A computational cookbook of

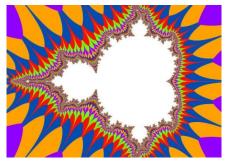
Dr Andrew French Winchester College Studium October 2017

- What is chaos?
- A short but chaotic history 2.
- The logistic map and population modelling 3.
- Pendulums and phase space 4.
- 5. Lorenz and Rössler strange attractors
- 6. Shaw's dripping faucet
- 7. Fractals
 - Koch snowflake
 - **Fractal dimension**
 - Barnsley fern and Sierpinski triangle
- Mandlebrot, complex numbers and iteration 8.
- Chaos in planetary systems 9.
- 10. Chaos in fluid flow
- 11. Phase locking & order from chaos
- 12. Further reading

40 30

> 20 10

orenz attracto



20

What is Chaos?

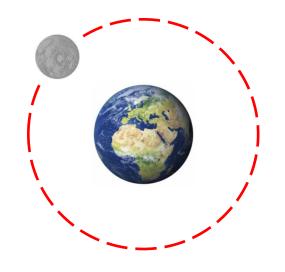
Dynamics, the *physics of motion*, provides us with *equations* which can be used to **predict the future position of objects** if we know (i) their present **position** and **velocity** and (ii) the **forces** which act on each object.

This works *very well* for planetary motion, tides etc. *Not so well* for weather or indeed the position of pool balls....

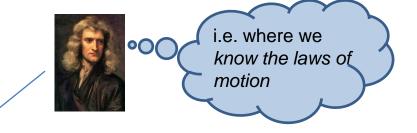
This is because *most* systems cannot be solved exactly. An *approximate numerical method* is required to work out what happens next. Many systems, even really simple ones, are *highly sensitive to initial conditions.*

This means future behaviour becomes increasingly difficult to predict

Nonlinearity is often the problem!



What is Chaos?

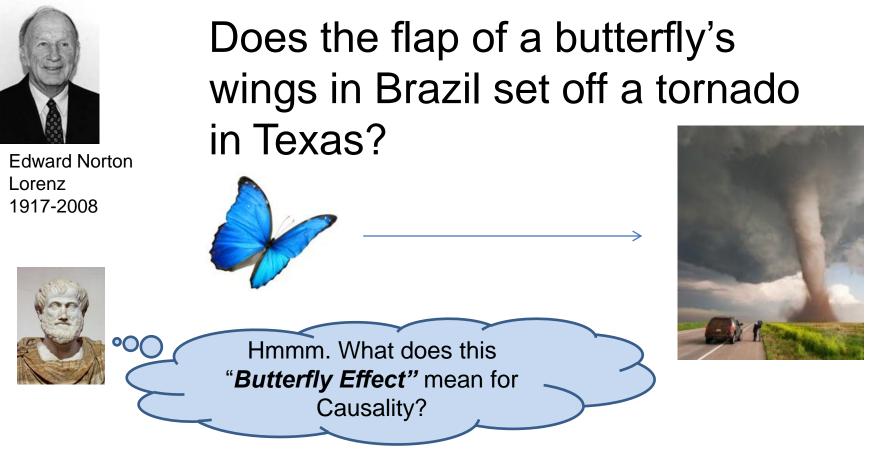


"Simple *deterministic* systems with only a few elements can generate **random behaviour**. The randomness is fundamental; gathering more information does not make it go away. Randomness generated in this way has come to be called chaos."



Robert Shaw of the "Santa Cruz Chaos Cabal" 1970s-1980s

Key references for this lecture are: Shaw *et al*; "Chaos", Scientific American 54:12 (1986) 46-57 and Gleick. J., *Chaos*. Vintage 1998.



"... it is found that non-periodic solutions are ordinarily **unstable with respect to small modifications**, so that slightly differing initial states can evolve into considerably different states"

i.e. if I change pressure by even a tiny amount in a weather model, the effect may be profound after a relatively short time

A short but chaotic history

I give you: Laws of motion Calculus Gravitation ...

Pierre Simon Laplace 1749-1827

If we know the position and momentum of all particles in the Universe we could know the **past** and the **future!**

"Sensitive dependence on initial conditions"

Henri Poincaré 1854-1912 Edward Norton Lorenz 1917-2008

Isaac Newton 1642-1727

> Planetary dynamics can often be *chaotic*

The Uncertainty Principle indeed sets a limit on what we can know for certain But we can only know the initial situation *approximately*. And small errors can often **amplify** with interactions between many particles

Robert May

1936-

Chaos can be seen in *very* simple mathematical models, such as how an ecological population changes year on year

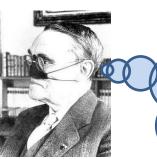
You don't need complicated interactions

to produce unpredictable behaviour

Mitchell Feigenbaum 1944-

I discovered universal mathematical truths about these systems

4.669201609...

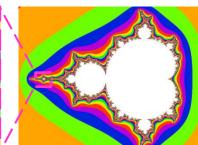


Very intricate geometry is hidden within the simplest of **quadratic equations** (if we use **complex numbers** and **iteration**)

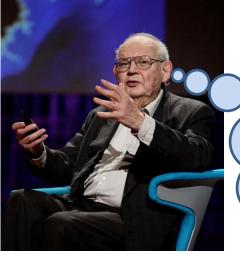
 $z_{n+1} = z_n^2 + z_0$

Doc Brown = Mitchell Feigenbaum?

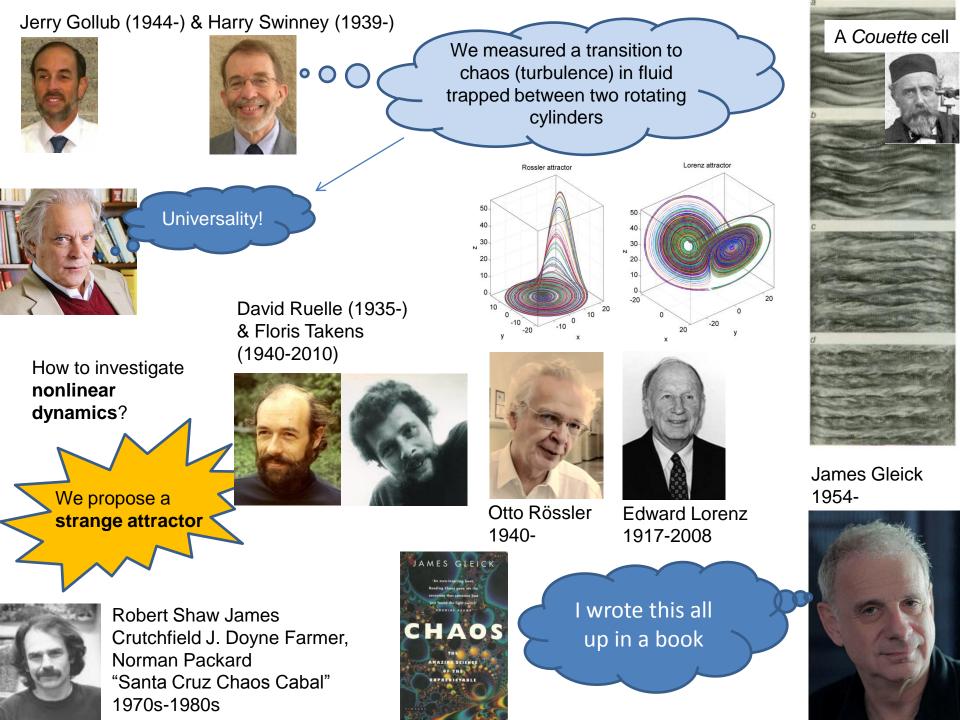
Gaston Julia 1893-1978



https://en.wikipedia.org/wiki/Chaos_theory



Benoit Mandelbrot 1924-2010 Much of geometry in the natural world is **self similar on all scales**. We can use **fractional dimensions** to describe these **fractal** objects.



The logistic map and population modelling

l published this model in 1976

Robert May 1936-

Assume an ecosystem can support a maximum number of rabbits. Let x be the fraction of this maximum at year n.

To account for **reproduction**, next year's population is proportional to the previous.

To account for **starvation**, next year's population is *also proportional* to the fraction of the maximum population as yet unfilled.

$$x_{n+1} = rx_n \left(1 - x_n\right)$$

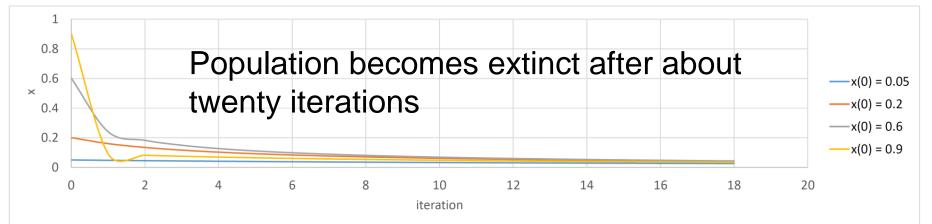
Growth parameter

The population next year is predicted using this **iterative equation** called a **logistic map**

The pattern of x values with n is not always simple

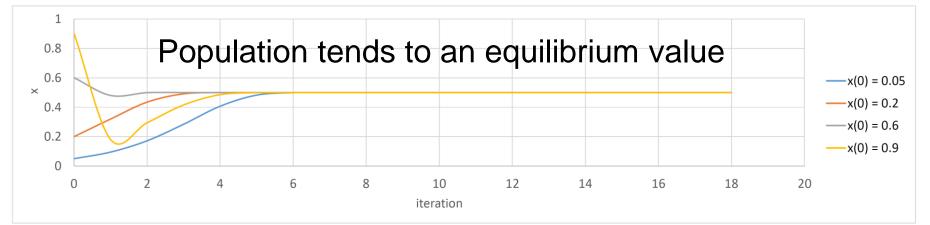
 $x_{n+1} = rx_n \left(1 - x_n\right)$ r = 1

	iteration n	umber n																	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x(n)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	0.1	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.15	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.2	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.3	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.35	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.4	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.45	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.5	0.25	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715
	0.55	0.2475	0.186244	0.151557	0.128587	0.112053	0.099497	0.089597	0.08157	0.074916	0.069304	0.064501	0.06034	0.056699	0.053485	0.050624	0.048061	0.045751	0.043658
	0.6	0.24	0.1824	0.14913	0.12689	0.110789	0.098515	0.08881	0.080923	0.074374	0.068843	0.064103	0.059994	0.056395	0.053214	0.050383	0.047844	0.045555	0.04348
	0.65	0.2275	0.175744	0.144858	0.123874	0.108529	0.096751	0.08739	0.079753	0.073392	0.068006	0.063381	0.059364	0.05584	0.052722	0.049942	0.047448	0.045197	0.043154
	0.7	0.21	0.1659	0.138377	0.119229	0.105013	0.093986	0.085152	0.077901	0.071833	0.066673	0.062228	0.058355	0.05495	0.05193	0.049234	0.04681	0.044619	0.042628
	0.75	0.1875	0.152344	0.129135	0.112459	0.099812	0.08985	0.081777	0.075089	0.069451	0.064627	0.060451	0.056796	0.053571	0.050701	0.04813	0.045814	0.043715	0.041804
	0.8	0.16	0.1344	0.116337	0.102802	0.092234	0.083727	0.076717	0.070831	0.065814	0.061483	0.057703	0.054373	0.051417	0.048773	0.046394	0.044242	0.042284	0.040496
	0.85	0.1275	0.111244	0.098869	0.089094	0.081156	0.07457	0.069009	0.064247	0.060119	0.056505	0.053312	0.05047	0.047923	0.045626	0.043544	0.041648	0.039914	0.038321
	0.9	0.09	0.0819	0.075192	0.069538	0.064703	0.060516	0.056854	0.053622	0.050746	0.048171	0.045851	0.043749	0.041835	0.040084	0.038478	0.036997	0.035628	0.034359
	0.95	0.0475	0.045244	0.043197	0.041331	0.039623	0.038053	0.036605	0.035265	0.034021	0.032864	0.031784	0.030773	0.029826	0.028937	0.028099	0.02731	0.026564	0.025858
	1	-2.2E-16																	



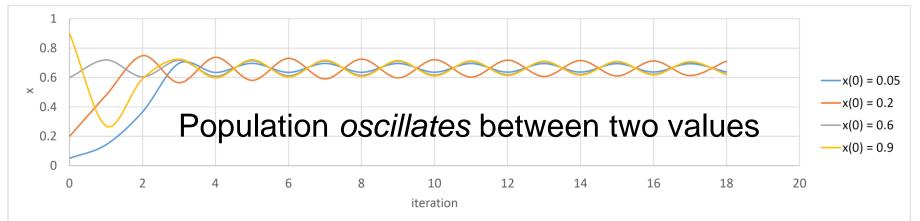
 $x_{n+1} = rx_n \left(1 - x_n\right)$ r = 2

	iteration n	umber n																	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x(n)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.095	0.17195	0.284766	0.407349	0.482832	0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.1	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.15	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.2	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.25	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.3	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.35	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.4	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.45	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.55	0.495	0.49995	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.6	0.48	0.4992	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.65	0.455	0.49595	0.499967	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.7	0.42	0.4872	0.499672	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.75	0.375	0.46875	0.498047	0.499992	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.8	0.32	0.4352	0.491602	0.499859	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.85	0.255	0.37995	0.471176	0.498338	0.499994	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.9	0.18	0.2952	0.416114	0.485926	0.499604	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	0.95	0.095	0.17195	0.284766			0.49941	0.499999	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	1	-4.4E-16	-8.9E-16	-1.8E-15	-3.6E-15	-7.1E-15	-1.4E-14	-2.8E-14	-5.7E-14	-1.1E-13	-2.3E-13	-4.5E-13	-9.1E-13	-1.8E-12	-3.6E-12	-7.3E-12	-1.5E-11	-2.9E-11	-5.8E-11



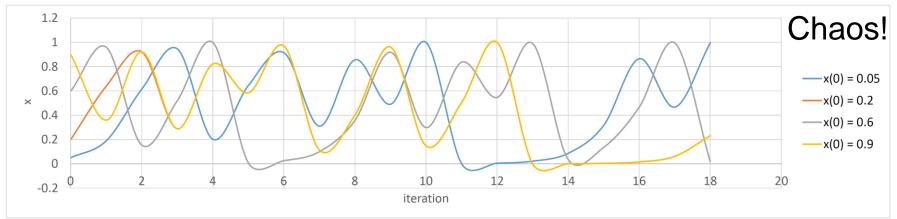
 $x_{n+1} = rx_n \left(1 - x_n\right)$ r = 3

	iteration nu	umber n																	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x(n)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.1425	0.366581	0.696598	0.634047	0.696094	0.634641	0.695615	0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	0.1	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.15	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.2	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.25	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.3	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.35	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.4	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.45	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.5	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582
	0.55	0.7425	0.573581	0.733757	0.586072	0.727775	0.594356	0.723291	0.600424	0.719745	0.605136	0.716839	0.608942	0.714395	0.612105	0.712298	0.614789	0.71047	0.617107
	0.6	0.72	0.6048	0.717051	0.608667	0.714575	0.611873	0.712453	0.614591	0.710607	0.616934	0.708979	0.618983	0.707529	0.620795	0.706226	0.622413	0.705045	0.62387
	0.65	0.6825	0.650081	0.682427	0.650161	0.682355	0.65024	0.682284	0.650318	0.682213	0.650395	0.682144	0.65047	0.682076	0.650545	0.682009	0.650619	0.681942	0.650691
	0.7	0.63	0.6993	0.630839	0.698644	0.631622	0.698027	0.632356	0.697446	0.633046	0.696897	0.633695	0.696377	0.634308	0.695884	0.634889	0.695415	0.635439	0.694969
	0.75	0.5625	0.738281	0.579666	0.73096	0.589973	0.725715	0.597158	0.721681	0.602573	0.718436	0.606857	0.715745	0.610362	0.71346	0.613304	0.711487	0.61582	0.709757
	0.8	0.48	0.7488	0.564296	0.737598	0.580641	0.730491	0.590622	0.725363	0.597634	0.721403	0.602943	0.718208	0.607155	0.715553	0.61061	0.713296	0.613514	0.711343
	0.85	0.3825	0.708581	0.619482	0.707172	0.621239	0.705904	0.622811	0.704752	0.62423	0.703701	0.625518	0.702736	0.626694	0.701846	0.627775	0.701021	0.628772	0.700253
	0.9	0.27	0.5913	0.724993	0.598135	0.721109	0.603333	0.717967	0.607471	0.71535	0.610873	0.713121	0.613738	0.711191	0.616195	0.709496	0.618334	0.707991	0.620219
	0.95	0.1425	0.366581	0.696598	0.634047	0.696094			0.635204	0.695159	0.635738	0.694725	0.636246	0.694311	0.63673	0.693915	0.637191	0.693536	0.637632
	1	-6.7E-16	-2E-15	-6E-15	-1.8E-14	-5.4E-14	-1.6E-13	-4.9E-13	-1.5E-12	-4.4E-12	-1.3E-11	-3.9E-11	-1.2E-10	-3.5E-10	-1.1E-09	-3.2E-09	-9.6E-09	-2.9E-08	-8.6E-08



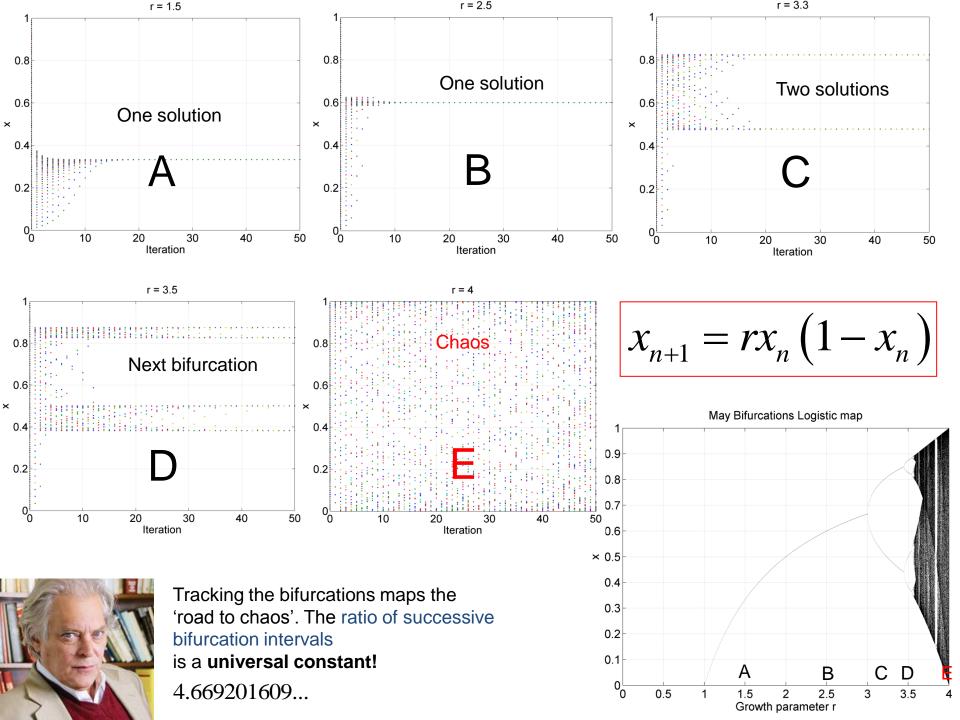
 $x_{n+1} = rx_n \left(1 - x_n\right)$ r = 4

	iteration n	umber n																	
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
x(n)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0.05	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
	0.1	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.15	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.2	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.25	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	0.3	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.35	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.4	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.45	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.5	1	4.44E-16	1.78E-15	7.11E-15	2.84E-14	1.14E-13	4.55E-13	1.82E-12	7.28E-12	2.91E-11	1.16E-10	4.66E-10	1.86E-09	7.45E-09	2.98E-08	1.19E-07	4.77E-07	1.91E-06
	0.55	0.99	0.0396	0.152127	0.515939	0.998984	0.00406	0.016176	0.063657	0.238418	0.7263	0.795154	0.651537	0.908147	0.333665	0.889331	0.393686	0.954789	0.172666
	0.6	0.96	0.1536	0.520028	0.998395	0.006408	0.025467	0.099273	0.35767	0.918969	0.29786	0.836557	0.546917	0.991195	0.034909	0.134761	0.466403	0.995485	0.017978
	0.65	0.91	0.3276	0.881113	0.419012	0.973764	0.102192	0.366996	0.92924	0.263011	0.775345	0.69674	0.845174	0.523421	0.997806	0.008757	0.034722	0.134065	0.464367
	0.7	0.84	0.5376	0.994345	0.022492	0.087945	0.320844	0.871612	0.447617	0.989024	0.043422	0.166146	0.554165	0.988265	0.046391	0.176954	0.582565	0.972732	0.106097
	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	0.8	0.64	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.85	0.51	0.9996	0.001599	0.006387	0.025386	0.098965	0.356683	0.917841	0.301635	0.842605	0.530488	0.996282	0.014817	0.058389	0.219918	0.686217	0.861293	0.47787
	0.9	0.36	0.9216	0.289014	0.821939	0.585421	0.970813	0.113339	0.401974	0.961563	0.147837	0.503924	0.999938	0.000246	0.000985	0.003936	0.015682	0.061745	0.23173
	0.95	0.19	0.6156	0.946547	0.202385	0.6457	0.915085	0.310816	0.856838	0.490667	0.999652	0.001393	0.005565	0.022137	0.086589	0.316366	0.865114	0.466766	0.995582
	1	-8.9E-16	-3.6E-15	-1.4E-14	-5.7E-14	-2.3E-13	-9.1E-13	-3.6E-12	-1.5E-11	-5.8E-11	-2.3E-10	-9.3E-10	-3.7E-09	-1.5E-08	-6E-08	-2.4E-07	-9.5E-07	-3.8E-06	-1.5E-05

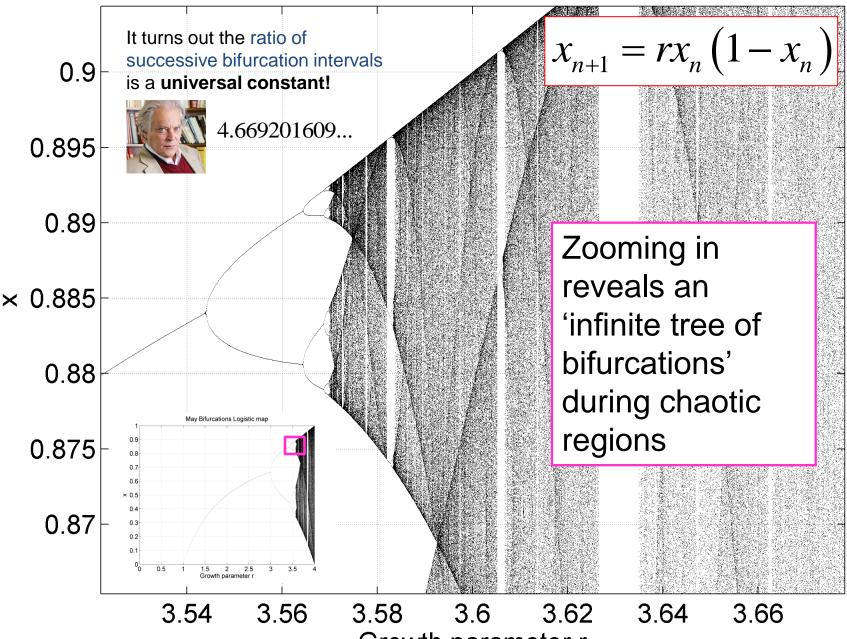


May Bifurcations Logistic map 1 For every growth parameter r0.9 8.0 **Bifircation** 1000 iterations are worked out 0.7 then the x values of the next 1000 iterations are plotted 0.6 $x_{n+1} = rx_n \left(1 - x_n\right)$ × 0.5 0.4 Stable 0.3 equilibrium 0.2 0.1 Chaos! Extinction 00 0.5 2.5 3 3.5 2 1.5 4 Growth parameter r

Model breaks down for r > 4

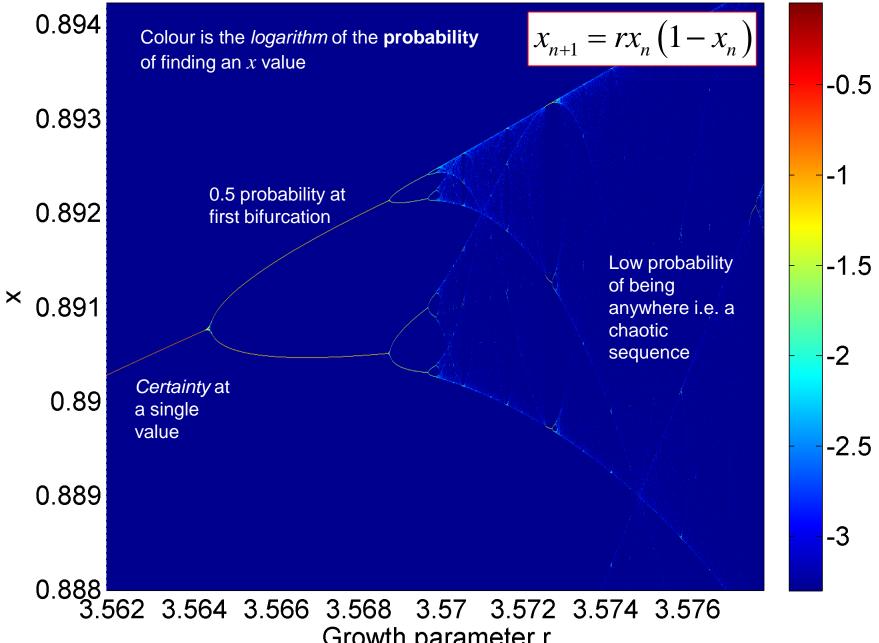


May Bifurcations Logistic map



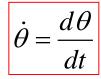
Growth parameter r

May Bifurcations Logistic map probability

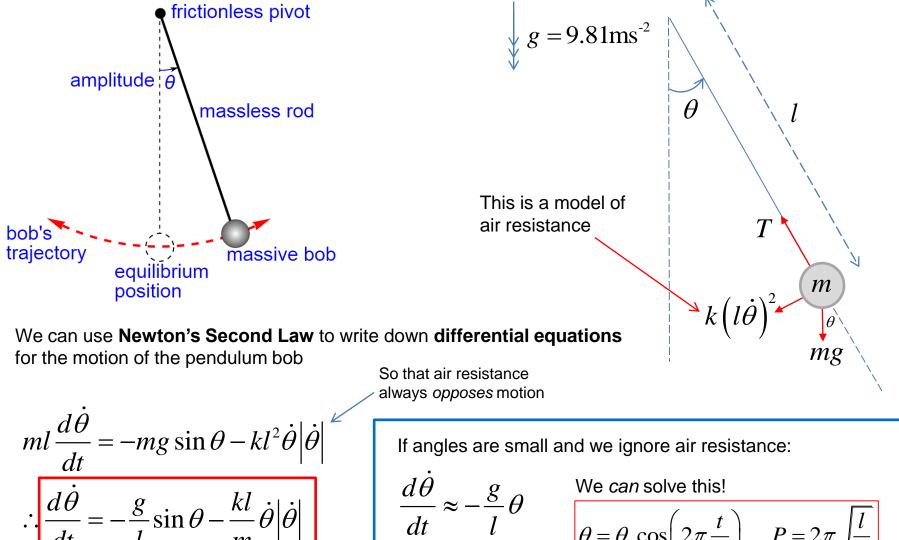


Growth parameter r

Pendulums and phase space



Although we can't fully 'solve' a chaotic system, we can create a **diagram which describes the** motion. In phase space, patterns often emerge, which are hidden in the randomness of a time series.

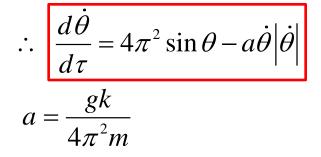


 $\theta = \theta_0 \cos\left(2\pi \frac{t}{P}\right) \qquad P = 2\pi \sqrt{\frac{l}{q}}$

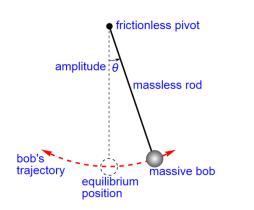
To keep things simple (!) let's use the **period** *P* of a frictionless, small angle ideal pendulum to **define a time scale.** We can then make our pendulum equation in terms of **dimensionless numbers**.

$$t \to P\tau$$
 $\dot{\theta} \to \frac{\dot{\theta}}{P}$ i.e. $\dot{\theta} = \frac{d\theta}{d\tau}$ using this *dimensionless time scale* $P = 2\pi$

$$\frac{1}{P^2}\frac{d\theta}{d\tau} = -\frac{g}{l}\sin\theta - \frac{1}{P^2}\frac{kl}{m}\dot{\theta}\Big|\dot{\theta}$$



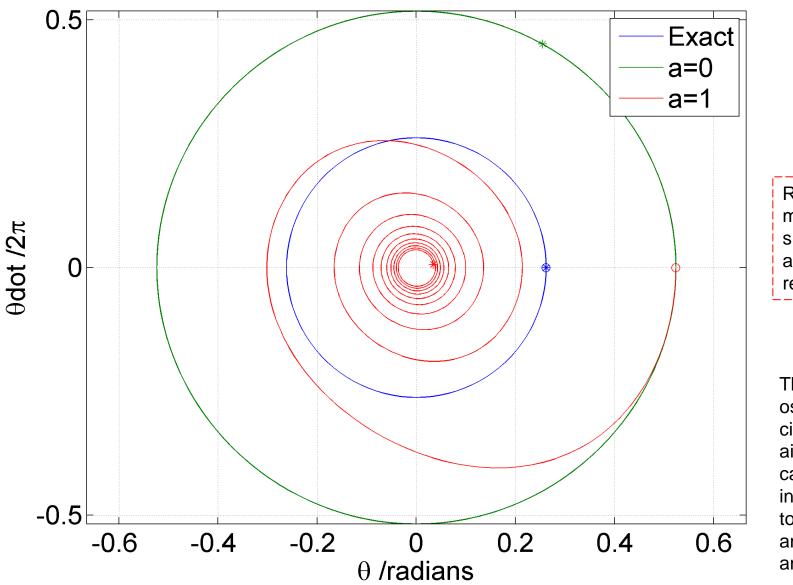
a is now simply a *number* which sets the effect of air resistance





Perhaps a more informative picture of the motion is the **phase portrait**, or **Poincaré diagram**

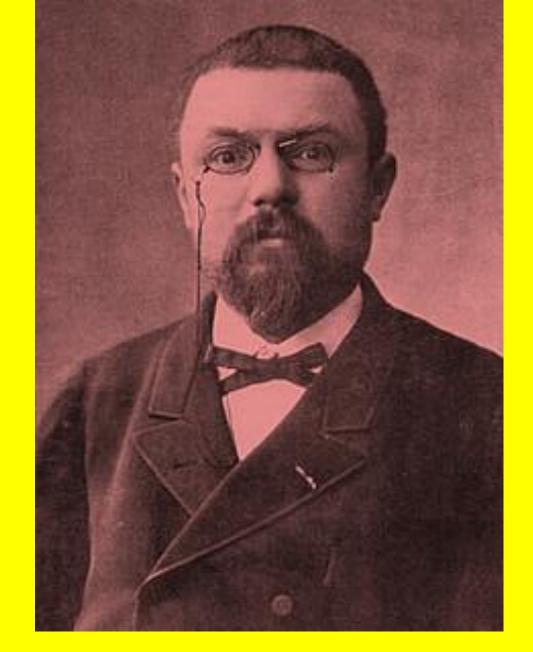
Pendulum phase space



Henri Poincaré 1854-1912

Recall 'Exact' means small angles, and no air resistance

The frictionless oscillations are circles whereas air resistance causes an inspiralling to zero angle and zero angular speed



HARDCORE MATHS ALERT!!

The double pendulum

 $\begin{aligned} x_{1} &= l_{1} \sin \theta_{1} \\ y_{1} &= -l_{1} \cos \theta_{1} \\ x_{2} &= l_{1} \sin \theta_{1} + l_{2} \sin \theta_{2} \\ y_{2} &= -l_{1} \cos \theta_{1} - l_{2} \cos \theta_{2} \end{aligned}$ $\begin{aligned} v_{x1} &= l_{1} \cos \theta_{1} \dot{\theta}_{1} \\ v_{y1} &= l_{1} \sin \theta_{1} \dot{\theta}_{1} \\ v_{x2} &= l_{1} \cos \theta_{1} \dot{\theta}_{1} + l_{2} \cos \theta_{2} \dot{\theta}_{2} \\ v_{y2} &= l_{1} \sin \theta_{1} \dot{\theta}_{1} + l_{2} \sin \theta_{2} \dot{\theta}_{2} \end{aligned}$ $\begin{aligned} V_{y2} &= l_{1} \sin \theta_{1} \dot{\theta}_{1} + l_{2} \sin \theta_{2} \dot{\theta}_{2} \end{aligned}$

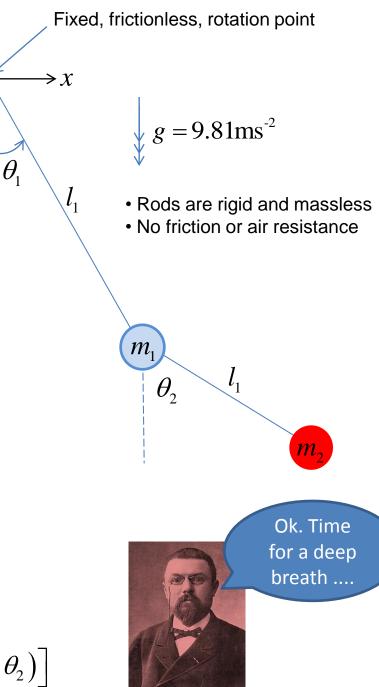
Potential energy

$$V = m_1 g y_1 + m_2 g y_2$$

$$V = -(m_1 + m_2) g l_1 \cos \theta_1 - m_2 g l_2 \cos \theta_2$$

Kinetic energy

$$T = \frac{1}{2}m_1\left(v_{x1}^2 + v_{y1}^2\right) + \frac{1}{2}m_2\left(v_{x2}^2 + v_{y2}^2\right)$$
$$T = \frac{1}{2}m_1l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2\left[l_1^2\dot{\theta}_1^2 + l_2^2\dot{\theta}_2^2 + 2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos\left(\theta_1 - \theta_2\right)\right]$$



 y_{\uparrow}

We need to compute the Lagrangian *L* and then solve the Euler-Lagrange equations!

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) = \frac{\partial L}{\partial \theta_1}$$

$$L = I - v$$

$$L = \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\theta}_1^2 + \frac{1}{2} m_2 l_2^2 \dot{\theta}_2^2 + m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \cos(\theta_1 - \theta_2)$$

$$+ (m_1 + m_2) g l_1 \cos \theta_1 + m_2 g l_2 \cos \theta_2$$

 $\int_{s} (m_1 + m_2) l_1 \ddot{\theta}_1 + m_2 l_2 \ddot{\theta}_2 \cos(\theta_1 - \theta_2) + m_2 l_2 \dot{\theta}_2^2 \sin(\theta_1 - \theta_2) + g(m_1 + m_2) \sin\theta_1 = 0 \quad [1]$ $\frac{d}{h} \left(\frac{\partial L}{2\dot{\theta}_2}\right) = \frac{\partial L}{2\theta_2}$

Joseph Louis Lagrange 1736-1813

$$m_2 l_1 \ddot{\theta}_1 \cos\left(\theta_1 - \theta_2\right) + m_2 l_2 \ddot{\theta}_2 - m_2 l_1 \dot{\theta}_1^2 \sin\left(\theta_1 - \theta_2\right) + m_2 g \sin\theta_2 = 0 \quad [2]$$

$$\frac{d\theta_1}{dt} = \omega_1$$
Four coupled non-linear differential equations. A mere bagatelle!
$$\frac{d\omega_1}{dt} = \frac{m_2 l_1 \omega_1^2 \sin \Delta \cos \Delta + m_2 g \sin \theta_2 \cos \Delta + m_2 l_2 \omega_2^2 \sin \Delta - (m_1 + m_2) g \sin \theta_1}{(m_1 + m_2) l_1 - m_2 l_1 \cos^2 \Delta}$$

$$\frac{d\theta_2}{dt} = \omega_2$$

$$\frac{d\omega_2}{dt} = \frac{-m_2 l_2 \omega_2^2 \sin \Delta \cos \Delta + (m_1 + m_2) (g \sin \theta_1 \cos \Delta - l_1 \omega_1^2 \sin \Delta - g \sin \theta_2)}{(m_1 + m_2) l_2 - m_2 l_2 \cos^2 \Delta}$$

$$\Delta = \theta_2 - \theta_1$$

 $I _ T$

 \mathbf{V}

Oh dear these are so non-linear!

http://www.physics.usyd.edu.au/~wheat/dpend_html/____http://scienceworld.wolfram.com/physics/DoublePendulum.html

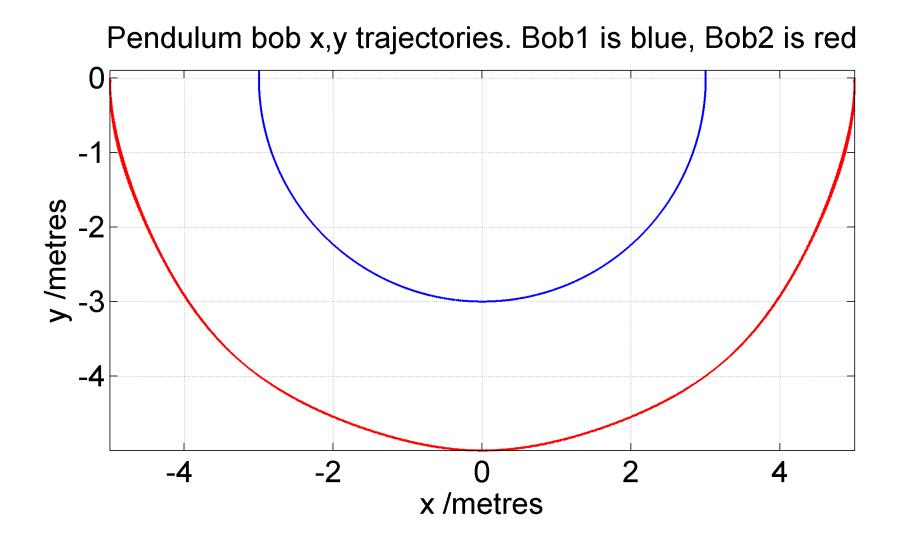
We can (approximately) solve the equations for the angles and angular velocities of the double pendulum using a *numeric method*. **Runge-Kutta** is a popular scheme. This has been implemented in MATLAB in order to generate the following plots.

But first a rather boring pendulum scenario to check my simulation makes sense....

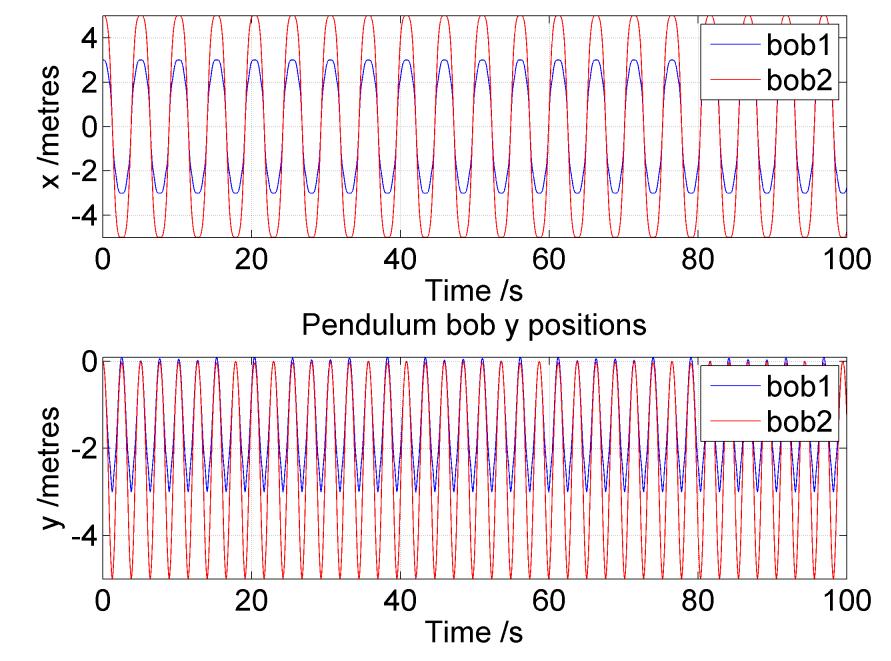
Double pendulum

$$m_1 = 1 \text{ kg } m_2 = 3 \text{ kg } l_1 = 3 \text{ metres } l_2 = 2 \text{ metres}$$

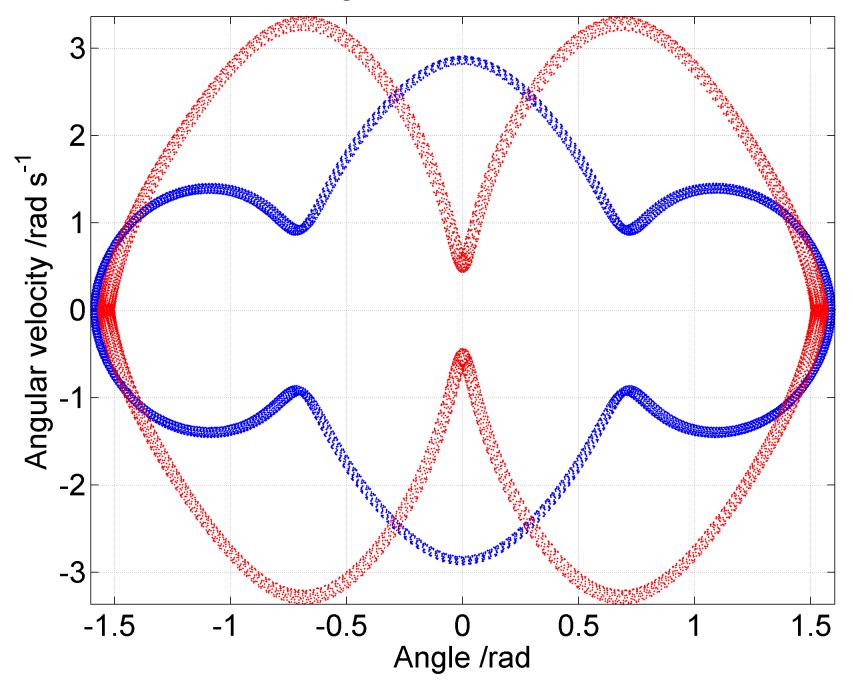
 $\frac{d\theta_1}{dt} = \omega_1$
 $\frac{d\omega_1}{dt} = \frac{m_2 l_1 \omega_1^2 \sin \Delta \cos \Delta + m_2 g \sin \theta_2 \cos \Delta + m_2 l_2 \omega_2^2 \sin \Delta - (m_1 + m_2) g \sin \theta_1}{(m_1 + m_2) l_1 - m_2 l_1 \cos^2 \Delta}$
 $\frac{d\theta_2}{dt} = \omega_2$
 $\frac{d\omega_2}{dt} = \frac{-m_2 l_2 \omega_2^2 \sin \Delta \cos \Delta + (m_1 + m_2) (g \sin \theta_1 \cos \Delta - l_1 \omega_1^2 \sin \Delta - g \sin \theta_2)}{(m_1 + m_2) l_2 - m_2 l_2 \cos^2 \Delta}$
 $\Delta = \theta_2 - \theta_1$

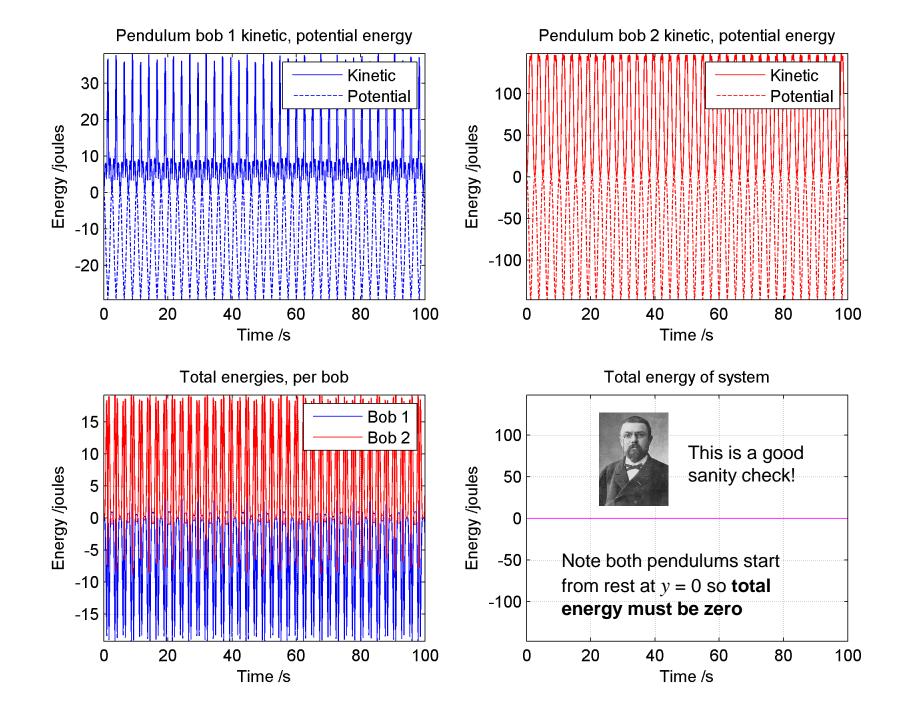


Pendulum bob x positions

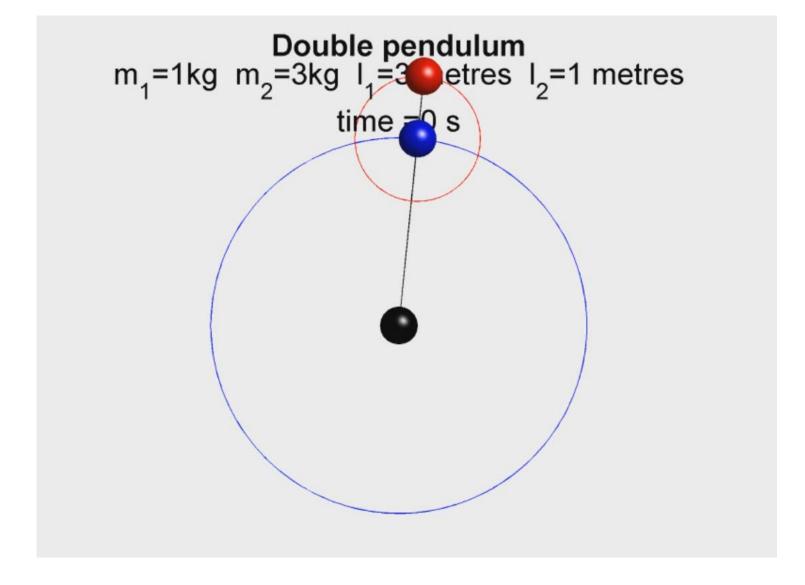


Poincare diagram: bob1 is blue, bob2 is red

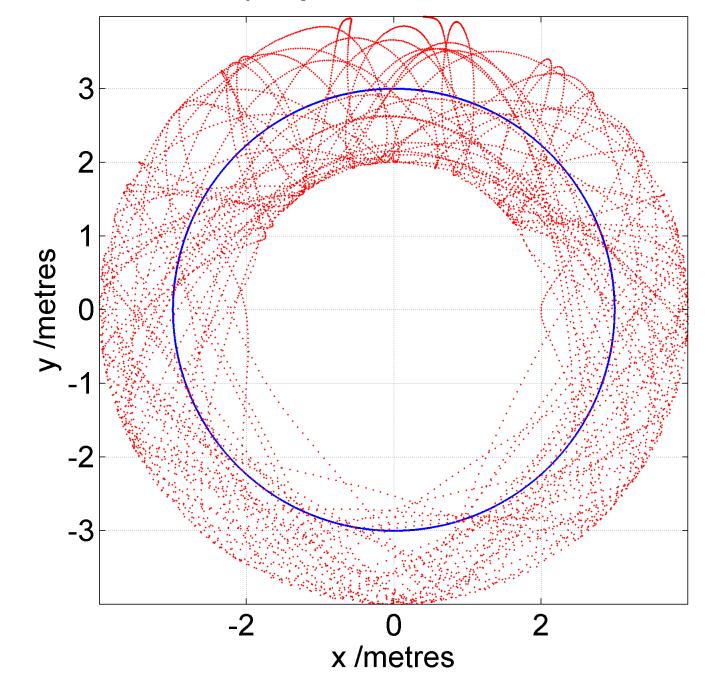


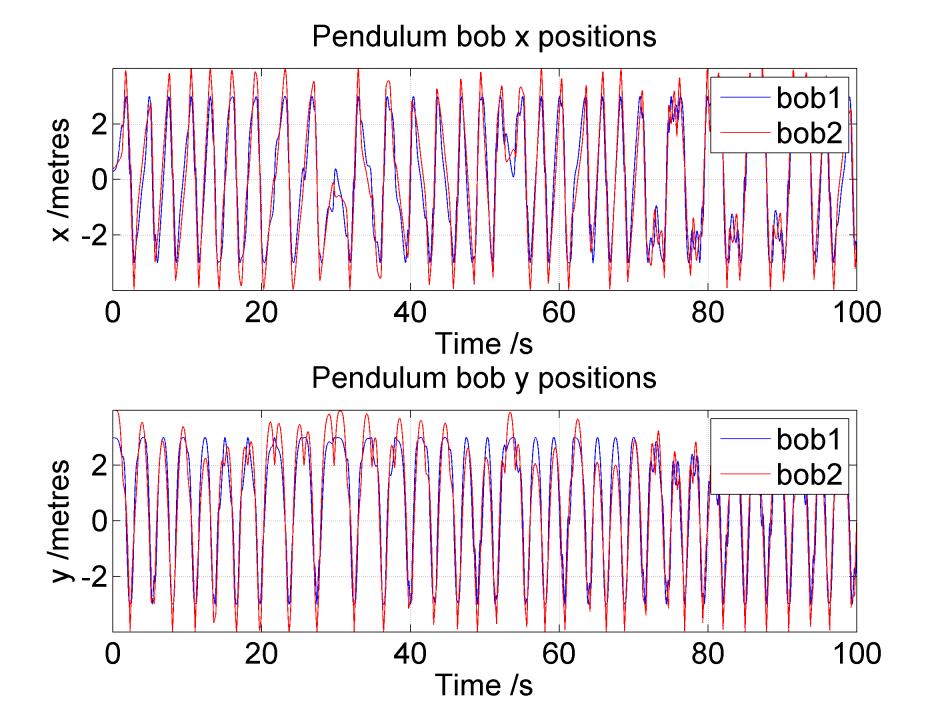


And now for chaotic motion!

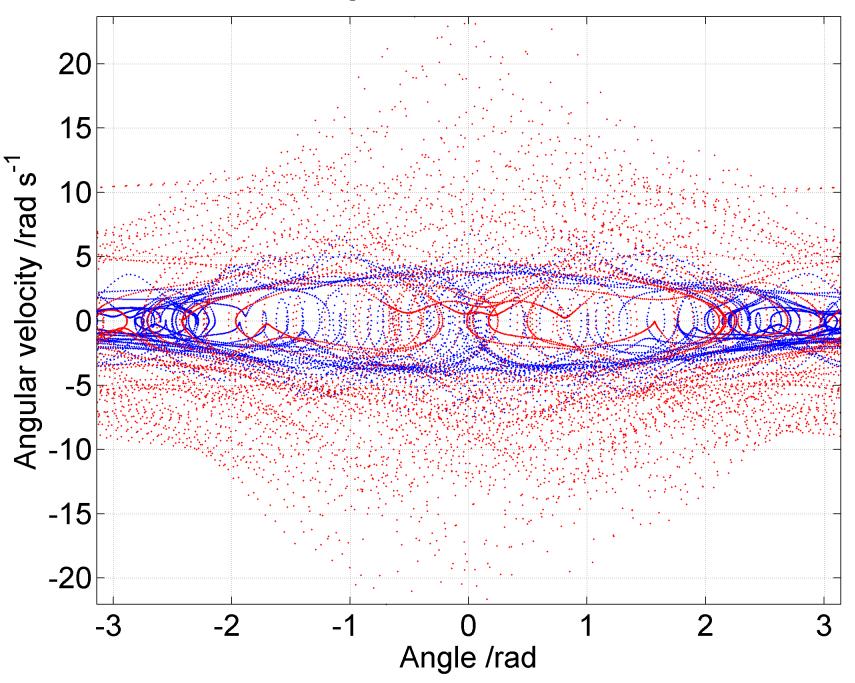


Pendulum bob x,y trajectories. Bob1 is blue, Bob2 is red





Poincare diagram: bob1 is blue, bob2 is red





Lorenz and Rössler strange attractors

Edward Lorenz was using a Royal McBee LGP-30 computer in 1961 to model weather patterns. He accidentally fed in 3 digit precision numbers into the model from a printout rather than the 6 digits used by the computer. These tiny errors created a hugely different weather forecast....

Lorenz's weather model was very sensitive to initial conditions.

His equations looked a bit like these:

s = 10r = 28

 $\frac{dx}{dt} = s\left(y - x\right)$

$$b = \frac{8}{3}$$

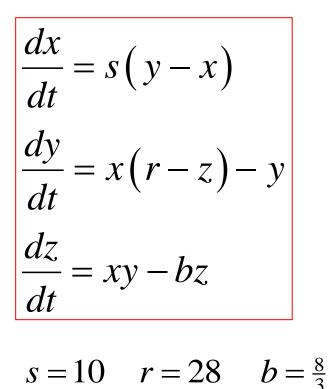
 $\frac{dy}{dt} = x(r-z) - y$

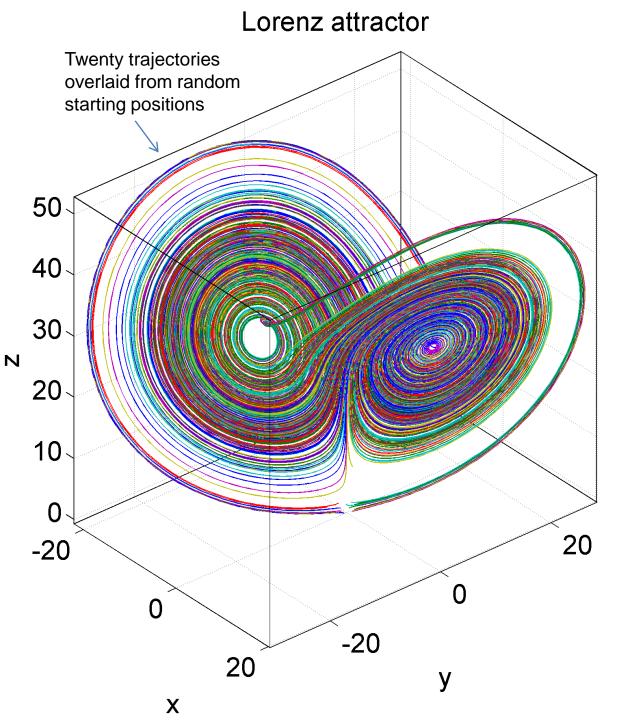
 $\frac{dz}{dt} = xy - bz$

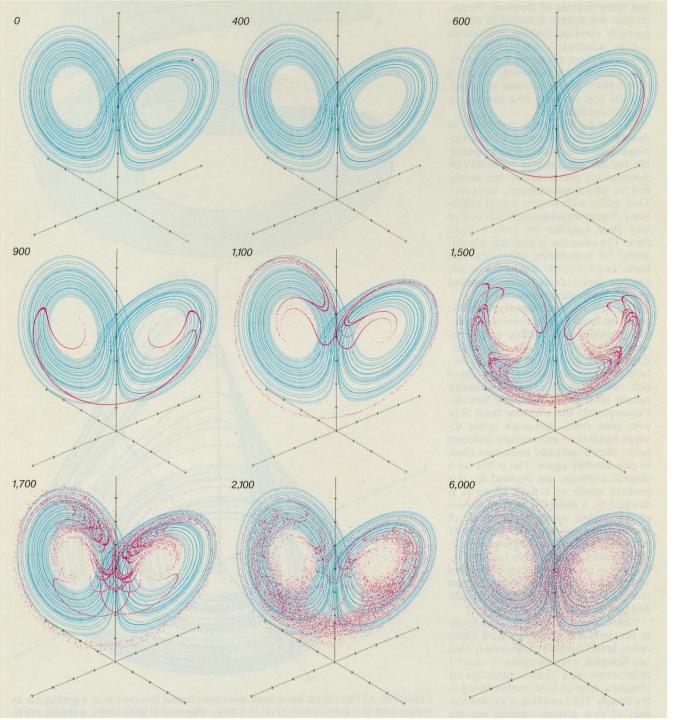
Edward Lorenz 1917-2008

Although *x*, *y*, *z* trajectories are chaotic, they tend to gravitate towards a particular region.

This region is called a strange attractor.

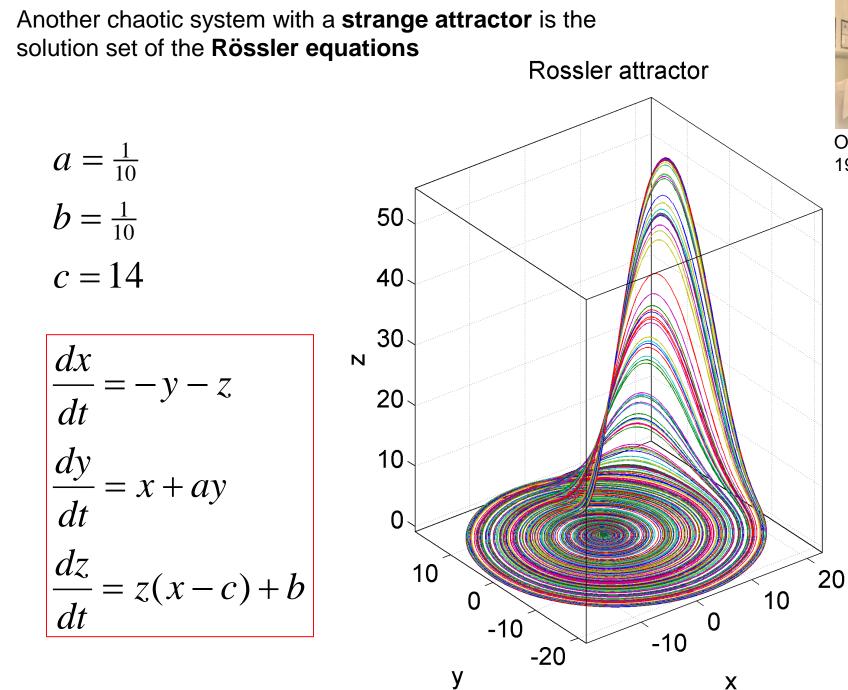






Applying the Lorenz equations, a cluster of initial *x*,*y*,*z* values separated by a *tiny* random deviation will eventually **spread out evenly throughout the strange attractor.**

Shaw *et al*; "Chaos", Scientific American 54:12 (1986) 46-57



Otto Rössler 1940-

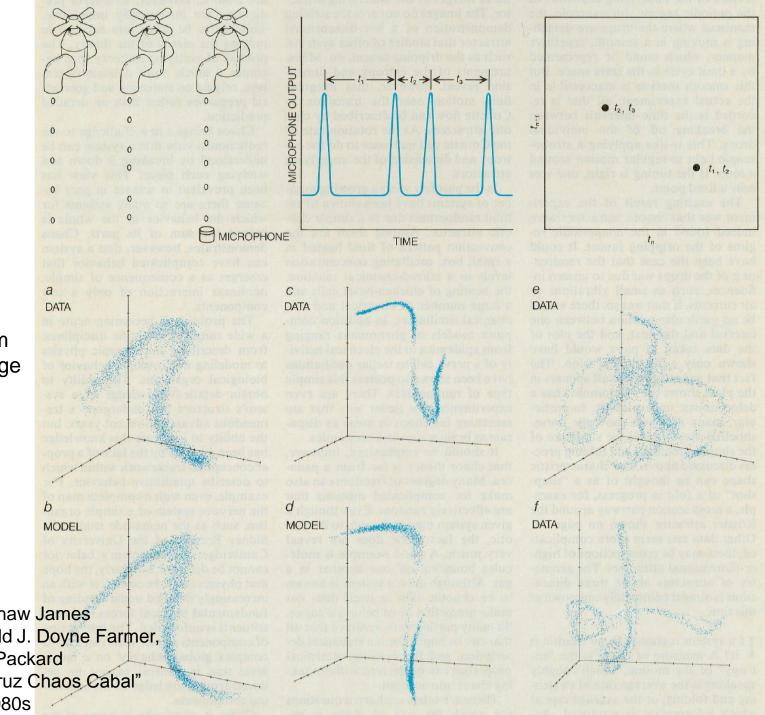
Х

Shaw's dripping faucet

Construct x, y, zcoordinates from time differences between drips

Seemingly random drips form a strange attractor, whose shape depends on the flow rate

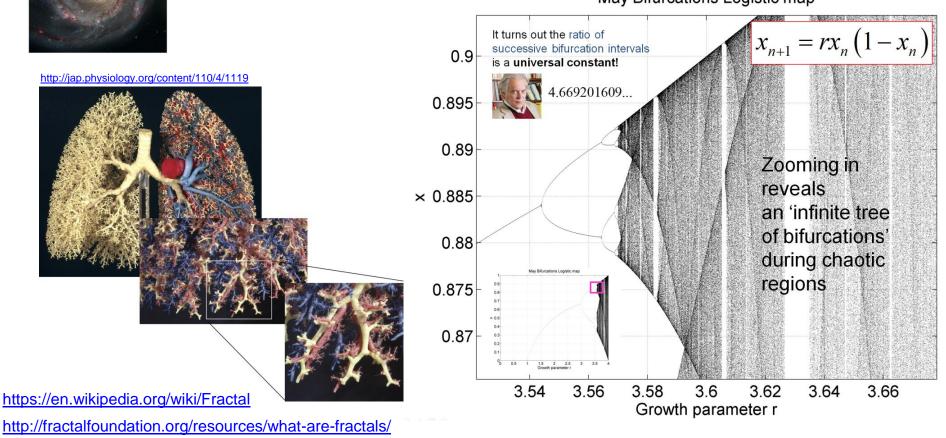
Robert Shaw James Crutchfield J. Doyne Farmer, Norman Packard "Santa Cruz Chaos Cabal" 1970s-1980s



A *fractal* is a structure which is **geometrically similar over a wide range of scales.** In other words, zoom in and it looks the same.

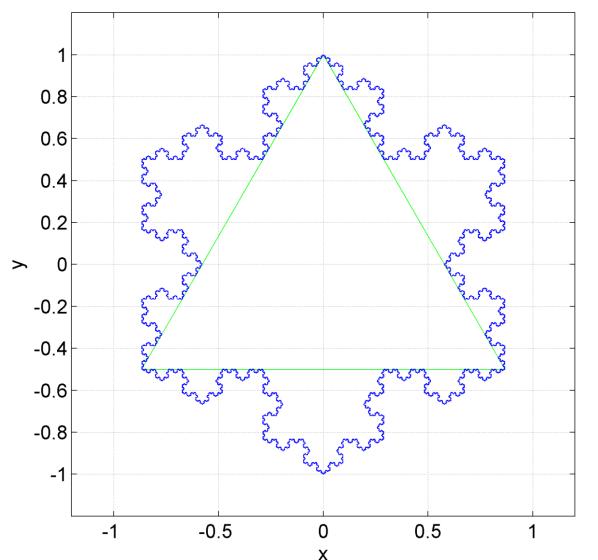
Fractals are *everywhere* in **natural forms**, from the branching structure of our lungs and trees, to the shape of coastlines, to river networks, to eddies in turbulent fluids

And it is also a feature of the bifurcation diagrams we have already met May Bifurcations Logistic map



The Koch Snowflake

Koch snowflake iteration = 6



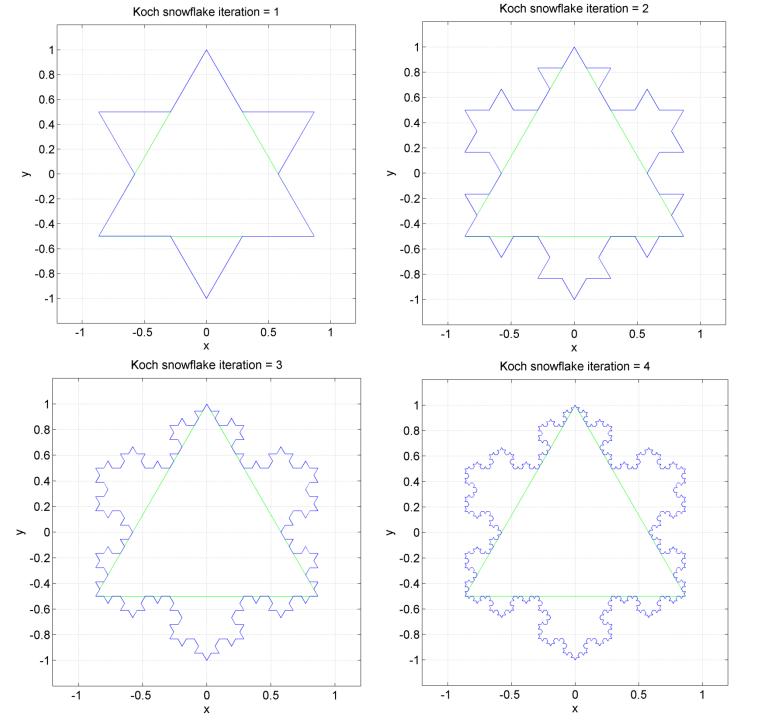
Niels Fabian Helge von Koch (1870-1924)

Perhaps the earliest example of *fractal geometry* – before I even coined the term!

Area tends to 8/5 of the area of the green triangle....

.... but the perimeter is *infinite*!

https://en.wikipedia.org/wiki/Koch_snowflake

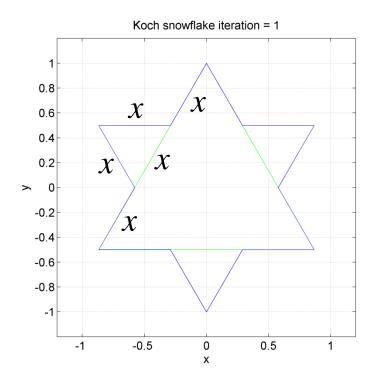


 Start with an equilateral triangle

2. Divide each edge into thirds

3. Add another equilateral triangle to each edge with base being the central third.

Iterate from step 2 ...



For each iteration:

Every side length grows from

 $3x \rightarrow 4x$ i.e. a factor of 4/3

Hence perimeter after *n* iterations is:

$$P_n = P_0 \left(\frac{4}{3}\right)^n$$

where P_0 is the perimeter of the original triangle.

i.e. as *n* becomes large, *P* tends to infinity!

Each triangle of edge 3x gains another triangle of edge size x. i.e. gains a triangle of 1/9 the area of previous triangles added

extra triangles in iteration n+1

Hence area added in iteration k is:

$$\Delta A_k = 3 \times 4^{k-1} \times \frac{A_0}{9^k}$$

Original triangle area is A_0

Total area enclosed by Koch Snowflake is therefore:

$$\Delta A_k = 3 \times 4^{k-1} \times \frac{A_0}{9^k}$$

$$A_{n} = A_{0} + \sum_{k=1}^{n} \Delta A_{k} = A_{0} + 3 \times 4^{1-1} \times \frac{A_{0}}{9^{1}} + 3 \times 4^{2-1} \times \frac{A_{0}}{9^{2}} + 3 \times 4^{3-1} \times \frac{A_{0}}{9^{3}} + \dots$$

$$\frac{A_{n}}{A_{0}} = 1 + \frac{3}{4} \left(\frac{4}{9} + \frac{4^{2}}{9^{2}} + \frac{4^{3}}{9^{3}} + \dots + \frac{4^{n}}{9^{n}}\right)$$

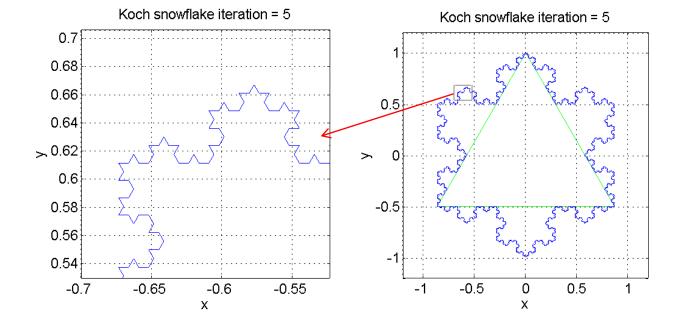
$$\frac{A_{n}}{A_{0}} = 1 + \frac{3}{4} \frac{4}{9} \left(1 + \frac{4}{9} + \frac{4^{2}}{9^{2}} + \dots + \frac{4^{n-1}}{9^{n-1}}\right)$$

$$\frac{A_{n}}{A_{0}} = 1 + \frac{1}{3} \frac{1 - \frac{4^{n}}{9^{n}}}{1 - \frac{4}{9}} = 1 + \frac{1}{3} \frac{9}{5} \left(1 - \frac{4^{n}}{9^{n}}\right) = \frac{5 + 3\left(1 - \frac{4^{n}}{9^{n}}\right)}{5}$$

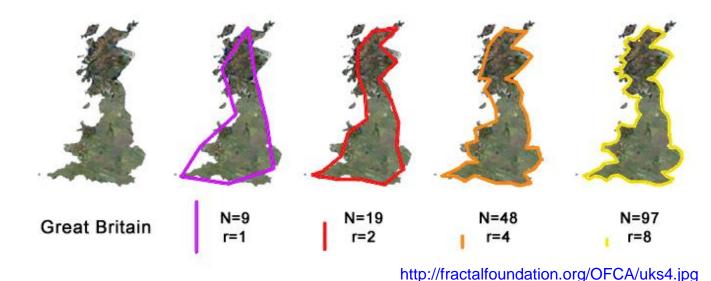
So as *n* becomes infinite:

$$\lim_{n \to \infty} \frac{A_n}{A_0} = \lim_{n \to \infty} \left\{ \frac{5 + 3\left(1 - \frac{4^n}{9^n}\right)}{5} \right\} = \frac{8}{5}$$

In the limit when *n* tends to infinity, the Koch Snowflake is **self similar**, i.e. has the same structure at all magnification scales.



The Koch Snowflake has a *fractal* structure. A bit like the coastline of the UK. It's perimeter depends on the *lengths of our measuring sticks* which map out greater (but similarly shaped) detail as we zoom in



Although the perimeter *is* infinite, we can calculate the number of fixed length 'sticks' which make up the perimeter. Let stick size *x* for iteration *n* be the perimeter divided by the number of sides $\int_{a}^{n} e^{-nx} dx = e^{-nx}$

$$x_n = P_n / N_n = \frac{P_0 \left(\frac{4}{3}\right)^n}{3 \times 4^n} = \frac{\frac{1}{3}P_0 \times 3^{-n}}{3 \times 4^n}$$

Define the Fractal Dimension *D* such that the number of sticks can be defined in terms of the stick size:

$$N_{n} = 3 \times \left(\frac{1}{3^{n}}\right)^{-D}$$

$$\therefore 3 \times \left(\frac{1}{3^{n}}\right)^{-D} = 3 \times 4^{n}$$

$$(3^{-n})^{-D} = 4^{n}$$

$$3^{nD} = 4^{n}$$

$$\therefore Dn \log 3 = n \log 4$$

$$D = \frac{\log 4}{\log 3} \approx 1.2619$$
Koch snowflake iteration = 1

The Koch
curve has a
'fractional
dimension'
of about 1.2619

Koch snowflake iteration = 1

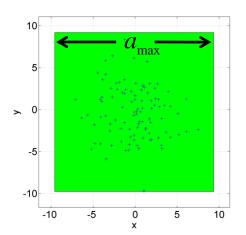
The Koch
curve has a
'fractional
dimension'
of about 1.2619

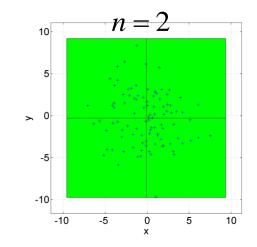
Let a bout 1.2619

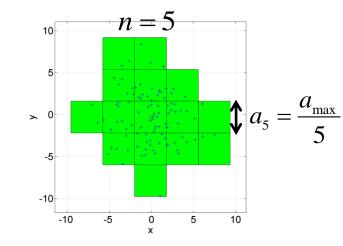
Koch snowflake iteration = 1

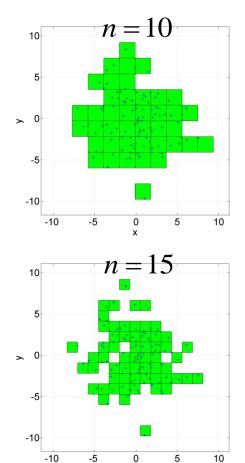
Koch snowflake iteration = 1

 a_{0}^{0}
 a_{0}







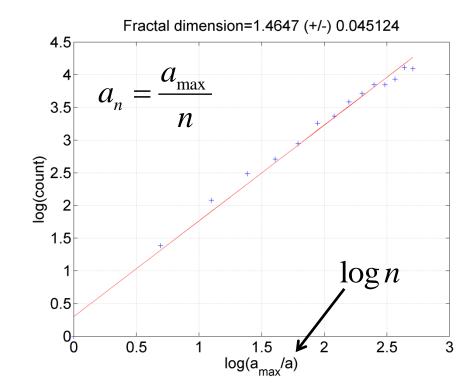


х

Fractal dimension box counting method

This is better for areas or volumes

Count the green squares that contain the points ———



Barnsley fern

Intriguingly, fractal structures like the Koch curve can be generated using an **iterated random process.** This is called the 'Chaos Game'

function fern

%Define number of iterations N = 1e5;

%Pixel size
psize = 0.1;

%Start x,y coordinates
x =0;
y = 0;
xx = 0;
yy = 0;

```
%Generate Barnsley fractal
                                   Asplenium adiantum-nigrum.
for n=1:N
    r = rand;
    if r <= 0.02
        %Stem
        xxyy = [0,0;0,0.16] * [xx;yy];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    elseif (r>0.01) && (r<=0.85)
        %Smaller leaflets
        xxyy = [0.85, 0.04; -0.04, 0.85] * [xx;yy] + [0;1.60];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    elseif (r>0.85) && (r<=0.92)
        %Largest left-hand leaflet
        xxyy = [0.20, -0.26; 0.23, 0.22] * [xx; yy] + [0; 1.60];
        xx = xxyy(1); yy = xxyy(2);
        x = [x, xx];
        y = [y, yy];
    else
        %Largest right hand leaflet
        xxyy = [-0.15, 0.28; 0.26, 0.24] * [xx;yy] + [0; 0.44];
```

```
xxyy = [-0.15,0.28;0.26,0.24] * [xx;yy] + [0;0.44];
xx = xxyy(1); yy = xxyy(2);
x = [x,xx];
y = [y,yy];
end
```

The Barnsley Fern is a

fractal named after the

British mathematician

described it in his book

Fractals Everywhere. He

made it to resemble the

Black Spleenwort,

Michael Barnsley who first

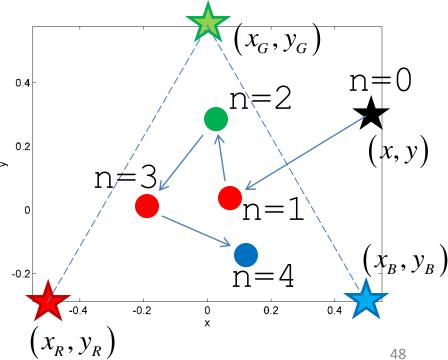
end

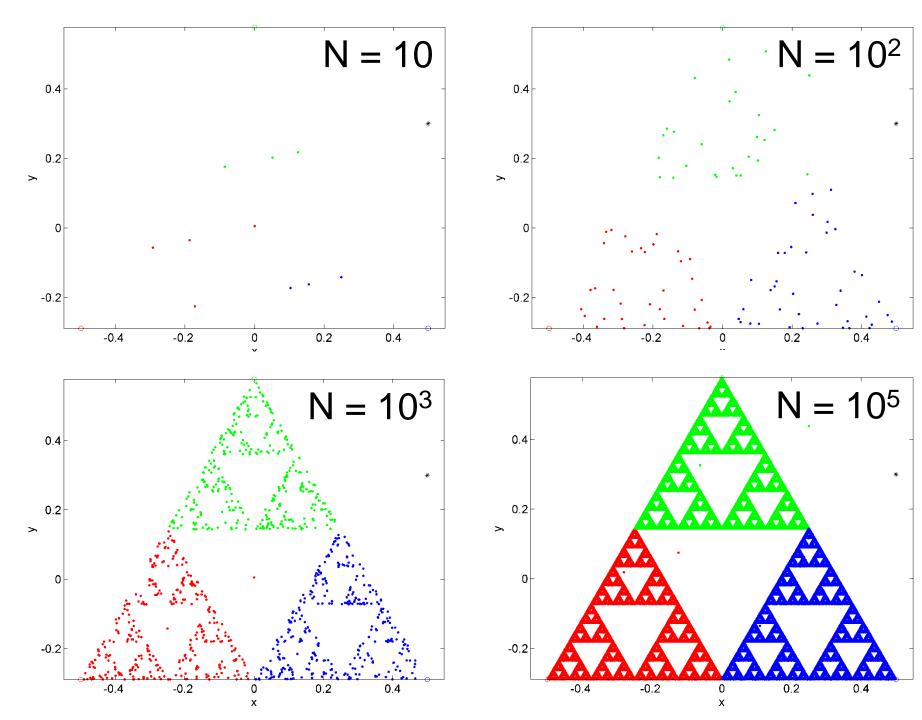
```
%Plot fractal
figure('color',[1 1 1],'name','Barnsley fern','renderer','opengl');
plot(x,y,'g.','markersize',psize);
axis equal
axis off
```

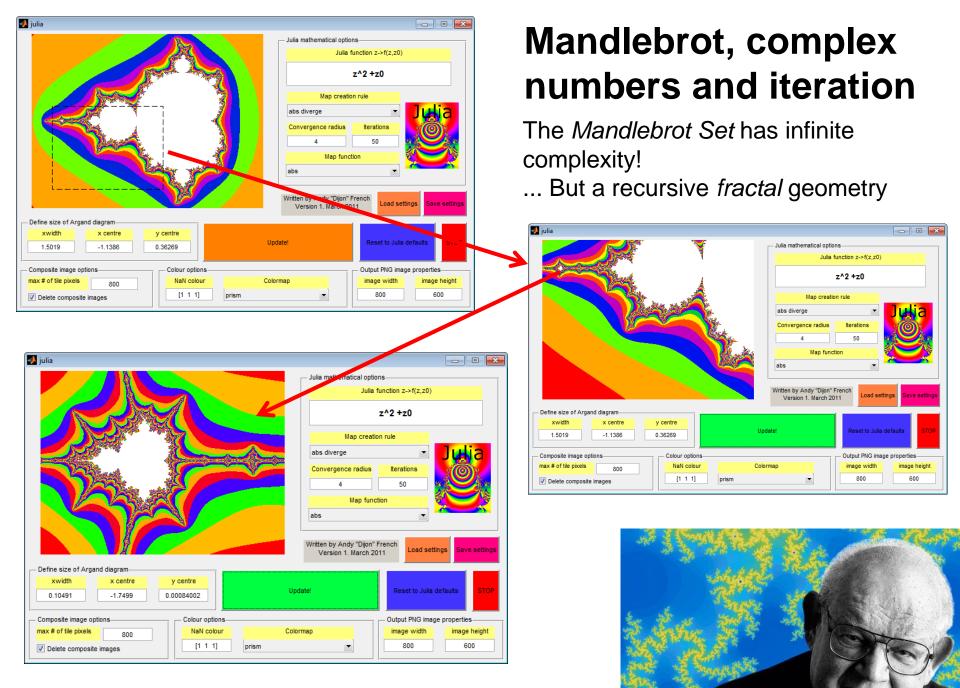
```
%End of code
print(gcf, 'barnsley fern.png', '-dpng', '-r300');
```

for n=1:Nr = rand; %Generate a random number **if** (r <= 1/3) %Move half way towards red star x = 0.5*(xR + x);y = 0.5*(yR + y);%Plot a red dot plot(x,y, 'r.'); **elseif** (r > 1/3) & (r <=2/3)%Move ... blue star x = 0.5*(xB + x);y = 0.5*(yB + y);%Plot a blue dot 0.4 plot(x,y, 'b.'); else 0.2 ≻ n≠3 %Move ... green star x = 0.5*(xG + x);y = 0.5*(yG + y);**%Plot a green dot** -0.2 plot(x,y, 'g.'); -0.4 -0.2 end x_R, y_R end

The Sierpinski Triangle







Benoit Mandlebrot (1924-2010)

Mandlebrot transformations of complex numbers

$$i^{2} = -1$$

$$z = x + iy$$

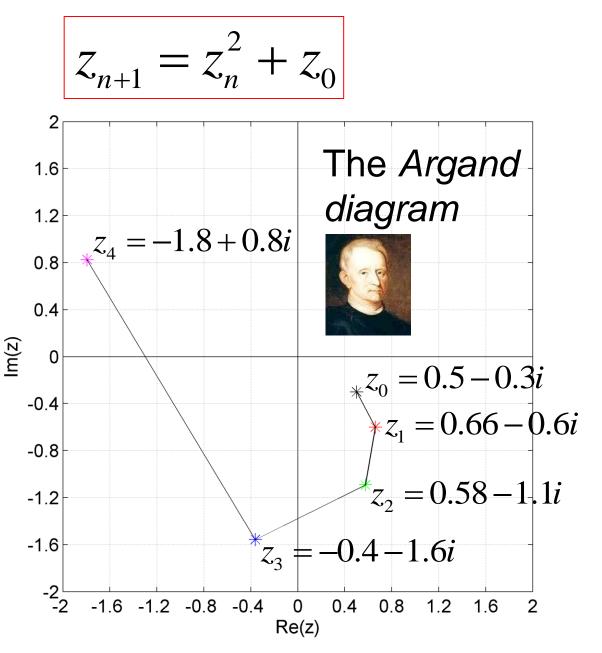
$$x = \operatorname{Re}(z)$$

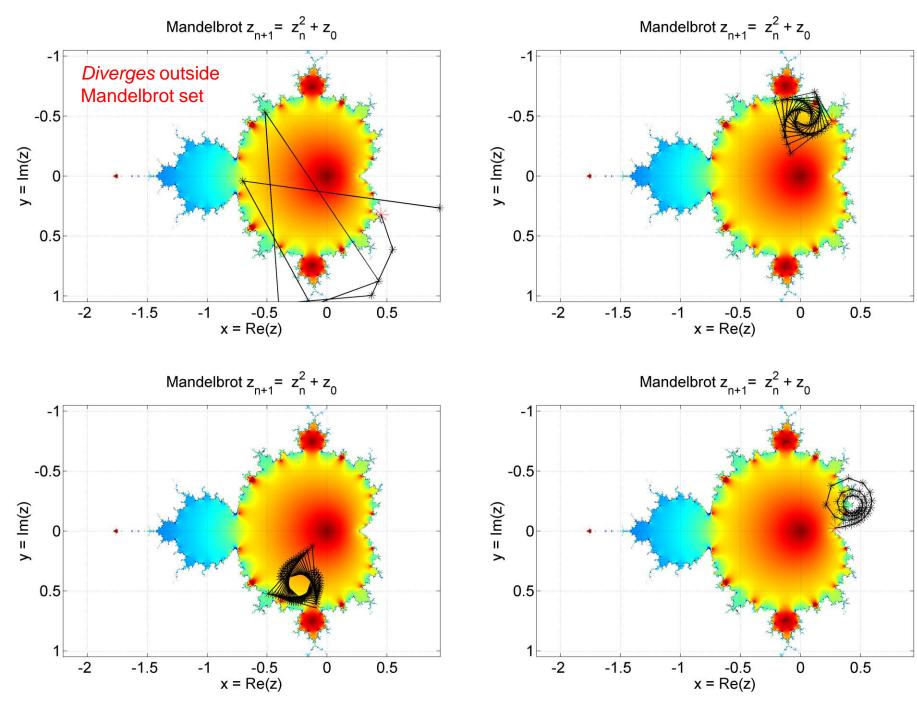
$$y = \operatorname{Im}(z)$$

$$|z| = \sqrt{x^{2} + y^{2}}$$

$$(1+i)(1+i)$$

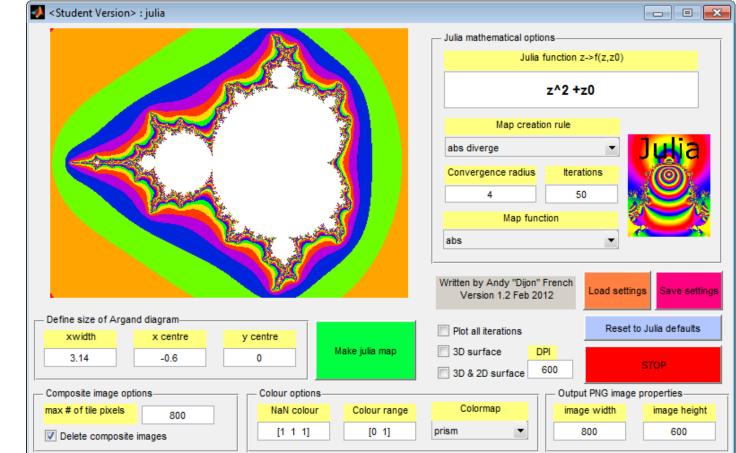
= 1 + 2i + i²
= 1 + 2i - 1
= 2i

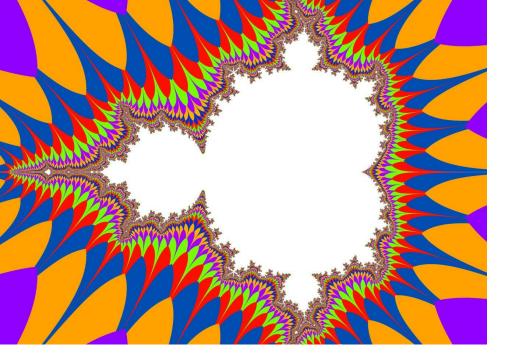


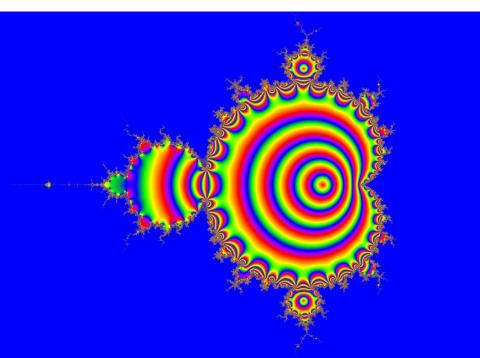


Gaston Julia (1893-1978)

julia







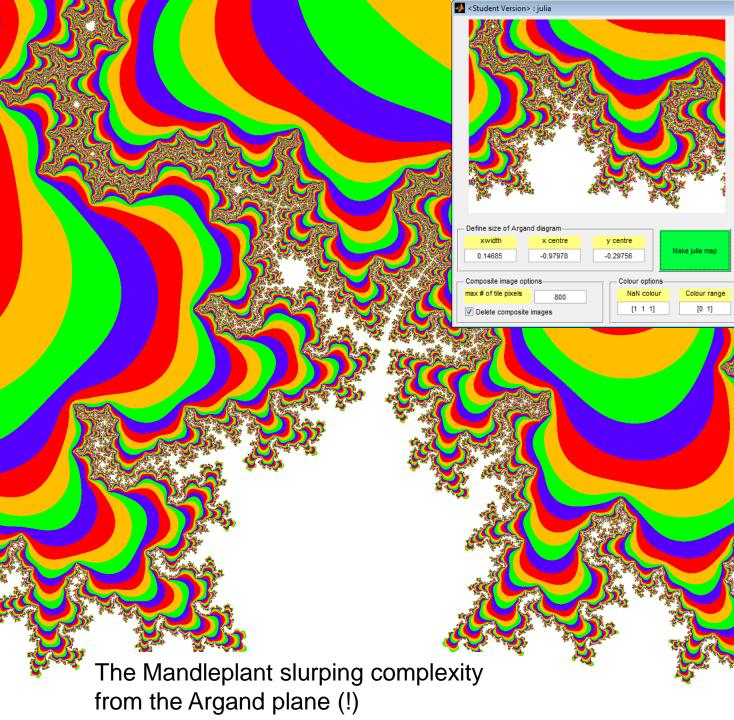
julia.m plot option abs diverge Plot a surface with height h(x,y). This is the *iteration number* when |z| exceeds a certain value e.g. 4

In this case *colours* indicate height h(x,y). It is a 'colour-map'.

julia.m plot option plot z Plot a surface with height h(x,y)

 $x = \operatorname{Re}(z), \quad y = \operatorname{Im}(z)$

 $h(x, y) = e^{-\sqrt{x^2 + y^2}}$



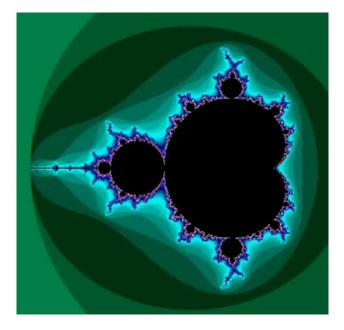
Julia mathematical options		
Julia function z-≻f(z,z0)		
z^2 +z0		
Map creation rule		
abs diverge	•	Julia
Convergence radius	Iterations	
4	50	
Map function		
abs	•	
Written by Andy "Dijon" French Version 1.2 Feb 2012		
Plot all iterations	Res	et to Julia defaults
3D surface Df 3D & 2D surface 6	91 600	STOP
Output PNG image properties		
Colormap	image width	image height

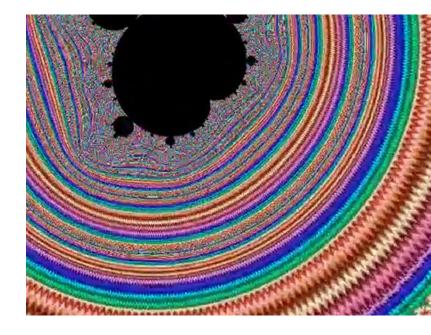
2400

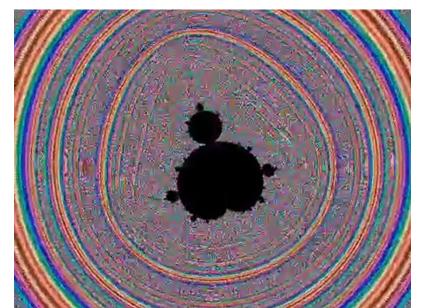
1800

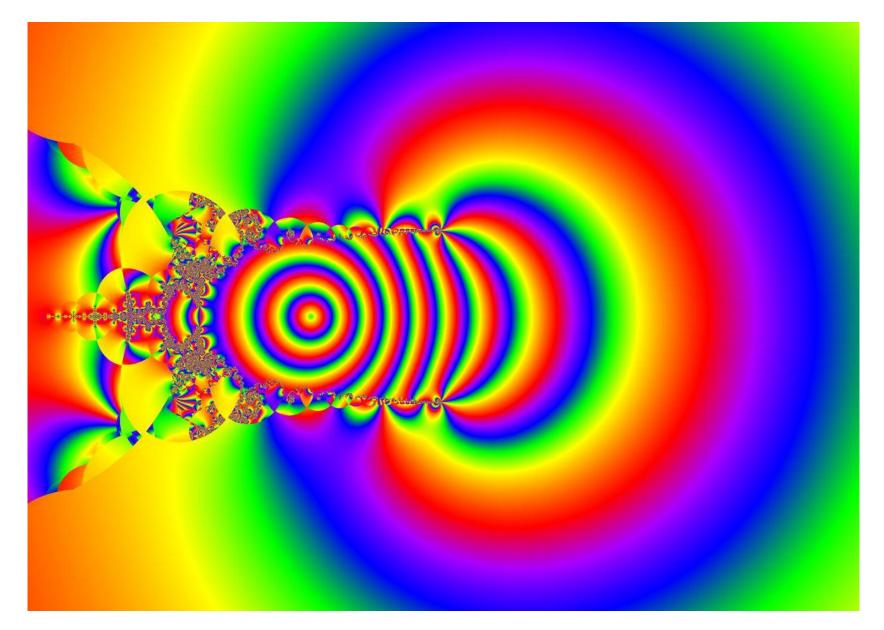
prism

Mandelbrot Deep Zoom



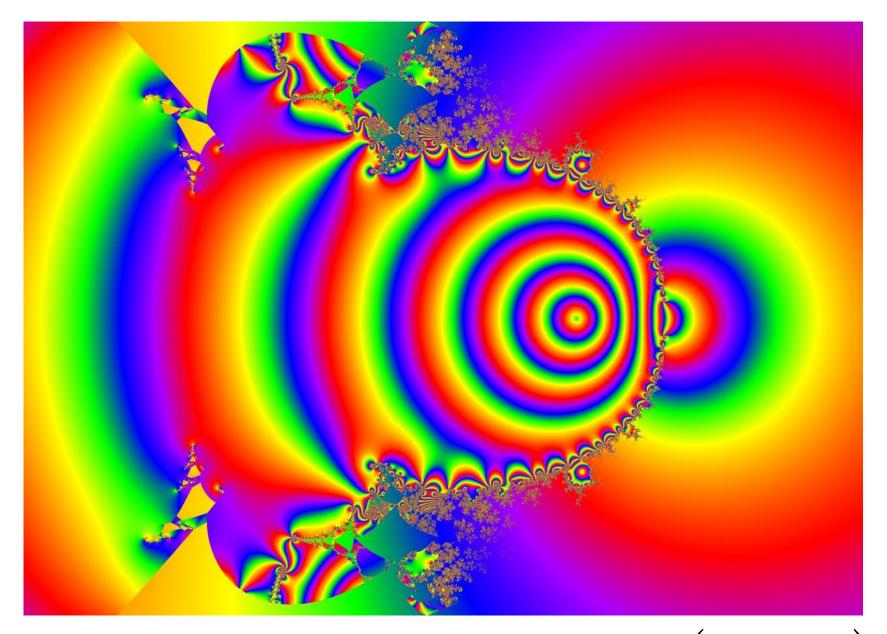




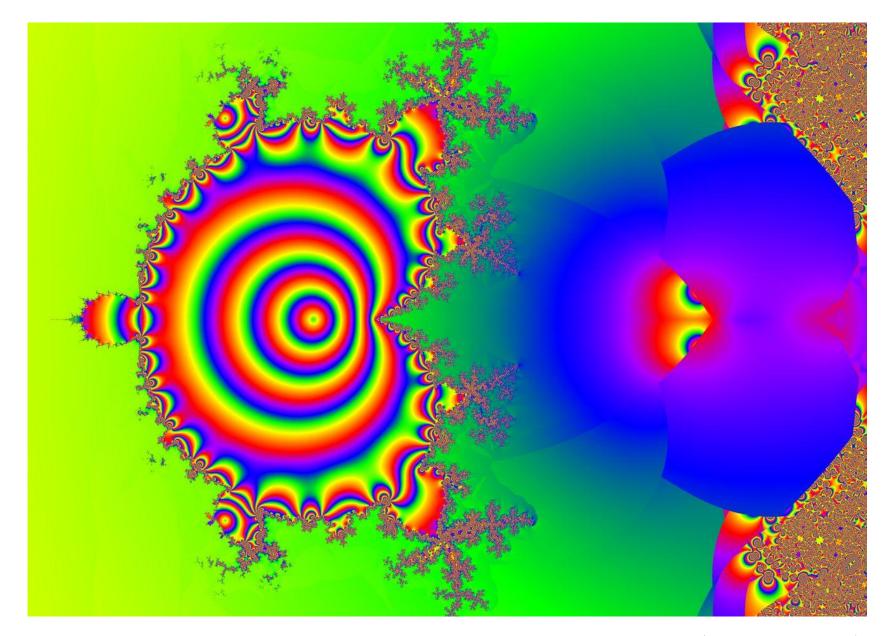


The light bulb

 $z_{n+1} = \log\left(z_n^2 + z_0\right)$

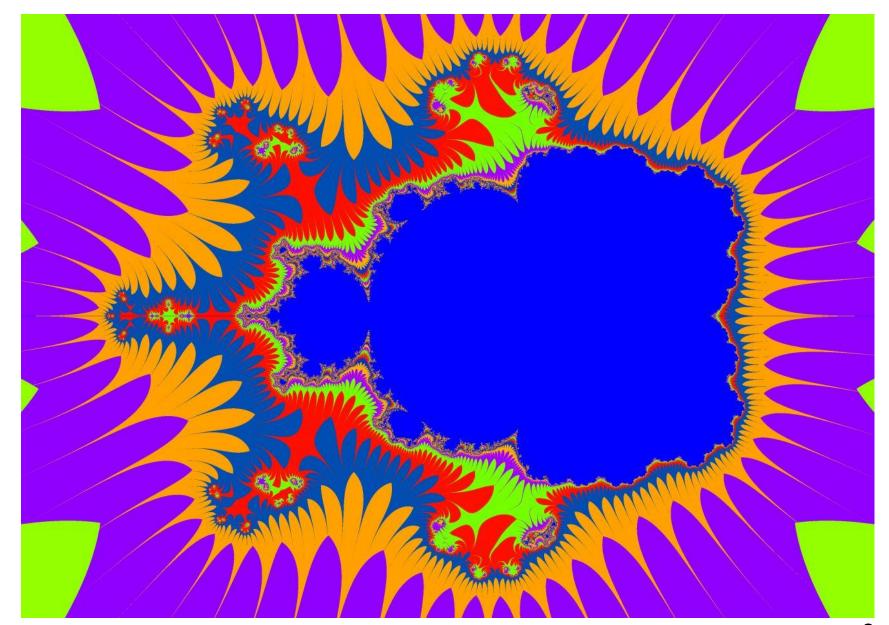


7 steps to enlightenment $z_{n+1} = \tan^{-1} \left(z_n^2 + z_0 \right)$



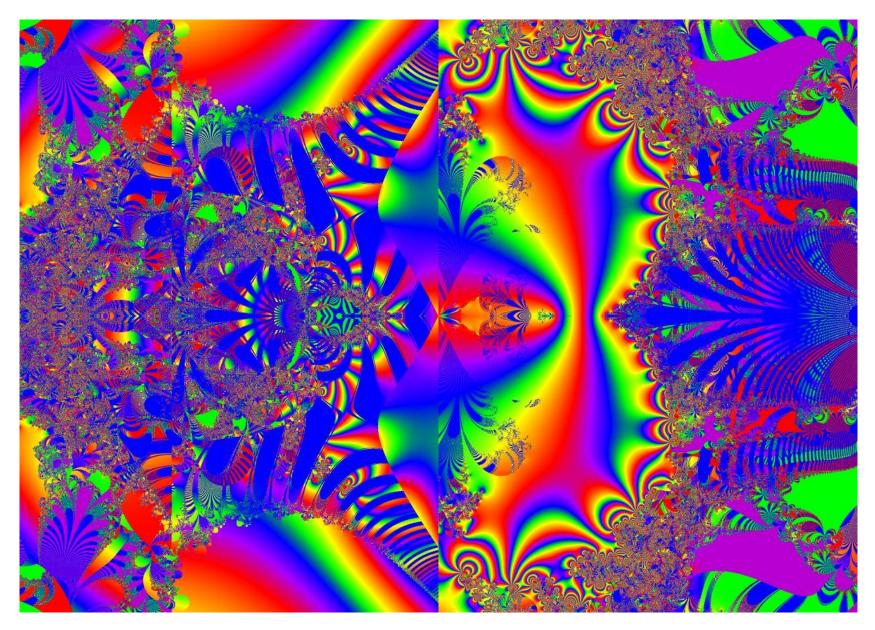
The Mandlerocket!

 $z_{n+1} = \sin^{-1} \left(z_n^2 + z_0 \right)$



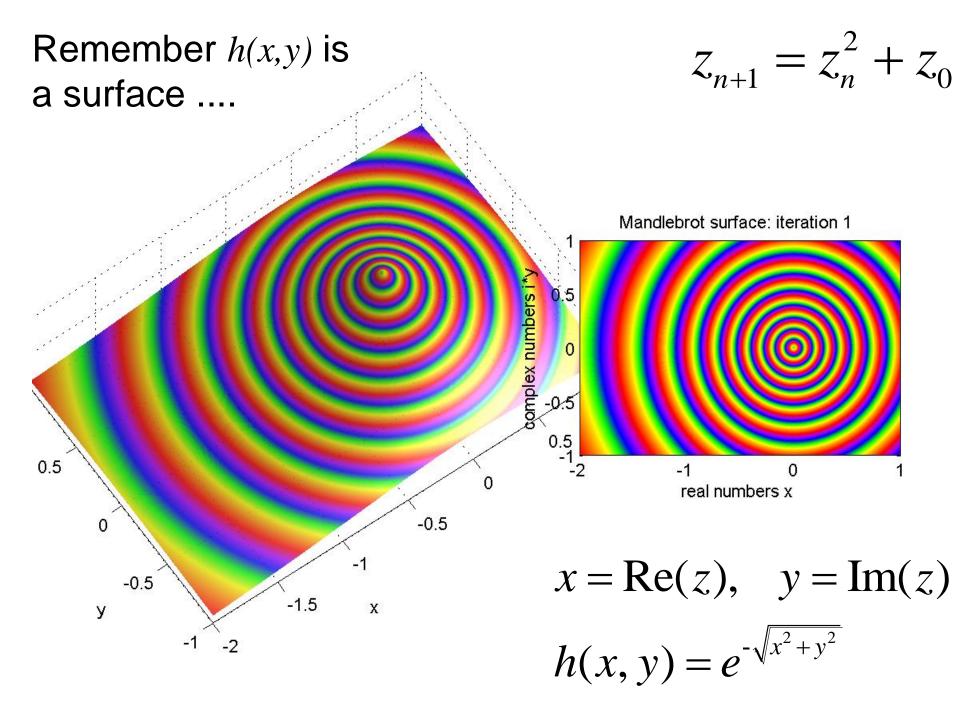
Micro mandlebeast

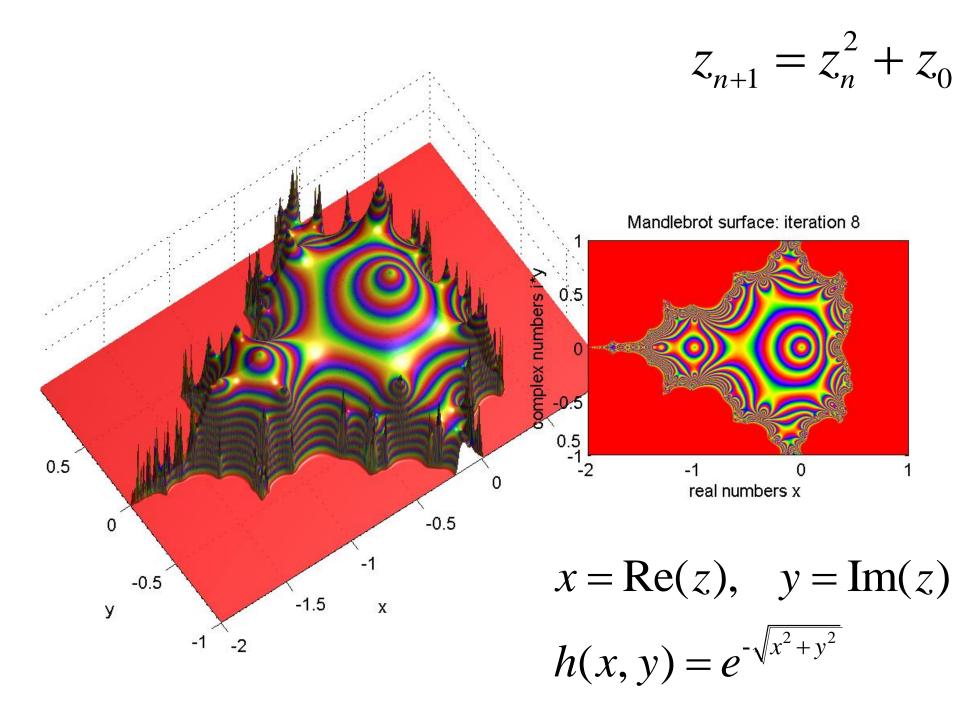
 $z_{n+1} = \left(z_n^2 + z_0\right)^2$

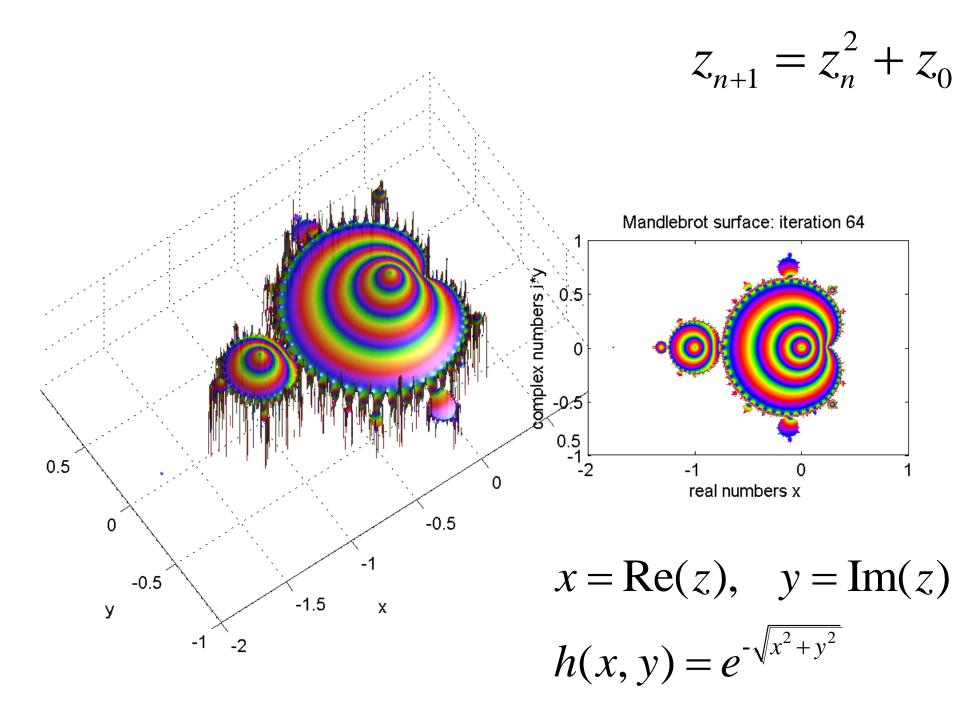


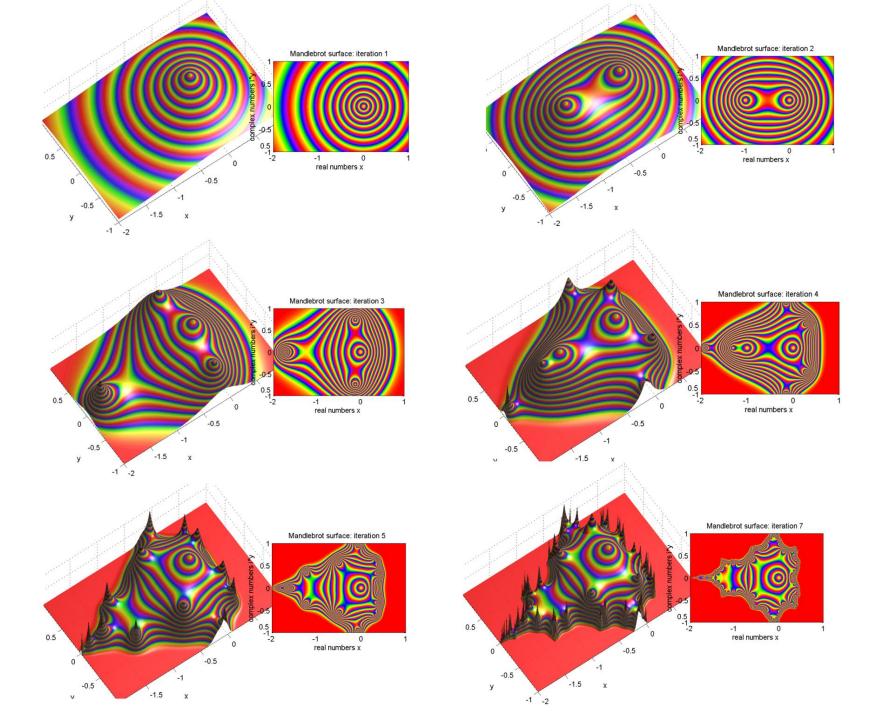
The profusion of power

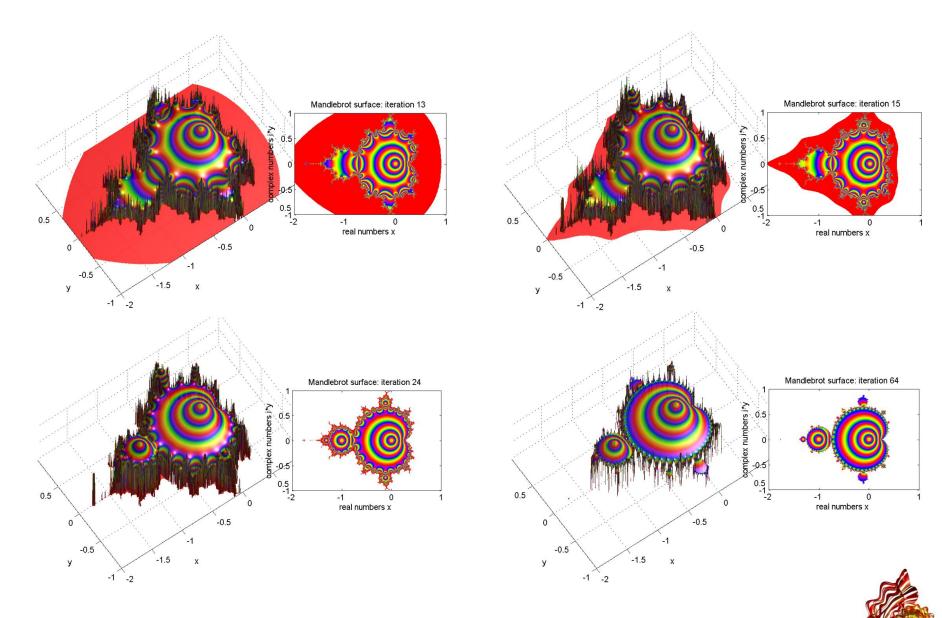
 $z_{n+1} = \left(z_n^2 + z_0\right)^{z_n}$



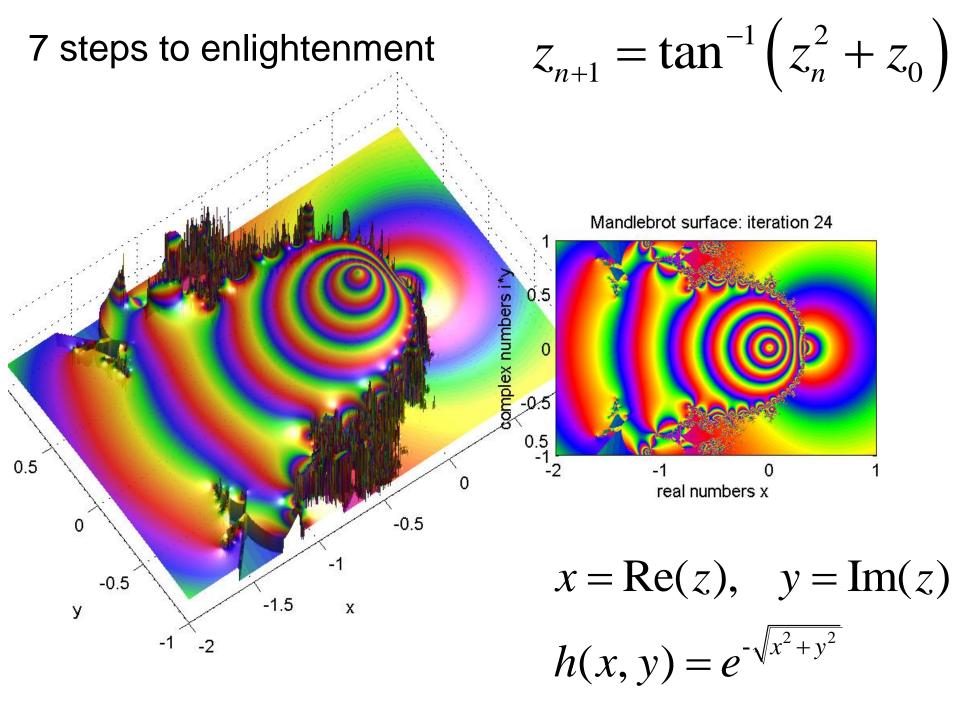


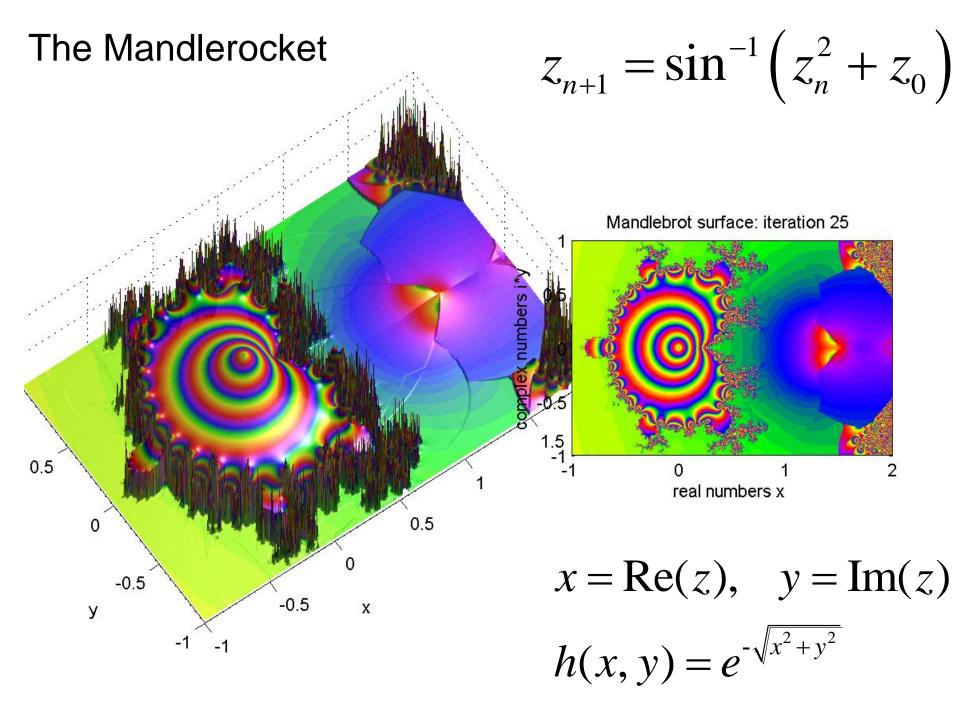




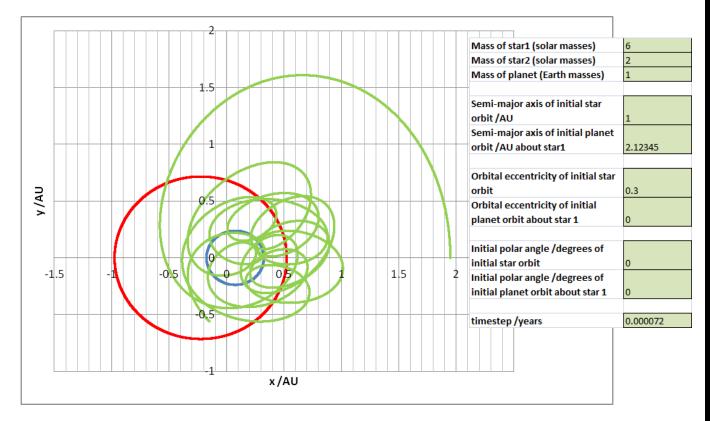


Selection from Day of Julia. Mathematicon Exhibition, 2014 $\mu^{\text{athematicon}}$



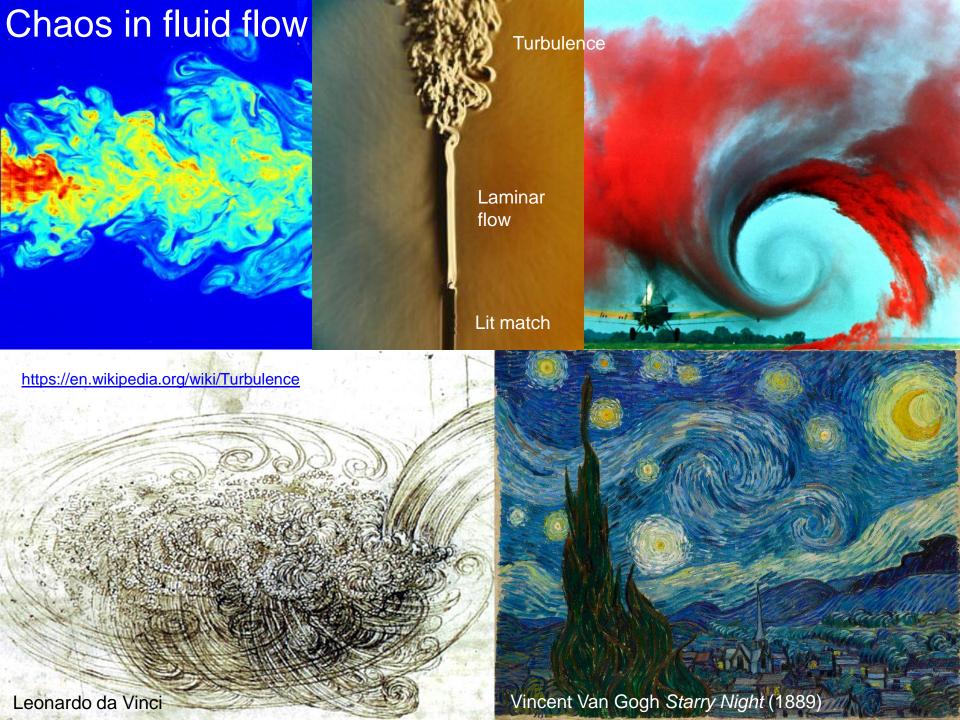


Chaos in planetary systems

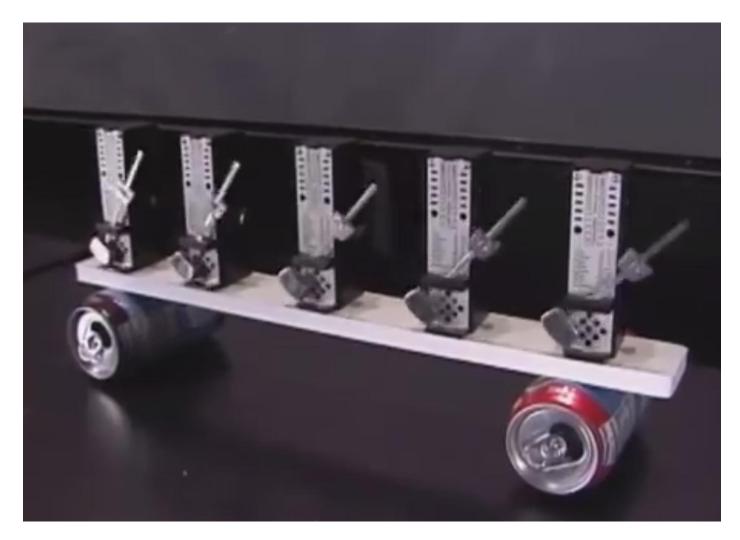


The motion of a planet in a close binary star system can be chaotic

The 'three body problem' has no closed form solution!



Phase locking - spontaneous *order* from chaos due to 'nonlinear feedback'



https://www.youtube.com/watch?v=Aaxw4zbULMs

Steven Strogatz **TED** talk-The Science of Sync

Further reading

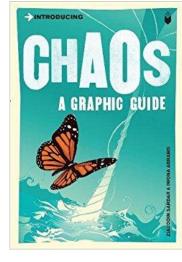
JAMES GLEICK

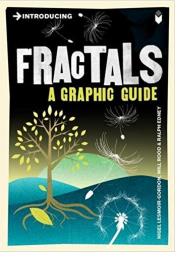
'An awe-inspiring book. Reading Chaos gave me the sensation that someone had just found the light switch'

CHAOS

AMAZING SCIENCE OF THE UNPREDICTABLE



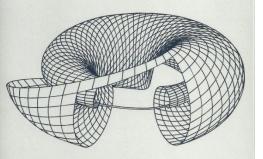




Shaw *et al*; "Chaos", Scientific American 54:12 (1986) 46-57

STUDIES IN NONLINEARITY

NONLINEAR DYNAMICS AND CHAOS



With Applications to Physics, Biology, Chemistry, and Engineering

STEVEN H. STROGATZ TED talk–*The Science of Sync*

THE FRACTAL GEOMETRY OF NATURE Benoit B. Mandelbrot

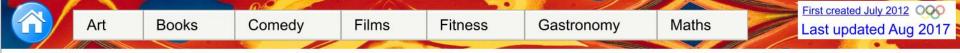
Christos H. Skiadas Charilaos Skiadas

Chaotic Modelling and Simulation

Analysis of Chaotic Models, Attractors and Forms

> CRC Press Taylor & Francis Group A CHAPMAN & HALL BOOK

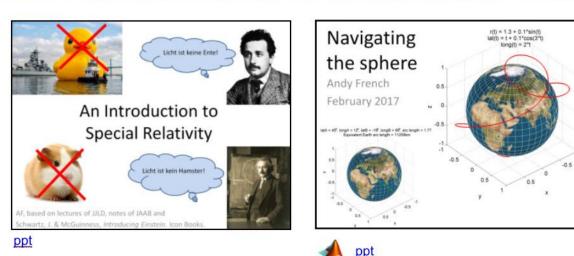
www.eclecticon.info



Lectures (3)

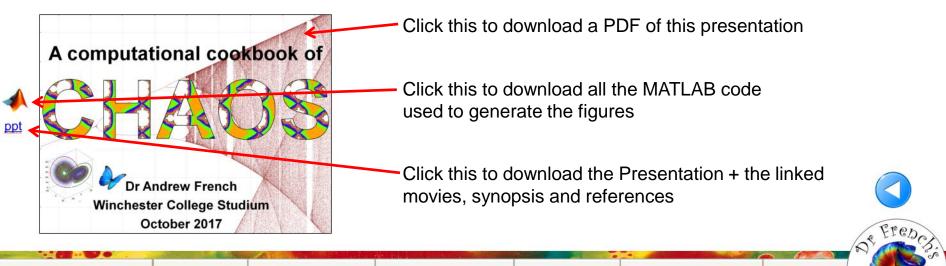
Music

Philosophy



<u>ppt</u> <u>synopsis</u>

Mountaineering

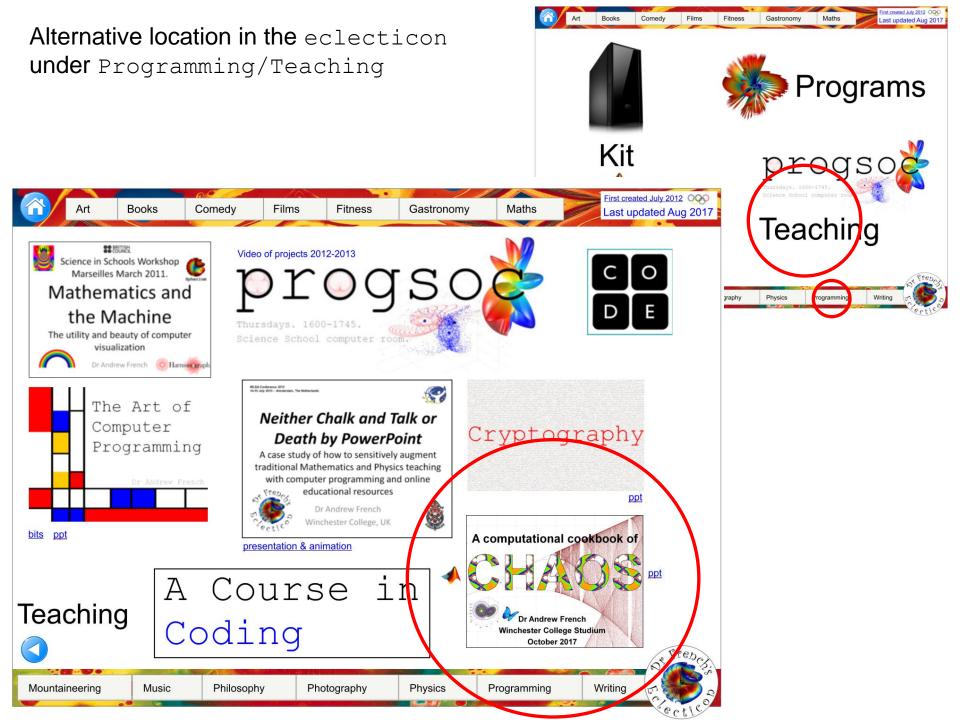


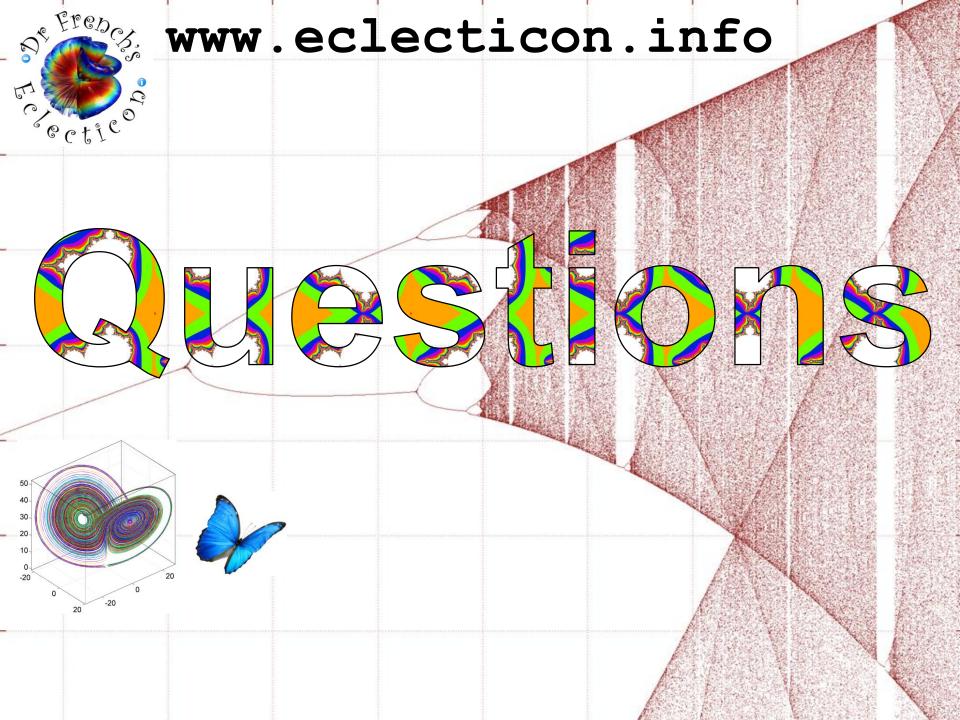
Physics

Programming

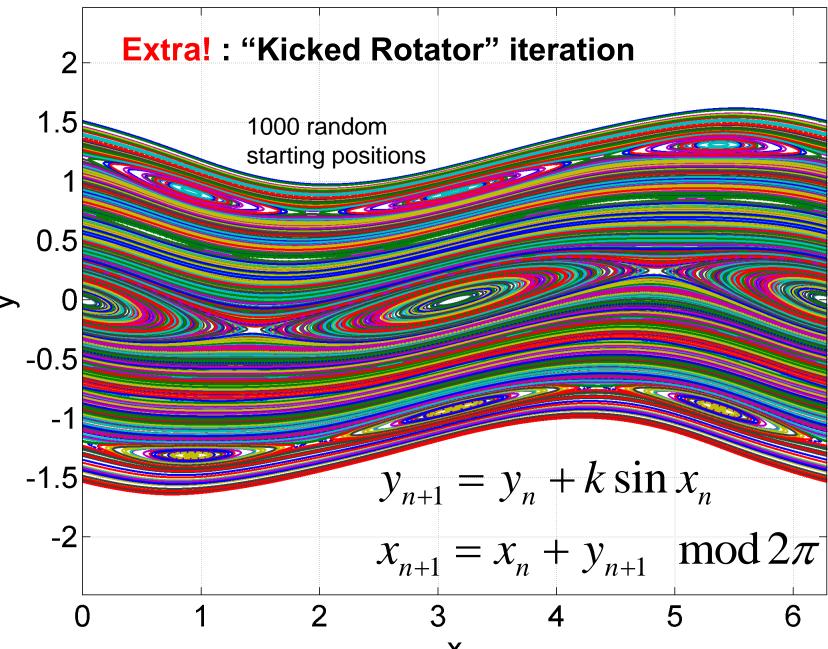
Writing

Photography

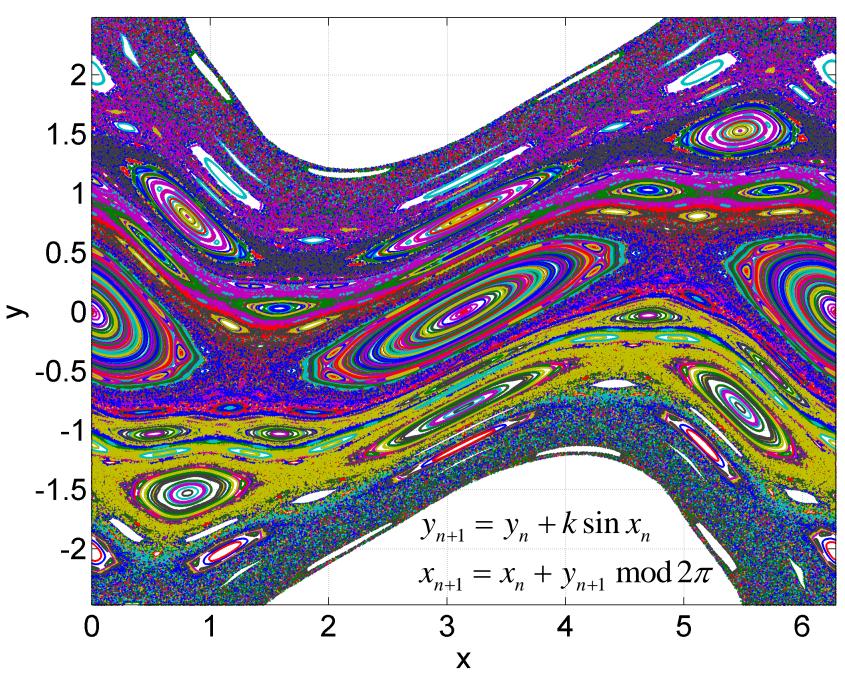




Kicked rotor iteration. N = 10000, k = 0.5



Kicked rotor iteration. N = 10000, k = 1



Kicked rotor iteration. N = 10000, k = 1.5

