Fourier Series & Fourier Transforms

The fundamental idea is that any periodic function (i.e. one that repeats after a particular interval) can be expressed as an infinite sum of sine and cosine waves
of different amplitude and frequency. This can be generalized to an integral (The Fourier Transform), which has wide ranging applications for the solution of
differential equations which occur in the Physical sciences. (e.g. spectral analysis of sound and light, conduction of heat, diffraction of waves ...).

In essence, the Fourier transform of a time varying signal will yield its harmonic content, i.e. the frequencies which comprise it. A Discrete Fourier Transform (DFT).
(which operates on signal amplitudes which are sampled at a fixed rate) can be efficiently implemented in a computer program via a Fast Fourier Transform (FFT).
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Square wave Fourier Series; kmax = 50 Example: Fourier Series of a 5 Square wave Fourier Series: kmax = 10
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We can extend the ideas developed for the Fourier Series to . .
. . For a time signal
define a Fourier Transform
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Fourier Transform of a Gaussian function f(x)= e 207

“ady—1 [z 5
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f(k)= or _[ e dx P y — = x This means: |AXAk =1
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f (k) 207r exp( 12 {X +2ic kX})d o\2x the standard deviations of the probability
- E[ ] © f ( )d density functions associated with their
~ w ] X|= I XT (X)0X Since integrand is odd wavefunctions. (Actually the modulus
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f (k) = ﬁj. exp( { X +io k) —i‘o’k }) dx - / square of the wavefunction — the Born
- 4 Interpretation).
: 0% 2 E[x]=- xe 2 dx =0
f (k) — ﬁe bo \/ﬁ J'_w exp( (X +io k) )dX [ ] o2r ) 2 Now for a particle of wavevector K,
its momentum p is:
z=x+io’k, dz=dx VIxI=ELx]-(ELx]) | e
’ X2 * 2n ,-ax’ _ (2n _1) T h h .
_ﬂzkz L ® 2 . © L, = x"e"dx = — Al p=—= de-Broglie
fl=e'™ [ exp(-2)dz VIx]=4= [ x%e *dx ’ a2 A Af2m  relation
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So the Fourier Transform of Gaussian function is also a o\2r 2x-L\ L h functi
V =_c 2 Uncgrtaint Principle
Note the standard deviation of the Gaussian and its Fourier [X] N xXo T . I Y P pl'
Transform are inversely related. This property underpins the ) Is actually an Inequality
Uncertainty Principle in Quantum Mechanics, \ [X] =0 ADAX > L7
where the wavefunction of quantities such as momentum are PAX = 7
related via a Fourier Transform to the wavefunction of ~std[x] = Ax =, N [X] :EI
position.

*Strictly speaking we ought to perform a contour integral here, but as in Riley, Hobson, Bence; Mathematical Methods for Physics and Engineering, pp436,
we shall be cavalier and assume the high frequency oscillations caused by the imaginary terms are negligible!

Mathematics topic handout: Calculus — Fourier Series & Fourier Transforms Dr Andrew French. www.eclecticon.info PAGE 4


http://www.eclecticon.info/

Summary of Fourier Transform theorems

7 1 [® -ikx Note the Fourier Transform is a special case of a general class of Integral Transforms.
f (k) = ﬁj‘_w f (X)e dx Definition of the Fourier Transform Another, which is popular in signal processing, is the Laplace Transform.
o ~ o and Inverse Fourier Transform - N
— 1 . _
f(x)=2] f(k)e"dk F(s) = [ f (®edt
S[ f (x)] = f(k) ‘Operator’ notation for “find the Fourier Transform of the function f(x)’
S[ f (X — a)] —e " f (k) Fourier Shift Theorem. This is the

N algorithmic basis for many ‘pitch shifting’
R [eiax f (X)] = f(k-a) signal processing effects

S[ f (ax)] = ﬁ (2k) Scaling theorem

n . . . .
N These theorems involving derivatives

3 Y f (X) = (lk) f (k) provide a powerful tool for solving

dx differential equations. Applying a Fourier
qr Transform will turn a differential equation

n - 5 into an algebraic one. Once solved,

S[X f (X)] =1 n f (k) application of the Inverse Fourier
dk Transform will yield the solution.

S[ f(x)* g(X)] =4 fzﬂ- f(k)g‘(k) Convolution Theorem. This is very useful

in signal processing. e.g. ‘Pulse Compression’

S[ f (x)g(x)] - % f(k) % g(k) in Radar applications.

100900 =[" (2)g(x—2)dz

[ 1009 (aax = T (" (k)ak
[T oofax=T

Parseval relations

S T

i.e. the area under the Power Spectrum is the same
as the integral of signal power. This must be true
since energy is conserved!
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The Discrete Fourier transform and spectral analysis

If a signal X(t) is sampled at rate f,, we can define
a digital filter, which can be used to extract useful
features, while perhaps inhibiting others.

y is the filter output, which combines n subsequent weighted
samples of the signal.

A Digital Fourier Transform (DFT) is a filter bank with filter weights

_27i(n-1)(k-1)

W, =xe N

z|-

The filter has a frequency response (i.e. the output vs frequency

due to N samples of a pure sinusoid)

G
fS

_ 2,
X,=¢

yk(f) = an,kxn

_27i(n-1)(k-1) , 2xif (n-1)

w(H=txe * "

This can be simplified by considering the sum of a geometric
progression
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Addition of three pure tones

. A Example signal — a sum of
N?sin? M—ﬂ 4 I ”\ “l\ ﬂ three sinusoids
N f Al ! ’I -
s [ 0 I | 3 ;
a4l 1 g o | f\ | xw-Sasinerti-g)
; . ° I i I | [ m=1
Maximum response when: E 1” ‘w {, ‘ |‘ \ “l H I ‘I‘ ‘f“ ‘\| ‘r‘- |‘ .“‘ {am}={1,2,l.5}
k-1 _xf'_, oL N |M |
DL SO =tesasas)
’ ) I“ ‘ ‘ ‘ \‘I U“I ‘ ‘ l : /o T
= (k—l) f 2 i || } ~‘ ‘l‘l M |“ ,J \|\ \ LI‘ I‘| I | ‘| {¢m}:{ lfl?}
N al H U Uy | | b ‘\.‘I \‘
Let the outputs of the filter bank correspond to 4 | j i i |
a desired range of frequencies, with a maximum 0 2 4 6 8 10

. time /s
response at these frequencies.

DFT
The filter frequency response is ambiguous (i.e. repeats)
every frequency interval of f, , so the maximun

Addition of three pure tones - Normalized Power Spectrum
value can be at most the sample rate. 4 ‘ .

From the Power Spectrum it is
So for the DFT, define: 1.2 easy to read off the
5 component frequencies and
L z 4l their respective magnitudes.
(k — ]_) f This is called the g |
i Nyquist Criterion & | ‘\ | Note if the Power Spectrum
N f 5 0.8
s 2 H peaks need to be sharper,
) f @ ;
~27i(n-1)— © 6l | ‘ more samples N required.
w(f)=te E f‘
g 0.4l / "\ | Ifthe sample rate is
—2i(n- 1)* s | increased, the spectral peaks
. 5 = X 1
y(f)= Z X€ 02l I | i _ will broaden, so to sharpen
' H | | \ them, you have to sample for
, _ N ol longer
The latter is essentially a description of the DFT 0 1 2 3 4
frequency /Hz
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