Second order ‘ordinary’ differential equations (ODEs) are of the general form: The two roots of the Auxiliary Equation yield the two independent functions

of the Complimentary Function
f[x y,— dy d yj 0

o' d The goal is to find a closed form expression for y(x) q2 d
a—g AN cy=0
dx dx
Second order ODEs contain up to the second derivative of the variable y 2 7~
SO one expects two arbitrary constants, which will result from integration, o —b+b” —4ac
. . . . +

and which must occur in two independent instances to remove the N 2a Aand B are arbitrary constants to be set
derivative(s). Hence to solve the ODE, we will need to know one point on y = Ae™* + Be' < by the initial conditions e.g. y and dy/dx values
the (X,y) curve and the corresponding derivative, or two points on the when x=0

curve, or two derivatives etc....
Special case: repeated roots

Linear second order differential equations We must have the possibility of two arbitrary constants for a second order
This is a special case, which in many scenarios will have a closed equation, so if the discriminant of the auxiliary equation is zero:
form solution. 5
o o dy _dy
d’y d Linearity means all derivatives a—5+b—=+cy=0| check:
v +d— p(x)+ yr(x) =q(x) in the equation are raised to a single dx dx y=(Ax+B)e’
X OX power b?—4ac=0
L . . . b d—yzﬂb(AX+ B)e™ + Ae™ =(1AX+AB+ A)e”
The solution is the solution when g(x) = 0 “The Complimentary Function” (CF) —(Ax+B 22 dx
plus a “Particular Integral” (Pl which is typically something which has the same y= ( ),(\+ )e dy L ADX 4 AbB + Ab)e
form as q(x). If this doesn’t work try xq(x), x2q(X) etc... '\ dx = (AADx+ +Ab)e”
d 2 X AX
d 2y y Alas, there is often no simple method i.e. an extra linear term Xg = (ﬁzAX +A'B+ /IA)el +AAe
— +—=p(Xx)+yr(x)=0 beyond ‘inspired guesswork’ to find 42
dx®  dx the Complimentary Function in the s.a )2/ = (/12Aax +A%aB + 2/1aA)e“
Yer (X) = Ag(X) + Bh(X) general case where p and r are )
functions of X d Y. bdl +cy
. d dx
2y dy However, you can solve the scenario = (A% Aax+ A%aB + 21aA + AAbX+ AbB + Ab + CAX + Bc e’
a—2+b—+cy =0 when p and r are constants....
dx dx . . = (A*Aa+AAD+CcA)xe™ +(A%aB +22aA + AbB + Ab+ Bc)e™
y = Aelx i.e. the specific

relatipnships >A=-L, b? —4ac:0:>c:%
2 42X X X for this repeated ,
s.aALe™ +bAe™ +ce™ =0 i d

root scenario +bgl+cy
cal’+bl+c=0 <« This quadratic polynomial is called the X . Ny
> Auxiliary Equation f* )Axe ( 2 aB-taA-LbB+Ab+ Bf—a)e“
,-,g:_bi\‘b —4ac =(Z_py )Axe +(£B-bA-LB+Ab+B2)e”
23 =(0)Axe™ +(0)e* =0 v
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Special case: complex roots Example: Driven Simple Harmonic Motion (SHM)

If the discriminant is negative, then our auxilliary A linear second order differential equation with constant coefficients and a sinusoidal q describes
quatlon has no real rqots. . many oscillatory systems in Physics, and results from Newton’s Second Law (springs, pendulums etc)
This means the Complimentary Function has or Ohm'’s law (applied to a reactive circuit with an inductor, capacitor and resistor).
exponential solutions with imaginary powers i.e.
oscillatory (sine and cosine) form. d’x N 2j/d_X +aix=Asinat Auxilliary equation, considering solutions to the CF of the form X(t) = ae™
dt? dt 0 2 2

d2 d AT+ 2+ awi =0

a—g AN cy=0 ;
dx dx Assume y,@, >0 A=-yt }7,2 s

2

b®—4ac <0 Three special cases:
H 2

1 = —-btiydac-b V>, “Overdamped” i.e. not a single oscillation

.

X 2a .

\/72 Y=, “Critically damped” i.e. nearly a single oscillation See next page for general solutions...
b 4ac—b

V= 23’ k= 2a ¥ < @, “Underdamped” i.e. oscillatory solutions

i The positive y will always mean an exponentially decaying complementary function, or “transient” since

sy =Ae e + Be e .
Can assign this in SHM, X is typically the amplitude of an oscillation as a function of time.

B = Ae? < without loss of
generality :
Ly =Ae (e“‘x + e—‘kx+2i¢) The steady state solution is therefore the Particular Integral. Let this take the form: X(t) = BSIn(a)t —¢)

It is easier to consider a complex SHM version (!), and then extract the imaginary part....

X(t) = BCOS(a)t —¢)+ iBSin(a)t _¢) — Bei(wt_¢)

Ly = Ae "¥el* (eikx—iqﬁ n e—(ikx—qﬁ))

_ - Steady state solution to driven SHM equation
.y =2Ae """ cos(kx — ¢) % dx _ 10 ‘ ‘
e + 27/ E + a)OZX = Abe""t Complex SHM equation ..g 8 ,f‘ "-\
. ) ) _ _ L 6t / \\
Soifyis real, then: . —0*Be"? + 2iywBe ) + ?Be' ) = A 2 4 FLAN
- E s .
d’y ., dy o (—ot + 2y + coj) Be " =A < = S
a—+b—=+cy=0 0 05 15 2
dx*  dx {222 ‘ @] @, '
2 &R ) i
b? —4ac <0 B\/(a)g — a)z) + 4}/2(029 %" )gid _ A é . Phase response -
S — —
@ Y= 0.05(-)0
b Jdac - b? < , "
y=—, Kke—— sIB= A\)Z Since A, and B '§'2 ’;‘ Y= 0.1(u0
2a 2a \/( w? — a)z) +4y° 0’ are real constants & f 1=020,
y = ae COS(kX _ ¢) 0 the phases must cancel a 1+ / 1=050,
|g=tan™ e ; 2o = — :
where « is a real arbitrary constant N Ea @ — These equations model g0 1 15 2
and ¢ is an arbitrary phase constant. 0 resonance effects o/ @,
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. d’x . dx :
SHM in summary —2+27—+a)§X=AbSIna)t
dt dt
‘Transient’

Under-damped - oscillatory

V<@ /
X(t) = Ae™" cos(t«/wj —y? —CD)+ Bsin(wt—¢)

| % +7 (X, +Bsing)—Bawcos¢

@ =tan"
(%, + Bsin¢)\/a)§ -y°
A Xt Bsing
cos®

Critically damped

V=

x(t)=e" (A +At)+Bsin(wt—¢)
A =X, +Bsing

A, =%, +7 (% +Bsing)—Bwcos¢

Over-damped

¢:tan_1( 22}/602)

Wy — @

‘Steady state’ solution
amplitude and phase

!

B...x When a):,\/a)g—Zy/z
s _ A

RPN P

V>,

x(t)=¢"" (Aletm - Aze‘tm)+ Bsin(wt—¢)

X, +7 (% +Bsing)—Bwcos¢

2y’ -}

X, +7 (X, +Bsing)—Bwcos ¢

A =1(x,+Bsing)+

A, =1(x,+Bsing)-

2«};/2 @}

Note we only get a
resonance peak when

o} —2y*>0
Q)
< 0
N
7 <0.7011a,

Magnitude of steady state response ..,
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d’x a5 .
- +2y—+w,x = A,sinwt
dt dt ;:;r;:ﬂr f:'fn‘e ::\:::Z fr Eztm:nnn solution explorer
b4 Wy A, w X Y,
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Note this resonance frequency will always be less than or
equal to the natural frequency

Steady state solution to driven SHM equation

10 ' A '
< /N ——7=0050,
x _
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Phase response
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