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Numeric methods of integration – Rectangular, Trapezium and Simpson rules 

 

The anti-differential of a given function cannot always be determined analytically, that is, can be written in terms of basic Mathematical functions such as polynomials, trigomometric, exponentials, logarithms etc.  

Since the integral of a curve y = f(x) (i.e. the area between the curve and the x axis) is the difference of the anti-differential, evaluated at the required limits, this means not all areas under curves can be 

determined exactly, even if the curve itself is known. This represents a major problem in Applied Mathematics, since the area under a velocity vs time graph is displacement, the area under a force vs 

displacement graph is work done, area under a force vs time graph is momentum change (i.e. impulse) etc. 

 

Given a set of x,y data points, numeric integration methods can be used to approximate an integral. We shall assume the x coordinates are equi-spaced and there are N +1 coordinate pairs.  

i.e. our data set shall be: 

All numerical integration methods suggested here will assume polynomials fitted to a sequential 

set of data points. The key idea is that the polynomial coefficients change as one moves through 

the coordinate values. 
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Rectangular method 2 
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Mid-point method 
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As the examples suggest, the convexity (essentially the way the gradient changes as x increases) of the function 

being integrated will dictate which of the first two ‘rectangular’ methods is an underestimate or overestimate. 

 

The Mid-Point method is often more precise as it is essentially the average of the two. If we don’t actually evaluate 

the function f(x) at the mid-point, but just use the actual data points, we indeed perform the mean average of the two 

rectangular methods 
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The purple lines are straight 

lines drawn between the 

data points. In this 

particular example, this 

represents rather a crude 

sampling of the underlying 

curve. 

 

Note the mid-points are 

exactly half way along the 

purple line segments, and not 

necessarily along the curve 

between the data points. 
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Trapezium Rule. In this case we assume a straight line between sequential data points, and integrate this exactly. 

This corresponds to the addition of the areas of trapeziums. 
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 i.e. the same result as the Mid-Point rule 
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Simpson’s Rule. In this case we assume a quadratic curve between 

three sequential data points, and integrate this exactly. 
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This form is called Lagrange Polynomial Approximation 

which defines a quadratic which will pass through all the points 
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To determine the contributions from each quadratic segment we must integrate each 

piece. This is rather tedious algebraically (!) but leads to the following formula 
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Note for Simpson’s Rule the number of strips N must be even. Note also that 

Simpson’s rule is exact if the function is a cubic, quadratic or linear polynomial. 

There are a wide variety of 

higher order polynomial methods. 

In MATLAB, ‘cubic splines’ or 

‘Hermite polynomials’ are the built-in 
options for the interp1 function, 

which can be used to fit a piecewise 

polynomial to a set of x,y data. 

 

These polynomials can be integrated 

(or differentiated) exactly so a curve 

fit can mean that integration or 

differentiation operations can be 

readily applied to a set of data. 

Method Fractional error 

Rectangle 1 -3.76% 

Rectangle 2 3.67% 

Mid-point -0.0455% 

Trapezium -0.0455% 

Simpson -0.0013% 

Comparing the different methods (6 strips) 

for the integral in the illustrative curve 
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Form of the quadratic curve segments 
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