtu g t

t u gtu g t

u u
t t

g g

u
t

g

= = =

= − +

 = − +

 = − + =

 − + =

 − + =

 − + =

 −

2
2 2

2

2 2

2 2

2

2 2

9 2
sin 0

4

3 9 2
sin sin

2 4

u u

g g

u u u
t

g g g

− + =

 = −

Real roots (i.e. there are times when the graph of r vs t
is indeed at a maxima or minima) occur when:

2 o2 28
9 3

sin sin 70.5 since o0 90

The critical angle for stationary points of r vs t
is when the above equality holds.

o2 2

3

2 2

3

sin 70.5

3 3
sin

2 2

2

u u
t

g g

u
t

g

=

 = =

 =

()2 8
9

3
sin sin

2

u
t

g

 = −

* a maxima in r vs t

* a minima in r vs t

()

()

2 8
9

1 2 2

3

3
sin sin

2

sin

u
t

g

−

= −

2
u

t
g

=

You can clearly see a maximum and

minimum in a graph of r vs t for elevation
angles greater than 70.5o.

which is a nice result, since
the maximum horizontal range
when is: o45 =

max

u
R

g
=

http://www.eclecticon.info/

Challenge #8: Use a numerical method assuming constant acceleration motion between
small, discrete timesteps (e.g. the ‘Verlet’ method) to compute a projectile trajectory which
includes the possibility of a bounce. Define the coefficient of restitution to be the vertical
speed of separation / vertical speed of approach. Assume a constant horizontal speed, and
stop the simulation after N bounces.

Extension: Modify your code to animate the trajectory, and ideally, create a video file for
efficient future playback.

Challenge #8 Extension:

Modify your code to animate the trajectory, and ideally, create a video file for
efficient future playback. A nice feature could be for the trajectory to be revealed as a
projectile object bounces.

%Verlet trajectory solver
function [t,x,y,vx,vy] = verlet_trajectory_solver(
N,C,g,dt,h,theta,u)

%Initial conditions
theta = theta*pi/180; nbounce = 0; n=1;
t = 0; x = 0; y = h; vy = u*sin(theta); vx =
u*cos(theta);

%Determine trajectory
while nbounce <= N

 %Acceleration
 ax = 0; ay = -g;

 %Update position

x(n+1) = x(n) + vx(n)*dt + 0.5*ax*dt^2;
y(n+1) = y(n) + vy(n)*dt + 0.5*ay*dt^2;

 %Update acceleration (this could involve x,y potentially)
 aax = 0; aay = -g;

 %Update velocity

vx(n+1) = vx(n) + 0.5*(ax + aax)*dt;
vy(n+1) = vy(n) + 0.5*(ay + aay)*dt;

 %Update time
 t(n+1) = t(n) + dt;

 %Check if ball has bounced. If so, modify vy accordingly
 if y(n+1) < 0
 y(n+1) = 0;
 vy(n+1) = -C*vy(n+1);
 nbounce = nbounce + 1;
 end

 %Increment counter
 n = n+1;
end

MATLAB implementation
of bouncing projectile using
Verlet ‘constant
acceleration-between-timesteps’
method

Challenge #9: Write a new projectile model which compares a drag-free model (use
what you have already done in previous challenges) with a model incorporating the
effect of air resistance. Use a Verlet method to solve the air-resistance
case. It is possible to solve motion under drag which varies with the square of velocity
analytically in 1D (see here) but in 2D projectile motion drag always opposes the
velocity vector – which makes the maths much harder. So write a numerical recipe!
Mathematical details in the next few slides.

http://www.eclecticon.info/index_htm_files/Mechanics%20-%20Modelling%20air%20resistance.pdf

Investigate the effect
of air resistance using
the model.

Maximum range

Apogee

xv
m

v

2mkv

mg

Model which incorporates air resistance

Newton II

yv

2

2

:

:

x
x

y

y

v
x ma mkv

v

v
y ma mg mkv

v

= −

= − −

Drag
coefficient

Air density

Cross sectional area

1
2 Dc A

k
m

=

Mass

Air resistance always
opposes the direction
of velocity

Model which incorporates air resistance

2

2

,

,

x
x

y

y

yx
x y

x y

v
a kv

v

v
a g kv

v

vv
a a

t t

x y
v v

t t

= −

= − −

DD
= =

D D

D D
= =

D D

Drag
coefficient

Air density

Cross sectional area

For no air resistance: 0x ya a g= = −

1
2 Dc A

k
m

=

Massx and y
accelerations

x and y
accelerations

x and y
velocities

Model which incorporates air resistance

0

cos

cos

0

x

y

t

u u

u u

x

y h

=

=

=

=

=

1

2

2

21
1 2

21
1 2

(1) ()

(1) ()

2 2

n n

x
x

y

y

n n x x

n n y y

n n

x x x

n n

y y y

x y

t t t

v
a kv

v

v
a g kv

v

x x v t a t

y y v t a t

v v a t

v v a t

v v v

+

+

+

+

+

= + D

= −

= − −

= + D + D

= + D + D

= + D

= + D

= +

Initial conditions

Finite time step (e.g. 0.01s)

x Acceleration

y Acceleration

Constant acceleration
motion between the time
steps (a “Verlet” method)

1
2 Dc A

k
m

=

Air resistance factor

i.e. how x,y, vx, vy

change between
time steps

m

v

2mkv

mg

Extension opportunities:

• Consider projectile motion in an atmosphere with a model of air density that
diminishes with altitude. See the 2022 BPhO Computational Challenge for details!

• Consider projectile motion launched from a spherical planet, which rotates about a
fixed axis. Work out the latitude and longitude where the projectile lands, and animate
the motion. Texture-map a planet surface e.g. Earth, Mars, the Moon....

•Write a graphical user interface (GUI) for the projectile model and encode this as an
‘app’. Coding up an iOS/Android smartphone app will particularly impress the judges.

• Write up your model as a short paper. (Aim for about 10 sides of A4, two columns). If
you have never written a paper before, download a few from the Physics Education
journal. The Epidemiology of Eyam might be a good start... A good opportunity to learn
LaTeX – which is the typesetting language used to write most technical papers and
books in the physical sciences. Including Science by Simulation *

Don’t forget to include any extension projects in your video, as this is the only way you
will gain credit for your work in the BPhO Computational Challenge.
I’m afraid we cannot accept any other files. Submit only the YouTube link to your two-
minute screencast.

* ScibySim was created in Scientific Word. There are lots of other LaTeX-based tools available. Find one that works for you!

https://www.lyx.org/Home
http://www.eclecticon.info/scibysim.htm
https://www.sciword.co.uk/

Example of a projectile motion model implemented in a Graphical
User Interface (GUI). The sliders change the h,u, and particle
mass m inputs, and the trajectory curves are automatically
updated. This simulation will also output high quality PNG files for
incorporation into reports etc.

Extension idea

Consider projectile motion launched from a
spherical planet, which rotates about a fixed
axis. Work out the latitude and longitude
where the projectile lands, and animate the
motion. Texture-map a planet surface e.g.
Earth, Mars, the Moon....

Newton’s law of Universal Gravitation

2

GM
g

r
=

Distance from
centre of planet

Planet mass

11 3 -1 -26.67 10 m kg sG −=

i.e. you will need to modify the strength of
gravity as the projectile gains altitude.Note also the planet will rotate under the

projectile. Don’t forget the velocity
of the rotating planetary surface at
launch.

TOP TIP: Use a 3D x,y,z coordinate
system with origin of the centre of
the earth. Work out the projectile
trajectory AND the (rotating) coordinates
of the planet surface.

Extension idea

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

