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Instructions:  Welcome to the British Physics Olympiad Computational Challenge 2024. The goal is to build 

computer models based upon the instructions in this document. Much can be achieved using a spreadsheet such as 
Microsoft Excel, although you are encouraged to use a programming language of your choice* for the more 
sophisticated models and graphical visualizations.

The challenge runs from Easter 2024 till August 2024. To submit an entry you will need to fill in a web form. There 
may be a small administration charge of, payable online as per other BPhO competition entries.

The deliverable of the challenge is to produce a screencast of maximum length two minutes which describes your 
response to the challenge, i.e. the graphs and the code & spreadsheets and your explanation of these. The videos 
must be uploaded to YouTube, and we recommend you set these as Unlisted with Comments disabled. Your entry 
will comprise a YouTube link. Instructions how to do this are at the end of this presentation. To produce the 
screencast, we recommend the Google Chrome add-on Screencastify. 

You can enter the challenge individually or in pairs. If you opt for the latter, both of you must make equal 
contributions to the screencast.

Gold, Silver or Bronze e-certificates will be emailed to each complete entry, and the top five Golds will be invited to 
present their work at a special ceremony. You should receive a result by December 2024. Note no additional 
feedback will be provided, and the decision of the judges is final.

Bronze:  Initial spreadsheet-based challenge elements completed, some basic coding.
Silver:   All the spreadsheet-based elements completed, and a commendable attempt at the 
 programming-based elements. Most tasks completed to a reasonable standard.
Gold:  All tasks completed to a high standard, with possible extension work such as the construction of 

apps (i.e. programs with graphical user interfaces), significant development of the models, attempt at 
extension work, short research papers etc.

*MATLAB or Python is recommended, although any system that can easily execute code in loops and plot graphs will do. e.g. Octave, Java, 
Javascript, C#, C++... Use what you can access and feel comfortable with.  Programming resources

https://www.screencastify.com/
http://www.eclecticon.info/programming.htm


How to make a screencast using Screencastify and upload this to Youtube

1. Download the Google Chrome web browser
2. Download the Screencastify add-on to Chrome. The free educational version will allow 

up to 5 minutes of video.
3. When you are ready to make your video (have all the program windows open in 

advance, and prepare what you are going to say), click on the Screencastify arrow in the 
corner of your browser. Follow the instructions to record a screen, and a three second 
countdown will begin.

4. Record your video!
5. Export your video to a .webm or .mp4 file. There is also a direct to YouTube upload 

option.
6. Upload your video to YouTube (you will need to set up an account first and establish a 

Channel).
7. Navigate to your video and copy to the clipboard the YouTube weblink. Submit this link 

in your submission form in the BPhO website.
8. It is recommended that (i) you don’t have a presenter image in your video (you can turn 

off this in Screencastify) , i.e. only have a voice-over. Also turn off Comments in YouTube 
and make the video Unlisted. This means nobody can leave comments, and only those 
with the link will find your video.

 

https://www.google.com/intl/en_uk/chrome/
https://www.screencastify.com/
https://www.youtube.com/


Exact model (no air resistance) using constant acceleration motion of a particle of mass m 
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Challenge #1:  Create a simple model of drag-free projectile 
motion in a spreadsheet or via a programming language. Inputs 
are: launch angle from horizontal , strength of gravity g, 
launch speed u and launch height h. Use a fixed increment of 
time. The graph must automatically update when inputs are 
changed.
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i.e. ignore air resistance



Challenge #2:  Create a more sophisticated exact (‘analytic’) model using equations for the 
projectile trajectory. In this case define a equally spaced array of x coordinate values 
between 0 and the maximum horizontal range R. Plot the trajectory and the apogee.

fraction of range R



Challenge #3:  Create a new projectile model which is based upon calculating trajectories
that are launched from (0,0) and pass through a fixed position (X,Y). Calculate the minimum
launch speed to achieve this, and hence determine ‘low ball’ and ‘high ball’ trajectories.
Derivations of the associated mathematics are on the next few slides.

2 2u g Y X Y + +

2 2

1tan
Y X Y

X
 −

 + +
=  

 
 

2 2

2

2

2 2

2 2

2

1

tan (1 tan )
2

tan tan 0
2 2

4
tan

2

g
Y h X X

u

g gX
a b c a X b X c Y h

u u

b b ac

a

 

 

 −



= + − +

 + + = = = − = − +

 −  −
=  

 
 

( , )X Y

Note in this example I have 

set h = 0. But you don’t have to!
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Projectiles are typically modelled as point masses (i.e. ‘particles’) falling under gravity. In other words, internal motion and rotation is ignored and only the centre of 
mass of the projectile is considered. Air resistance is often ignored to enable analysis to proceed without a computer. Note this assumption may be significantly invalid 
for many real projectiles! Hence this system reduces to a two dimensional kinematics problem, where acceleration is constant.

Let the coordinates of the projectile be (x,y) on a Cartesian grid. Let the initial velocity be u at an elevation of  and let the projectile be launched from (0,h) 
Since acceleration is constant:
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Note this means the x direction 
velocity is always constant 
throughout the motion!

We can therefore combine these equations to find various properties of the projectile’s trajectory
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i.e. a projectile trajectory is an 
inverted parabola

If the projectile is required to pass through (or collide with!) a particular coordinate (X,Y), we 

can solve the quadratic trajectory equation to determine the elevation angle, given speed u is 
known. This calculation relates to models of all ball sports, gunnery (ballistics) etc.
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Note multiple solutions are possible, 
depending on the sign of the 
discriminant 2 4b ac−

The apogee of the trajectory is when vy = 0
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The speed v of the projectile is: 
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Elevation angles which give 
rise to a zero discriminant 
define the bounding 
parabola for the projectile 
(see next page).

x

y

v

v

 
=  

 
v

( , )x y


http://www.eclecticon.info/


Mathematics topic handout:  Projectiles  Dr Andrew French. www.eclecticon.info  PAGE 2

2 2

2

2

2

2

2

2

2

1

tan (1 tan )
2

tan tan 0

2

2

4
tan

2

g
Y h X X

u

a b c

g
a X

u

b X

gX
c Y h

u

b b ac

a

 

 

 −

= + − +

+ + =

=

= −

= − +

 −  −
=  

 
 

Possible values for u and the bounding parabola

For real values of  : 2 4 0b ac− 

Without loss of generality, set a coordinate system
such that 0h =
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Non physical, since u is real 
and positive

The minimum u parabola is defined by the 
trajectory corresponding to the minimum 
velocity required to generate a projectile 
trajectory which intersects with (X,Y).
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minimum u parabola. Only one value of
  is possible, since the trajectory equation
discriminant is zero.

Trajectory 
equation

The bounding parabola
is slightly different – this bounds
the possible set of trajectories
given a value of u
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i.e. vary the target coordinates X,Y 
instead, by shifting the origin

Trajectory equation for

minimum u parabola
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Challenge #4:  Create a new projectile model which compares a trajectory to the trajectory
which maximizes horizontal range given the same launch height and launch speed. Inputs 
are u,h,g and . For the maximum range trajectory you need to calculate the optimum angle. 
For h > 0 note this is not 45o... Derivation in the next few slides.
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The maximum range problem

Given a fixed projectile launch speed
what angle maximises range?
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To maximize R we need to find  such that:
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Given the maximum range problem
involves two parameters, to visualize
possible solutions we need to plot
a surface graph. 

In the example plots,
colour is used to indicate
the height of the surface.

In all examples
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maximum value
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maximum  range is given by
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An elegant solution to the maximum range problem
There is an alternative, more geometric, method that arrives at the solution
to the maximum range problem without so much trigonometric horror!
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At maximum range the velocity triangle is right angled, so using 
Pythagoras’ theorem we can calculate the time of flight 
corresponding to the maximum range
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We can use this result, combined with the expression for R, to find the
required elevation angle to result in maximum range.
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Challenge #5:  Update your projectile model of a trajectory which passes through (X,Y) with 
the bounding parabola, in addition to minimum speed, max range and high and low ball 
curves. The bounding parabola marks the region where possible (X,Y) coordinates could be 
reached given u,h,g inputs.



The bounding parabola sets the limit of the possible set of trajectories given a value of u
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Challenge #6:  Now update your projectile model with a calculation of the distance travelled 
by the projectile i.e. the length of the inverted parabolic arc. The calculus for this is on the 
next slide, and example MATLAB code follows.
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Projectile distance travelled

The distance travelled by a particle undergoing projectile motion

from (0,h) is given by:

Now trajectory equation is:
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Which can be calculated easily using MATLAB/Python/Excel etc, 
and checked with a numeric approximate calculation using a 
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Universal parabola constant

i.e. when the inverted parabolic trajectory crosses the horizontal axis after launch.
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%Projectile trajectory calculator (no air resistance)
function p = pcalc( theta, u, g, h, N )
 
%Range /m
p.R = ((u^2)/g)*( sin(theta)*cos(theta) +...
    cos(theta)*sqrt( sin(theta)^2 + 2*g*h/(u^2) ) );
 
%x /m
p.x = linspace(0,p.R,N);
 
%t /s
p.t = p.x/(u*cos(theta));
 
%Time of flight /s
p.T = p.R/(u*cos(theta));
 
%y /m
p.y = h + p.x*tan(theta) - ( g/(2*u^2) )*( p.x.^2 )*( 1 + tan(theta)^2 );
 
%Apogee (xa,ya in m, ta in s)
p.ta = u*sin(theta)/g;
p.xa = (u^2)*sin(2*theta)/(2*g);
p.ya = h + ( (u^2)/(2*g) )*sin(theta)^2;

%x,y velocities in m/s
p.vx = u*cos(theta)*ones(1,N);
p.vy = u*sin(theta) - g*p.t;
 
%Projectile speed /ms-1
p.v = sqrt( p.vx.^2 + p.vy.^2 );

 

%Velocity angle /rad anticlockwise from horizontal
p.phi = atan2( p.vy,p.vx );  
 
%Compute length of trajectory /m
a = (u^2)/( g * (1 + ( tan(theta) )^2 ) );
b = tan(theta);
c = tan(theta) - g*p.R*( 1 + (tan(theta))^2 )/(u^2);
p.s = a * ( z_func(b) - z_func(c) );
 
%Trajectory length /m (numeric calculation)
dx = diff( p.x ); dy = diff( p.y );
p.s_numeric = sum( sqrt( dx.^2 + dy.^2 ) );
 
%Max range parabola given h,u,g
p.theta_m = asin( sqrt( 1/( 2 + 2*g*h/(u^2) ) ) );
p.T_m = (u/g)*sqrt( 2 + 2*g*h/(u^2) );
p.R_m = ((u^2)/g)*sqrt( 1 + 2*g*h/(u^2) );
 
%%
 
%Projectile trajectory length function
function y = z_func(z)
y = 0.5*log( abs( sqrt(1+z.^2) + z ) ) + 0.5*z.*sqrt( 1+ z.^2 ) ;

MATLAB code to calculate a 
projectile trajectory



Challenge #7: A curious fact is that the range of a projectile from the launch point (let’s set 
this to be (0,0) for convenience) plotted against time can actually pass through a local 
maximum and then a minimum, before increasing with increasing gradient. Use the 
derivations on the next slide to recreate the above graphs. Work out the times, x, y, and r 
values for these maxima and minima and plot these via a marker such as a *.
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Projectile range

The distance r of a particle undergoing projectile motion

from (0,0) is given by:
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r vs t (and hence, since they are proportional)  x?  Ignore

‘obvious’ minimum when t = 0.

( )

2 2

2 2 2 3 2 41
4

2

2 2 2 3

2

2 2 2 3

2 2 2

2 2 2

2

2

2

2 if 0 then  0 if 0

sin

2 3 sin

0 2 3 sin 0

2 3 sin 0

Since  0 : 2 3 sin 0

3 2
sin 0

3
sin

2

dr dr dr dr
r r

dt dt dt dt

r u t gt u g t

dr
u t gt u g t

dt

dr
u t gt u g t

dt

t u gtu g t

t u gtu g t

u u
t t

g g

u
t

g















=   = =

= − +

 = − +

 =  − + =

 − + =

 − + =

 − + =

 −

2
2 2

2

2 2

2 2

2

2 2

9 2
sin 0

4

3 9 2
sin sin

2 4

u u

g g

u u u
t

g g g



 


 
− + = 

 

 =  −

Real roots (i.e. there are times when the graph of r vs t
is indeed at a maxima or minima) occur when:
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Challenge #8:  Use a numerical method assuming constant acceleration motion between 
small, discrete timesteps (e.g. the ‘Verlet’ method) to compute a projectile trajectory which 
includes the possibility of a bounce. Define the coefficient of restitution to be the vertical 
speed of separation / vertical speed of approach. Assume a constant horizontal speed, and
stop the simulation after N bounces.

Extension: Modify your code to animate the trajectory, and ideally, create a video file for
efficient future playback. 



Challenge #8 Extension: 

Modify your code to animate the trajectory, and ideally, create a video file for
efficient future playback. A nice feature could be for the trajectory to be revealed as a 
projectile object bounces.



%Verlet trajectory solver
function [t,x,y,vx,vy] = verlet_trajectory_solver( 
N,C,g,dt,h,theta,u )
 
%Initial conditions
theta = theta*pi/180; nbounce = 0; n=1;
t = 0; x = 0; y = h; vy = u*sin(theta); vx = 
u*cos(theta);
 

%Determine trajectory
while nbounce <= N
    
   %Acceleration
    ax = 0; ay = -g;
    
    %Update position

x(n+1) = x(n) + vx(n)*dt + 0.5*ax*dt^2;
y(n+1) = y(n) + vy(n)*dt + 0.5*ay*dt^2;

    
    %Update acceleration (this could involve x,y potentially)
    aax = 0; aay = -g;
    
    %Update velocity

vx(n+1) = vx(n) + 0.5*( ax + aax )*dt;
vy(n+1) = vy(n) + 0.5*( ay + aay )*dt;

    
    %Update time
    t(n+1) = t(n) + dt;
    
    %Check if ball has bounced. If so, modify vy accordingly
    if y(n+1) < 0
        y(n+1) = 0;
        vy(n+1) = -C*vy(n+1);
        nbounce = nbounce + 1;
    end
    
    %Increment counter
    n = n+1;
end

MATLAB implementation
of bouncing projectile using
Verlet ‘constant 
acceleration-between-timesteps’
method



Challenge #9:  Write a new projectile model which compares a drag-free model (use 
what you have already done in previous challenges) with a model incorporating the 
effect of air resistance. Use a Verlet method to solve the air-resistance
case. It is possible to solve motion under drag which varies with the square of velocity 
analytically in 1D (see here) but in 2D projectile motion drag always opposes the 
velocity vector – which makes the maths much harder. So write a numerical recipe!
Mathematical details in the next few slides.

http://www.eclecticon.info/index_htm_files/Mechanics%20-%20Modelling%20air%20resistance.pdf


Investigate the effect 
of air resistance using 
the model.
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Model which incorporates air resistance
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Extension opportunities:

• Consider projectile motion in an atmosphere with a model of air density that 
diminishes with altitude. See the 2022 BPhO Computational Challenge for details!

• Consider projectile motion launched from a spherical planet, which rotates about a 
fixed axis. Work out the latitude and longitude where the projectile lands, and animate 
the motion. Texture-map a planet surface e.g. Earth, Mars, the Moon....

•Write a graphical user interface (GUI) for the projectile model and encode this as an 
‘app’. Coding up an iOS/Android smartphone app will particularly impress the judges. 

• Write up your model as a short paper. (Aim for about 10 sides of A4, two columns). If 
you have never written a paper before, download a few from the Physics Education 
journal. The Epidemiology of Eyam might be a good start... A good opportunity to learn 
LaTeX – which is the typesetting language used to write most technical papers and 
books in the physical sciences. Including Science by Simulation *

Don’t forget to include any extension projects in your video, as this is the only way you 
will gain credit for your work in the BPhO Computational Challenge.
I’m afraid we cannot accept any other files. Submit only the YouTube link to your two-
minute screencast.

* ScibySim was created in Scientific Word. There are lots of other LaTeX-based tools available. Find one that works for you!

https://www.lyx.org/Home
http://www.eclecticon.info/scibysim.htm
https://www.sciword.co.uk/


Example of a projectile motion model implemented in a Graphical 
User Interface (GUI). The sliders change the h,u,  and particle 
mass m inputs, and the trajectory curves are automatically 
updated. This simulation will also output high quality PNG files for 
incorporation into reports etc.

Extension idea



Consider projectile motion launched from a 
spherical planet, which rotates about a fixed 
axis. Work out the latitude and longitude 
where the projectile lands, and animate the 
motion. Texture-map a planet surface e.g. 
Earth, Mars, the Moon....

Newton’s law of Universal Gravitation

2

GM
g

r
=

Distance from 
centre of planet

Planet mass

11 3 -1 -26.67 10 m kg sG −= 

i.e. you will need to modify the strength of
gravity as the projectile gains altitude.Note also the planet will rotate under the 

projectile. Don’t forget the velocity
of the rotating planetary surface at 
launch.

TOP TIP: Use a 3D x,y,z coordinate
system with origin of the centre of
the earth. Work out the projectile
trajectory AND the (rotating) coordinates
of the planet surface.

Extension idea
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