0 BPhO British Physics Olympiad

BRITISH PHYSICS OLYMPIAD 2015-16
 BPhO Round 1

Section 2

$13^{\text {th }}$ November 2015

Instructions

Time: 1 hour 20 minutes on this section (approximately 40 minutes on each question).
Questions: Only TWO of the five questions in Section 2 should be attempted.
Working: Working, calculations and explanations, properly laid out, must be shown for full credit. The final answer alone is not sufficient.

Marks: The maximum mark for each of these questions is 20.
Solutions: Answers and calculations are to be written on loose paper or examination booklets. Graph paper and formula sheets should also be made available. Students should ensure their name and their school is clearly written on all answer sheets.

Setting the paper: There are two options for setting BPhO Round 1:

- Section 1 and Section 2 may be sat in one session of 2 hours 40 minutes.
- Section 1 and Section 2 may be sat in two sessions on separate occasions; with 1 hour 20 minutes allocated for each section. If the paper is taken in two sessions on separate occasions, Section 1 must be collected in after the first session and Section 2 handed out at the beginning of the second session.

Important Constants

Speed of light	c	3.00×10^{8}	$\mathrm{~m} \mathrm{~s}^{-1}$
Planck constant	h	6.63×10^{-34}	J s
Electronic charge	e	1.60×10^{-19}	C
Mass of electron	m_{e}	9.11×10^{-31}	kg
Gravitational constant	G	6.67×10^{-11}	$\mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$
Acceleration of free fall	g	9.81	$\mathrm{~m} \mathrm{~s}^{-2}$
Permittivity of a vacuum	ε_{0}	8.85×10^{-12}	$\mathrm{~F} \mathrm{~m}^{-1}$
Avogadro constant	N_{A}	6.02×10^{23}	$\mathrm{~mol}^{-1}$

Q2.
Electrons are accelerated through a potential V_{1}, producing a horizontal beam along the x-axis. The beam enters a perfectly uniform electric field parallel to the y-axis, produced by a parallel plate capacitor with potential difference, V_{2} between the plates, which have separation d and are of length, s, as shown in Figure 2.1.

Figure 2.1
(a) Determine an expression for:
(i) the initial velocity, v_{0} of the electrons entering the electric field.
(ii) the deflection angle, α, of the beam emerging from the electric field in terms of V_{1} and V_{2}.
(iii) the displacement at P, y_{e}, of the emerging beam from the x-axis in terms of V_{2}
(b) Calculate the transition time, T, of an electron through the electric field, given that $V_{1}=2,000 \mathrm{~V}, \quad V_{2}=50.0 \mathrm{~V}, s=4.00 \mathrm{~cm}$ and $d=1.50 \mathrm{~cm}$.
(c) On emerging from the parallel plates, the beam enters an identical electrostatic field that is at right angles to the initial field, perpendicular to the x-axis and the y-axis, along the z-axis. Determine an algebraic expression for the final speed of an electron exiting the second field and the angles it makes with the Cartesian coordinate axes.

Q3.
A force, F, resisting the motion of a cyclist travelling along a straight level road at speed v, in the absence of a wind, is given by

$$
F=A v^{2}+B
$$

where A and B are constants.

Table 3 lists data on the power, P, developed by the cyclist as a function of v.

$v / \mathrm{m} \mathrm{s}^{-1}$	1.40	3.20	4.70	6.50	8.50	9.80	11.2	12.1
P / W	6.00	19.0	37.0	82.0	149	224	298	373

Table 3
(a) Draw a graph of F against v^{2}. Determine the constants A and B with an estimate of their accuracy.
(b) Suggest the physical significance of the terms $A v^{2}$ and B.
(c) The cyclist can sustain a power of 60 W over long periods. Deduce the equation for the maximum speed, v_{C}, he can maintain for long periods on a level road.
(d) By superimposing a graph on the sheet used in (a) determine v_{C}.

Q4.
(a) A square wave, positive voltage pulse with peak value 5.0 V and duration 0.020 s is applied across a series combination of a $2.0 \mathrm{k} \Omega$ resistor and a $5.0 \mu \mathrm{~F}$ capacitor.

Sketch, on the same graph, the voltages across the resistor, V_{R}, using a full curve, and across the capacitor, V_{C}, using a dashed curve. Add the two voltages using a dotted curve. No numerical calculation is required.
(b) The current, I, through a rod is related to the voltage V across it by

$$
I=0.20 \mathrm{~V}^{3} .
$$

The rod is connected in series with a resistor, resistance R, and a 6.0 V battery.
What is the value of R if:
(i) the current in the circuit is 0.40 A ?
(ii) the power dissipated in the rod is twice that dissipated in the resistor?
(c) In the circuit in Figure 4.c(i), show that the circuit can be reduced to that in Figure 4.c(ii). Determine the values of R_{1}, R_{2}, C_{1} and C_{2}. Each time a simplification is made to the circuit elements, draw the modified circuit.

Figure 4.c(i)

Figure 4.c(ii)

Q5.
A vertical glass tube, of height $2 x_{0}$, is sealed at its lower end and open at the top end to the atmosphere. It contains n moles of air in the lower half (i.e. x_{0}) of volume V_{0}, and mercury of density, ρ, in the top half. As the air expands the mercury is expelled.

Atmospheric pressure, P_{0}, corresponds to length x_{0} of mercury in a barometer.
(a) Air expands, occupying an additional length x of the tube, but with total volume V and pressure . Using the reduced volume, $V_{R}=V / V_{0}$, and the reduced pressure, $P_{R}=P / P_{0}$ of the air, express these quantities in terms of the reduced value of x, $x_{R}=x / x_{0}$. Deduce:
(i) the relation between P_{R} and V_{R} that is independent of temperature.
(ii) the general ideal gas law, for the air in the tube at temperature T, in terms of the reduced variables, V_{R} and T_{R} only, where $T_{R}=T / T_{0}$, and $T_{0}=P_{0} V_{0} / n r$.
(b) Sketch on a $P_{R}-V_{R}$ graph for the system;
(i) the behaviour of the air in the physically admissible region.
(ii) the isotherms for the air, indicating which are at the higher temperatures by labelling using $T_{R 1}>T_{R 2}>T_{R 3}>$ etc.

Comment on the symmetry of the curves in (i) and (ii).
Deduce the highest temperature reached by the air in the tube.
(c) When a small change in the reduced temperature, ΔT_{R}, and reduced volume, ΔV_{R}, takes place

$$
5 \Delta T_{R} / 2=s_{R} \Delta T_{R}-P_{R} \Delta V_{R}
$$

where S_{R} is the specific heat per mole of the air in the tube.
Deduce that

$$
s_{R}=\left(21-12 V_{R}\right) /\left(6-4 V_{R}\right)
$$

(d) Sketch a graph of S_{R} against V_{R} in the physically admissible region.

Q6.
Two identical spherical homogeneous stars A and B, each of mass M and radius r, have their centres $6 r$ apart. The motion of the stars is to be ignored.
(a) Explain:
(i) Why the surface of B is, or is not, a gravitational equipotential surface.
(ii) With the aid of a diagram where, external to the surface of the stars, the gravitational potential is smallest and largest.
(iii) Where on the surface of the stars is the potential a maximum?
(iv) What is the potential mid-way between the stars?
(b) Sketch, on the same diagram, the equipotentials that have the values:
(i) $V_{1}=-10 G M / 3 r$,
(ii) $V_{2}=-2 G M / 3 r$ and
(iii) $V_{3}=-G M / 3 r$.
(c) If a body of mass m is ejected from B determine, with appropriate explanation, the minimum velocity, v_{m}, of launch required to enable it to reach A.

End of Questions

