Numeric solution of ordinary differential equations

Many laws of the Physical Sciences are expressed in terms of derivatives. e.g. Newton’s Second Law of (non-relativistic) dynamics:

mass x acceleration = vector sum of forces

In one dimension, acceleration is the rate of change of velocity, and velocity is the rate of change of displacement. With appropriate symbols we could write
a set of differential equations to describe subsequent motion, given a knowledge of the initial conditions.
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2D Example using Euler’s method
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Euler’s Method can be extended for equations involving higher We can readily extend the method to two, three or higher dimensional problems which are
derivatives, by creating a system of coupled first order equations parameterized in terms of a single variable by using vectors.
d’y dy dy
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There are various methods which can offer greater precision given a fixed step size. The Runge-Kutta method below will extend to higher derivatives and vector equations
in exactly the same way as described for the Euler method. The Verlet method is really specific to kinematic problems, but will naturally extend to two or three dimensions using vectors.

Verlet Method — assume ‘constant
acceleration motion’ between time steps

dx
V=—
dt
dv
E:a(x,v,t); X=%&V=u whent=0
t, =t +At
V., =V, +AvV
X, =X +AX

AX =V, At+3a(x,,v,,t ) (At)
V =v +a(x,v,,t )At
Av =t{a(x,,t,)+a(x

V ' tn+1)}At

n+1?

This is a second order method
i.e. errors are proportional to (AX)

Note if acceleration is functionally dependent

on velocity we have to use a first order y
Euler method to evaluate the second
acceleration term.

Runge-Kutta method

d—yz f(y,x); y=Yy, when x=x,
dx

X, = X, +AX
Yo = Yo +AY
k.= f(y,.x,)
k,=f(y, +1Axk, X, +1AX) y
k= f(y, +1Axk,, X, ++AX)

k, = f(y, +Axk,, X, +Ax)
Ay =+ Ax(k, + 2k, + 2k, +K,)

This is a fourth order method
i.e. errors are proportional to (AX)
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' ‘ Comparing the effect of reducing the finite X difference Martin Kutta
% 4 6 8 10 between the Euler and the Runge-Kutta solvers 1867-1944
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Solar system simulation using the Verlet method Initial conditions for circular orbits.
Solar system simulator using Verlet method
[ Xj Newton’s law of Universal Gravitation. In (Yr, AU) units, Kepler Il is: 30r ‘ ‘ I T ‘ MI .
r= M is the mass of the Sun, which is T2 = a7 T ercury
y assumed to be so massive compared to N Venus
dv GMm the other planets that the interaction of 20+ - —Earth |
FTERPE r their gravity on it is negligible. i.e. it is fixed Circular Motion: Mars
‘r‘ in position. 27t Jupiter
dr o ) ) V=—- 10} Saturn ||
V=— The gravitational interaction between the T Uranus
dt planets is also ignored. r=a Nept
-] eptune
.. 2rma < 0f | 1
Using Kepler’s Third law V=g > |
2r /
Te 4r? a° T is the orbital period V= T -10f .
" GM a is the semi-major axis of the orbit a /
A’ (in general, bound orbits are ellipses) a 0 /
. 2 _ 3 X . =201 1
S AYr _GM 1AU ”roz(o} v, = 2_75
3 Yris an Earth year Ja
, AU > . .
~.GM =4r > AU is an astronomical unit -30 :
Yr i.e. the average Earth-Sun separation 30
Jdv_ 4r .
ot ‘r‘s \ If lengths are measured in AU
and times in Years. Note planet masses
cancel and therefore are not required.
AWACES r/ AU m / Earth Rotation Orbital
____________________________ masses period eccentricity
: Can't readily Runge-Kutta since the left had side of the : /days
| differential equation is functionally dependent on neither
| velocity or time : M_ =1.99x107kg Mercury 0.241 0.387 0.055 58.646 0.21
e e e [0) '
21 Venus 0.615 0.723 0.815 243.018 0.01
G =6.67x10""Nm“kg
Earth 1.000 1.000 1.000 1.000 0.02
Solver using the Verlet method AU =1.49597871x10"m
—— 24 % 3600s = 1day Mars 1.881 1.523 0.107 1.026 0.09
e , i.e. constant M =332.837m Jupiter 11.861 5.202 317.85 0.413 0.05
r =1 v At—i47r r (At)z ¢ | acceleration °© ' ®
n+t — n n 27 3 In motion between m, = 5.972 x10% kg Saturn 29.628 9.576 95.159 0.444 0.06
time steps Uranus 84.747 19.293 145 0.718 0.05
1 1
V.,=V, —4772At%{—3 r+—s rm} Use the average Neptune 166.344 30.246 17.204 0.671 0.01
n n+l 1
[T acceleration between Pluto 248.348 39509  0.003 6.387 0.25
the time steps to

work out the new
velocity
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