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1. Draw a straight line AB, which will be the side length of the N-gon. If you plan to 
construct an N-gon with a large number of sides, don’t make this too large 
otherwise you will run out of paper! 
 

2. Span a compass between A and B and draw arcs centred on A and B respectively. 
Where these arcs intersect is the apex of an equilateral triangle. Label this ‘6’ 
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3. Construct a perpendicular bisector of line AB and hence connect the triangle 
apex with the base. Extend this line vertically upwards. 
 

4. Use a compass to mark half of AB upwards along the perpendicular, thereby 
constructing a 45o angled line, to go with the 60o angled line of the equilateral 
triangle. Label the point along the perpendicular ‘4’. 
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5. Now construct the 
perpendicular bisector 
between points ‘6’ and ‘4’ 
and mark the mid-point. 
Label this ‘5’ 
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6. Use the compass to measure the separation between ‘5’ and ‘6’, and then ‘walk’ 
this separation in a ladder-like fashion up the vertical perpendicular line. Where the 
compass intersects with the line, mark a point and label these 7,8,9.... etc. For 
completeness, also mark point ‘3’ below ‘4’. 

7. Now choose the number of sides of your desired 
polygon (or construct them all!)  

 Using a compass, draw a circle of radius from point 
N to either A or B. 
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e.g. construct a decagon by 
drawing a circle with centre at 
point 10, and radius set by the 
separation of this point and A or B 



8. Set the compass to the distance AB and ‘walk’ the 
compass round the circle you have just drawn. The 
intersections will be the vertices of the N-gon. 

9. Connect up the vertices using a ruler 
and you have an (approximately) 
regular N-gon! 

So how approximate is it? ... 
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Regarding the original equilateral triangle with base AB: 
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n   / o  360o/n 360o/n -   

3 115.25 120 4.75 

4 90 90 0 

5 72.41 72 -0.41 

6 60 60 0 

7 50.97 51.43 0.46 

9 38.92 40 1.08 

40 8.07 9.00 0.93 

With the exception of n = 4 (square) and n = 6 (hexagon) 
the construction is only approximate, although a discrepancy 
of only about a degree means any difference would be hard 
to detect without direct measurement. 
 
As n increases, the approximation improves. This is fairly 
intuitive given the radius of the construction circle increases 
with n while the polygon side length AB remains the same. 
Relative to the circumference, the step side becomes 
increasingly insignificant until, in the infinite limit, a circle is 
constructed. 
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The difference between 360o 
and n tends towards 45o as n 
increases. 







n = 1 : 1000 



n = 5000 

n = 10,001 

Note although angular discrepancy 
reduces with n, the additive effect 
of ‘walking the compass’ means 
quite a significant final deviation 
for the top vertex. This tends 
towards 45o.  
 
Solution – extra steps for large n? 
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The approximate N-gon angle formula will therefore yield a series of approximations of  
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Using just the first term of the 
Maclaurin expansion 


