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The Planck law of Black body radiation 

The Stefan-Boltzmann law predicts that the radiant energy I emitted per second per unit area of a hot body is proportional to the fourth power of the absolute temperature of the body. Unless a body is 

radioactive, radiant  heat is re-radiated energy that it has previously absorbed. A Black-body is the most extreme case. This means all radiant energy incident upon the body is absorbed (and in time re-

radiated). The emissivity is unity for a Black body, and between 0 and 1 for real-world objects.  Paint, ice, water all have emmisivities over 0.9, but aluminium foil, copper and silver are less than 0.05. 

4I T 8 -2 -45.67 10 Wm K  
Radiation power per 

square metre 

Emmisivity 
Stefan-Boltzmann constant 

Absolute 

temperature /K 

For a Black body at 20oC = 293K,   
-2418WmI 

It is interesting to compare this to the maximum solar energy incident 

upon the Earth, which is on average about  1,361 Wm-2 

The spectrum of radiative emissions from a Black body has a characteristic curve.  This is the Planck law, 

named after Max Planck, who proposed the curve in 1899. To derive the curve we must combine classical ideas relating 

to the energy density of waves in a box (Rayleigh 1900) with quantum concepts, initially developed by Planck, Einstein 

and many others between 1900 and 1910.  

The measured solar irradiance (i.e. power received 

on Earth per square metre within a wavelength interval 
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We can write an alternative expression for the Planck law in terms of radiation frequency. 

The derivation of the Planck law is slightly simpler in this form. 

 

A summary of the results (derived on the next page) are as follows: 
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is the ‘density of states’ i,e. number of photons per unit volume that 

can be activated within frequency range 

Radiant energy flux upon the walls of a black cavity containing 

energy per unit volume u  (from Kinetic theory). 

Energy density within frequency range  f f df 
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is the average energy of a photon of frequency  f 

Energy density (energy per unit volume) 

So:  ( )f E 

We will use Rayleigh’s ‘waves in a box’ concept 

to derive this part 

We will use Einstein’s ‘geometric sum of quantized photons ‘ plus 

ideas of Boltzmann statistics to derive this bit 

Note the measured spectrum 

differs from the Planck law due to 

the absorption of sunlight  at 

particular frequencies by the 

atmosphere. The frequencies 

correspond to excitations of 

molecules. According to Quantum 

theory, these will be at discrete, 

rather than continuous, 

frequencies. 

This formula for irradiance is the Planck law 
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Max Planck 

1858 – 1947 

Nobel Prize 1918 
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Rayleigh’s derivation of the density of states for a cavity containing radiation 
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For electromagnetic waves in a cubical box of side L, the amplitude (of the electric field) must 

be zero at the boundaries of the box. A sensible model is therefore to consider the waves to be 

sinusoidal of the form 
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where n is an integer 

This condition must be met for x,y,z dimensions of the cavity, so the overall wavenumber 

(i.e. the magnitude of the overall wavevector  k ) must obey the condition 
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Since this expression defines the radius of a sphere in l, m, n space, the number 

N of possible values, given p,  is simply an eight of the volume of the sphere, x 2.  It is an 

eighth because l, m, n are all positive integers, and therefore we can only use one 

octant of the sphere when this is true. The x 2 factor is because we can have two polarizations 

for any electromagnetic wave in the cubical cavity, for a given wavevector characterized by 

coordinate (l, m, n ). 
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This method is applicable in general 

if we can subdivide a Black Body 

into small cubes. We run into 

problems of course when the cube 

dimensions are not a large number 

of radiation wavelengths. However, 

for most practical macroscopic 

structures, this assumption will be 

correct. 
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Einstein’s derivation of the average photon energy in a black body cavity 

Planck idea for quantizing the energy of photons / electromagnetic waves 

E nhf where n is an integer 

Boltzmann distribution for the probability of a photon having energy E, given the average 

(absolute) temperature of photons to be T 
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Now since the sum of all possible 

probabilities must be unity: 

The average oscillator energy is given by: 
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Final assembly of the Planck law of Black Body radiation 
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So far we have shown: 
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Combining these results: 

This is the Planck radiation law 

In terms of frequency we can write this as: 
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To find the wavelength at the peak of the Planck radiation law, solve 0
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ASTM E490 2000 is the 

solar irradiance outside the 

Earth’s atmosphere. The 

Sun’s surface temperature is 

5778K. 

ASTM E490 2000 solar spectral data  http://rredc.nrel.gov/solar/spectra/am0/ 

Evaluated numerically 

for measured data 

Red       620-750nm 

Yellow   570-590nm 

Green   495-570nm 

Blue      450-495nm 
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Einstein’s model of the molar heat capacity of a solid 

 

The formula for the average energy of a photon in the ‘Black Body  cube’ was used by Einstein to 

suggest a formula for the molar heat capacity of solids. Although this is only an approximate model, 

it is significantly better than the Dulong & Petit Law, which predicts a molar heat capacity of 3R. 

Whereas this is fine for gaseous molecules (and possibly liquids) with three-degrees of movement 

(i.e. no rotation or vibration is significant), this does not fit experimental data for solids.  As a solid 

cools to absolute zero, it clearly must have reduced capacity since almost nothing is vibrating. So a 

constant heat capacity must be wrong for cold solids. 

 

Let us assume the solid vibrates at a fixed* ‘Einstein frequency’  
E

f

*The more accurate Debye model assumes a spectrum of frequencies, rather than just one 
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from the ‘Black body analysis’ 
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Element Debye 
temperature /K 

Einstein 
frequency / 
1013Hz 

Gold (Au) 170 0.2855 

Copper (Cu) 343.5 0.5769 

Titanium (Ti) 420 0.7054 

Aluminium (Al) 428 0.7188 

Iron (Fe) 470 0.7893 

Silicon (Si) 645 1.0832 

Carbon (C) 2,230 3.7451 
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The heat capacity in the Debye model 

is characterized by a Debye temperature. 

A corresponding Einstein temperature  

can be determined using the relation: 

3
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Since the Einstein model regards 

the solid vibrating at a fixed frequency: 

Dulong & Petit limit of 3R 

It is clear from the graphs above that the molar heat capacities at ‘high temperature’ tend towards 

the Dulong & Petit value of 3R.  However, ‘high temperature’ depends on the element, and 

essentially means ‘much greater than the Einstein temperature.’ For the elements other than Gold, 

this means one predicts quite a significant deviation from 3R around room temperature (e.g.  295K). 
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