

- Make deflection measurements by squatting down such that the deflected beam is at eye level. Then use a 30cm ruler (or any other short straight edge) to find the height of the bottom of the deflected ruler, in mm.
- Record unloaded and loaded ruler heights, as the unloaded ruler may not be perfectly straight.

Note the ruler should be better aligned than in this photograph!

$$M = 114g$$

$$l = 1,000$$
mm

$$w = 27.75$$
mm

$$t = 6.22$$
mm

EXPERIMENT #1: L = 0.800m, load m varies from 0.1 to 1.0 kg

Fixed extension (L=0.800m), variable load

h /mm	deflection /m	load /kg
871	0.000	0.00
857	0.014	0.10
842	0.029	0.20
823	0.048	0.30
808	0.063	0.40
791	0.080	0.50
777	0.094	0.60
760	0.111	0.70
745	0.126	0.80
730	0.141	0.90
718	0.153	1.00

Deflection appears to be *proportional* to load:

EXPERIMENT #2: fixed load of m = 1.00kg, L varies from 0.300m to 0.800m.

Fixed load (1.00kg), variable L

h /mm no	h /mm	deflection			model deflection
load	load	/m	L/m	L^3	/m
870	717	0.153	0.80	0.512	0.158
868	740	0.128	0.75	0.422	0.130
868	762	0.106	0.70	0.343	0.106
865	778	0.087	0.65	0.275	0.085
867	794	0.073	0.60	0.216	0.067
860	805	0.055	0.55	0.166	0.051
859	815	0.044	0.50	0.125	0.039
858	825	0.033	0.45	0.091	0.028
853	832	0.021	0.40	0.064	0.020
853	838	0.015	0.35	0.043	0.013
849	838	0.011	0.30	0.027	0.008

* Woan. Cambridge Handbook of Physics Formulas pp82

$$\delta = \frac{mg}{3Y \times \frac{1}{3} wt^3} L^3 \qquad \delta = 0.3093 L^3 \quad \Rightarrow 0.3093 = \frac{mg}{Ywt^3} \quad \Rightarrow Y = \frac{mg}{0.3093 wt^3}$$

$$= \frac{1.00 \times 9.81}{0.3093 \times 27.75 \times 10^{-3} \times \left(6.22 \times 10^{-3}\right)^{3}} = 4.80 \times 10^{9} \,\text{Pa}$$

$$\Rightarrow$$
 $Y = 4.90$ GPa

Young's modulus of structural timber is between 3GPa and 10GPa, so our result seems reasonable.

<u>Reference</u>

