Solving equations using iteration $x_{n+1} = F(x_n)$

In many situations it may *not* be possible to find the *exact* solution(s) to an equation f(x) = 0 via algebraic means. However, we can *compute* a solution to the precision of our calculating device (e.g. 12.d.p for most modern calculators) using an *iterative* scheme.

In essence, the idea is to re-write f(x) = 0 into the form x = F(x) and then consider the sequence $x_{n+1} = F(x_n)$. If the initial value x_1 is suitably chosen, then the sequence f(x) is su

Example

$$f(x) = x^{3} - 3x - 1$$

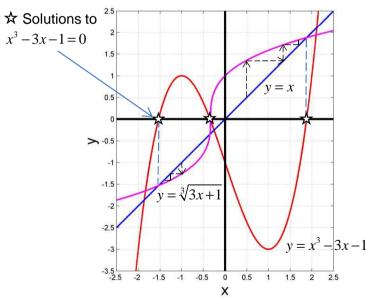
$$f(x) = 0$$

$$x_{n+1} = \frac{x_{n}^{3} - 1}{3}$$

$$x_{n+1} = \sqrt[3]{3x_{n} + 1}$$
Two different iteration schemes of the $x_{n+1} = F(x_{n})$ form

 $x_{n+1} = \sqrt[3]{3x_n + 1} \qquad x_{n+1} = \sqrt[3]{3x_n + 1} \\ x_1 = -1 \qquad x_1 = 0.5 \\ x_2 = -1.259921 \qquad x_2 = 1.357209 \\ x_3 = -1.406056 \qquad x_3 = 1.718103 \\ x_4 = -1.476396 \qquad x_4 = 1.932566 \\ \text{the} \quad x_{n+1} = F(x_n) \qquad x_{33} = -1.53208888624 \qquad x_{23} = 1.87938524157$

Note in the above case the first F(x) is the inverse of the other. In many cases $F^{-1}(x)$ will converge on a root when F(x) diverges, and vice-versa.



The iteration $x_{n+1} = \sqrt[3]{3x_n + 1}$ converges on one of the outer roots (-1.532 or 1.879) but *not* the middle root

$$x_{n+1} = \frac{x_n^3 - 1}{3}$$

$$x_{n+1} = \frac{x_n^3 - 1}{3}$$

$$x_1 = 0.5$$

$$x_2 = -0.29167$$

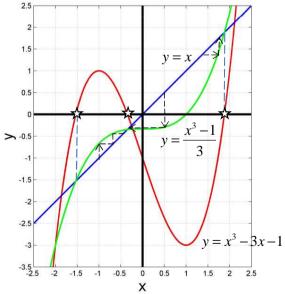
$$x_3 = -0.34160$$

$$x_4 = -0.34662$$

$$x_4 = -0.347296355334$$

$$x_{16} = -0.347296355334$$

$$x_{16} = -0.347296355334$$



The iteration $x_{n+1} = \frac{x_n^3 - 1}{3}$ converges

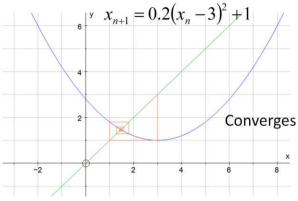
on the inner root (-0.347), or diverges

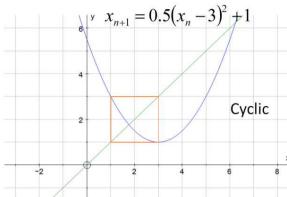
Investigating convergence

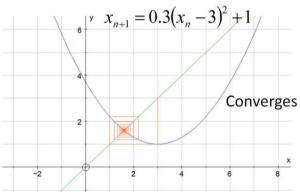
$$x_{n+1} = a(x_n - 3)^2 + 1$$

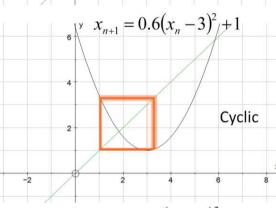
i.e. roots of

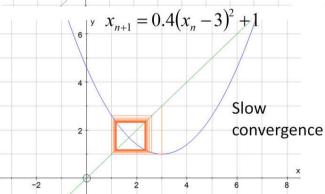
$$f(x) = ax^2 - (6a+1)x + 1$$

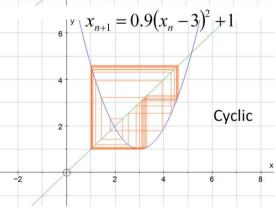








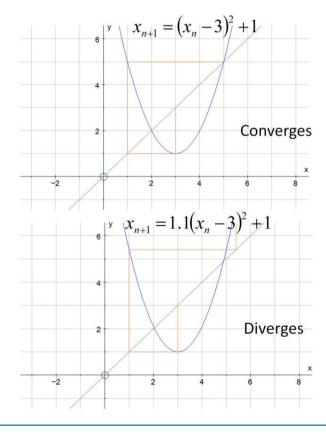




Observations:

If f(x) = 0 can be written as x = F(x) and has a real solution: $x_{n+1} = F(x_n)$ will typically converge toward the solution (the 'root') if x_1 is close to the root and

$$\left| \frac{dF}{dx} \right| < 1$$
 in the neighbourhood of the root.



The Newton-Raphson method

Rather than educated guesswork at what iteration scheme of the form $x_{n+1} = F(x_n)$ one should use, the Newton-Raphson method offers a more sophisticated (and faster converging) iterative scheme. It works very well unless the root is close to a stationary point of the equation x = F(x) (in which case it diverges).

$$f(x) = 0$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$f'(x) = \frac{df}{dx}$$

The idea is as follows:

- (1) Guess an initial value $x=x_1$ for the root
- (2) Find where the tangent at f(x)crosses the x axis
- (3) Let this crossing point be the next x value in the sequence

 $f(x) = (x-3)^2 - 2$ > -2 X

This method can result in very rapid convergence

$$f(x) = (x-3)^2 - 2$$

 $f'(x) = 2(x-3)$

$$x_{n+1} = x_n - \frac{(x_n - 3)^2 - 2}{2(x_n - 3)}$$

Of course the Newton-Raphson method also assumes the function f(x) can be differentiated at all points near the root of f(x). This may not be true for all functions. e.g. tan(x) and 1/xhave undefined gradients at, respectively, $x = \pi/2$ and 0.

$$x_{n+1} = x_n - \frac{(x_n - 3)^2 - 2}{2(x_n - 3)}$$

$$x_1 = 1$$

$$x_2 = 1.5$$

$$x_2 = 1.5$$

$$x_3 = 1.583333$$

$$x_4 = 1.585784$$

$$x_6 = 1.58578643763$$

$$x_1 = 3.5$$

$$x_2 = 5.25$$

$$x_2 = 5.25$$

$$x_3 = 4.56944$$

$$x_4 = 4.42189$$

$$x_5 = 4.41423$$

$$x_c = 4.41214$$

$$x_7 = 4.1421356237$$

Derivation

Tangent to f(x) at x_n is

$$y_T = xf'(x_n) + c$$

$$f(x_n) = x_n f'(x_n) + c$$

$$c = f(x_n) - x_n f'(x_n)$$

$$\therefore y_T = (x - x_n) f'(x_n) + f(x_n)$$

The tangent crosses the x axis when

$$y_T = 0$$

$$x = x_n - \frac{f(x_n)}{f'(x_n)}$$

Hence is this x axis crossing point is the next x value in the sequence

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

The Newton-Raphson method is possibly divergent when a root is near a stationary point i.e. where f'(x) = 0

At this point the ratio f(x) / f'(x) will tend to 0/0which may be undefined.

'Possible divergence' depends on how 'fast' f(x)and f'(x) tend to zero near the stationary point.