Calculus defines the derivative of a function f(x) to be its gradient at coordinate (x,y) along the curve y = f(x). Since we can often find a formula for the derivative of a
function using calculus, this means we can work various features of the curve y = f(x) without having to plot the curve first:
- The location and nature (maxima, minima, point of inflexion) of any stationary

points (or ‘turning points’) i.e. when the gradient is zero. Consider the most basic quadratic: This is a general result — not just for quadratics

- The domain of y = f(x) when f(X) is increasing (or decreasing) .
- The equations of tangents and normals to y = f(x) which pass through (x,y) y=ax
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have to sketch the curve to work this out..... 0 d7y -_8 i.e. —ve therefore (0,0) is a maxima
dx?
Note the function is increasing when the gradient is positive i.e. x=0
2
dy 1 2 Use the stationary points and a sketch to work d’y =8 i.e. +ve therefore this point is a minima
& >0=x<0,x>25 out the regions of the inequality dx? e

Mathematics topic handout: Calculus — Stationary points, Tangents & Normals Dr Andrew French. www.eclecticon.info PAGE 1




Evaluating the derivative of f(x) at a particular x value enables us to work out the tangent through the point (x,y) on the curve y = f(x).
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Stationary points are:

(0,0 & (\e,~1e)

Since the negative-reciprocal of the gradient gives the gradient of
the normal, we can also find the equation of the normal.
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