

BRITISH PHYSICS OLYMPIAD 2015-16

BPhO Round 1

Section 2

13th November 2015

Instructions

Time: 1 hour 20 minutes on this section (approximately 40 minutes on each question).

Questions: Only TWO of the five questions in *Section 2* should be attempted.

Working: Working, calculations and explanations, properly laid out, must be shown for full credit. The final answer alone is not sufficient.

Marks: The maximum mark for each of these questions is 20.

Solutions: Answers and calculations are to be written on loose paper or examination booklets. Graph paper and formula sheets should also be made available. Students should ensure their **name** and their **school** is clearly written on all answer sheets.

Setting the paper: There are two options for setting BPhO Round 1:

- Section 1 and Section 2 may be sat in one session of 2 hours 40 minutes.
- Section 1 and Section 2 may be sat in two sessions on separate occasions; with
 1 hour 20 minutes allocated for each section. If the paper is taken in two sessions on
 separate occasions, Section 1 must be collected in after the first session and
 Section 2 handed out at the beginning of the second session.

Important Constants

Speed of light	С	3.00 x 10 ⁸	m s ⁻¹
Planck constant	h	6.63 x 10 ⁻³⁴	Js
Electronic charge	е	1.60 x 10 ⁻¹⁹	С
Mass of electron	m _e	9.11 x 10 ⁻³¹	kg
Gravitational constant	G	6.67 x 10 ⁻¹¹	$N m^2 kg^{-2}$
Acceleration of free fall	g	9.81	m s ⁻²
Permittivity of a vacuum	ε ₀	8.85 x 10 ⁻¹²	F m ⁻¹
Avogadro constant	N _A	6.02 x 10 ²³	mol ⁻¹

Q2.

Electrons are accelerated through a potential V_1 , producing a horizontal beam along the x-axis. The beam enters a perfectly uniform electric field parallel to the y-axis, produced by a parallel plate capacitor with potential difference, V_2 between the plates, which have separation d and are of length, s, as shown in Figure 2.1.

Figure 2.1

- (a) Determine an expression for:
 - (i) the initial velocity, v_0 of the electrons entering the electric field.
 - (ii) the deflection angle, α , of the beam emerging from the electric field in terms of V_1 and V_2 .
 - (iii) the displacement at P, y_e , of the emerging beam from the x-axis in terms of V_2

[8]

(b) Calculate the transition time, *T*, of an electron through the electric field, given that $V_1 = 2,000 \text{ V}$, $V_2 = 50.0 \text{ V}$, s = 4.00 cm and d = 1.50 cm.

[2]

(c) On emerging from the parallel plates, the beam enters an identical electrostatic field that is at right angles to the initial field, perpendicular to the *x*-axis and the *y*-axis, along the *z*-axis. Determine an algebraic expression for the final speed of an electron exiting the second field and the angles it makes with the Cartesian coordinate axes.

[10]

Q3.

A force, F, resisting the motion of a cyclist travelling along a straight level road at speed v, in the absence of a wind, is given by

$$F = Av^2 + B$$

where A and B are constants.

Table 3 lists data on the power, P, developed by the cyclist as a function of v.

$v / m s^{-1}$	1.40	3.20	4.70	6.50	8.50	9.80	11.2	12.1
P/W	6.00	19.0	37.0	82.0	149	224	298	373

Table 3

(a) Draw a graph of F against v^2 . Determine the constants A and B with an estimate of their accuracy.

[8]

(b) Suggest the physical significance of the terms Av^2 and B.

[2]

(c) The cyclist can sustain a power of 60 W over long periods. Deduce the equation for the maximum speed, v_c , he can maintain for long periods on a level road.

[5]

(d) By superimposing a graph on the sheet used in (a) determine v_c .

[5]

Q4.

(a) A square wave, positive voltage pulse with peak value 5.0 V and duration 0.020 s is applied across a series combination of a 2.0 k Ω resistor and a 5.0 μ F capacitor.

Sketch, on the same graph, the voltages across the resistor, V_R , using a full curve, and across the capacitor, V_C , using a dashed curve. Add the two voltages using a dotted curve. No numerical calculation is required.

[6]

(b) The current, I, through a rod is related to the voltage V across it by

$$I = 0.20 V^3$$
.

The rod is connected in series with a resistor, resistance R, and a 6.0 V battery.

What is the value of *R* if:

- (i) the current in the circuit is 0.40 A?
- (ii) the power dissipated in the rod is twice that dissipated in the resistor?

[7]

(c) In the circuit in Figure 4.c(i), show that the circuit can be reduced to that in Figure 4.c(ii). Determine the values of R_1 , R_2 , C_1 and C_2 . Each time a simplification is made to the circuit elements, draw the modified circuit.

Q5.

A vertical glass tube, of height $2x_0$, is sealed at its lower end and open at the top end to the atmosphere. It contains *n* moles of air in the lower half (i.e. x_0) of volume V_0 , and mercury of density, ρ , in the top half. As the air expands the mercury is expelled.

Atmospheric pressure, P_0 , corresponds to length x_0 of mercury in a barometer.

- (a) Air expands, occupying an additional length x of the tube, but with total volume V and pressure . Using the reduced volume, $V_R = V/V_0$, and the reduced pressure, $P_R = P/P_0$ of the air, express these quantities in terms of the reduced value of x, $x_R = x/x_0$. Deduce:
 - (i) the relation between P_R and V_R that is independent of temperature.
 - (ii) the general ideal gas law, for the air in the tube at temperature T, in terms of the reduced variables, V_R and T_R only, where $T_R = T/T_0$, and $T_0 = P_0V_0/nr$.

[4]

- (b) Sketch on a $P_R V_R$ graph for the system;
 - (i) the behaviour of the air in the physically admissible region.
 - (ii) the isotherms for the air, indicating which are at the higher temperatures by labelling using $T_{R1} > T_{R2} > T_{R3} >$ etc.

Comment on the symmetry of the curves in (i) and (ii).

Deduce the highest temperature reached by the air in the tube.

[8]

(c) When a small change in the reduced temperature, ΔT_R , and reduced volume, ΔV_R , takes place

$$5\Delta T_R/2 = s_R \Delta T_R - P_R \Delta V_R$$

where s_R is the specific heat per mole of the air in the tube.

Deduce that $s_R = (21 - 12V_R)/(6 - 4V_R)$

[4]

(d) Sketch a graph of s_R against V_R in the physically admissible region.

[4]

Q6.

Two identical spherical homogeneous stars A and B, each of mass M and radius r, have their centres 6r apart. The motion of the stars is to be ignored.

- (a) Explain:
 - (i) Why the surface of B is, or is not, a gravitational equipotential surface.
 - (ii) With the aid of a diagram where, external to the surface of the stars, the gravitational potential is smallest and largest.
 - (iii) Where on the surface of the stars is the potential a maximum?
 - (iv) What is the potential mid-way between the stars?

[9]

- (b) Sketch, on the same diagram, the equipotentials that have the values:
 - (i) $V_1 = -10GM/3r$,
 - (ii) $V_2 = -2GM/3r$ and
 - (iii) $V_3 = -GM/3r$.

[4]

(c) If a body of mass m is ejected from B determine, with appropriate explanation, the minimum velocity, v_m , of launch required to enable it to reach A.

[7]

End of Questions