

2024 Projectiles

Welcome to the British Physics Olympiad Computational Challenge 2024. The goal is to build computer
models based upon the instructions in the Challenge Presentation document. These can mostly be
achieved using a spreadsheet such as Microsoft Excel, although you are very much encouraged to use a
programming language of your choice*.

The challenge runs from Easter 2024 till August 2024. To submit an entry you will need to fill in a web
form at https://www.bpho.org.uk/.

Additional resources can be found at: http://www.eclecticon.info/physics_bpho_compphys.htm

The deliverable of the challenge is to produce a screencast of maximum length two minutes which
describes your response to the challenge, i.e. the graphs and the code & spreadsheets and your
explanation of these. Your video should make it really clear how you have arrived at your solutions to the
tasks set. This is what we need evidence for in your video. All credit is for ‘show your working’ !

The videos must be uploaded to YouTube, and we recommend you set these as Unlisted with Comments
disabled. Your entry will comprise a YouTube link. To produce the screencast, we recommend the
Google Chrome add-on Screencastify.

You can enter the challenge individually or in pairs. If you opt for the latter, both of you must make equal
contributions to the screencast.

Gold, Silver or Bronze e-certificates will be emailed to each complete entry, and the top five Golds will be
invited to present their work at a special ceremony. Note no additional feedback will be provided, and the
decision of the judges is final.

Bronze: Initial spreadsheet-based challenge elements attempted, some basic coding.

Silver: All the spreadsheet-based elements completed, and a commendable attempt at the
 programming-based elements. Most tasks completed to a reasonable standard.

Gold: All tasks completed to a high standard, with possible extension work such as the
 construction of apps (i.e. programs with graphical user interfaces), significant development
 of the models, attempt at extension work, short research papers etc.

*MATLAB or Python is recommended, although any system that can easily execute code in loops and plot
graphs will do. e.g. Octave, Java, Javascript, C#, C++, Mathematica... Use what you can access and feel
comfortable with. These Programming resources might be a helpful start.

https://www.bpho.org.uk/bpho/computational-challenge
https://www.bpho.org.uk/
http://www.eclecticon.info/physics_bpho_compphys.htm
https://www.screencastify.com/
https://www.screencastify.com/
http://www.eclecticon.info/programming.htm

INSTRUCTIONS * First download the Challenge Presentation from the BPhO website *

Summary of tasks (each will have Bronze, Silver and Gold aspects - although each task is more involved

than the previous). All mathematical details for tasks are provided in the Challenge Presentation pack. All

the tasks can be completed by coding up the formulae for the y vs x trajectory, maximum range, apogee etc

that are mentioned in the pack. Although we would certainly encourage all students to work through the

derivations (which are provided), and indeed a short paper incorporating all the projectile motion derivations

is a recommended extension activity.

TASK 1: Create a simple model of drag-free projectile motion in a

spreadsheet or via a programming language. Inputs are: launch angle

from horizontal , strength of gravity g, launch speed u and launch

height h. Use a fixed increment of time t . The graph must

automatically update when inputs are changed.

TASK 2: Create a more sophisticated exact (‘analytic’) model using

y(x) equations for the projectile trajectory. In this case define a equally

spaced array of x coordinate values between 0 and the maximum

horizontal range R. Plot the trajectory and the apogee.

TASK 3: Create a new projectile model which is based

upon calculating trajectories that are launched from (0,0)

and pass through a fixed position (X,Y). Calculate the

minimum launch speed to achieve this, and hence

determine ‘low ball’ and ‘high ball’ trajectories.

TASK 4: Create a new projectile model which compares a

trajectory to the trajectory which maximizes horizontal

range given the same launch height and launch speed.

Inputs are u,h,g and . For the maximum range trajectory

you need to calculate the optimum angle. For h > 0 note

this is not 45o ...

TASK 5: Update your projectile model of a trajectory which

passes through (X,Y) with the bounding parabola, in addition to

minimum speed, max range and high and low ball curves. The

bounding parabola marks the region where possible (X,Y)

coordinates could be reached given u,h,g inputs.

TASK 6: Now update your projectile model with a calculation of

the distance travelled by the projectile i.e. the length of the

inverted

parabolic arc.

This can be

computed

exactly!

TASK 7:

A curious fact is that the range r of a projectile from the

launch point, plotted against time t can, for launch angles

greater than about 70.5o, actually pass through a local

maximum and then a minimum, before increasing with

increasing gradient. Use the derivations to recreate the

graphs of r vs t. Work out the times, x, y, and r values for

https://www.bpho.org.uk/bpho/computational-challenge

these maxima and minima and plot these via a

suitable marker.

TASK 8: Use a numerical method assuming

constant acceleration motion between small,

discrete timesteps (e.g. the ‘Verlet’ method) to

compute a projectile trajectory which includes the

possibility of a bounce. Define the coefficient of

restitution C to be the vertical speed of separation

divided by the vertical speed of approach. Assume a

constant horizontal velocity, and stop the simulation after

N bounces. Extension: Modify your code to animate the

trajectory, and ideally, create a video file for efficient

future playback.

TASK 9: Write a new projectile model which compares a

drag-free model (use what you have already done in

previous challenges) with a model incorporating the

effect of air resistance. Use a Verlet method to solve the

air-resistance case with a v2 drag dependence. It is

possible to solve motion under drag which varies with

the square of velocity analytically in 1D (see here) but in

2D projectile motion drag always opposes the velocity

vector, which makes the maths much harder. So write a

numerical recipe instead.

POSSIBLE EXTENSION OPPORTUNITIES:

• Consider projectile motion in an atmosphere with a model of air density that diminishes with altitude.
See the 2022 BPhO Computational Challenge (‘A Standard Atmosphere’) for details.

• Consider projectile motion launched from a spherical planet, which rotates about a fixed axis. Work
out the latitude and longitude where the projectile lands, and animate the motion. Texture-map a
planet surface e.g. Earth, Mars, the Moon....

• Write a graphical user interface (GUI) for the projectile model and encode this as an ‘app’. Coding
up an iOS/Android smartphone app will particularly impress the judges.

• Write up your model as a short paper. (Aim for about 10 sides of A4, two columns).

AF 14/3/2024

http://www.eclecticon.info/index_htm_files/Mechanics%20-%20Modelling%20air%20resistance.pdf

