Approximately regular N-gon
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1. Draw a straight line AB, which will be the side length of the N-gon. If you plan to
construct an N-gon with a large number of sides, don’t make this too large

otherwise you will run out of paper!

2. Span a compass between A and B and draw arcs centred on A and B respectively.
Where these arcs intersect is the apex of an equilateral triangle. Label this ‘6’
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Construct a perpendicular bisector of line AB and hence connect the triangle

apex with the base. Extend this line vertically upwards.

Use a compass to mark half of AB upwards along the perpendicular, thereby

constructing a 45° angled line, to go with the 60° angled line of the equilateral
triangle. Label the point along the perpendicular ‘4’,
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5. Now construct the
perpendicular bisector
between points ‘6’ and ‘4’
and mark the mid-point.
Label this ‘5’




6. Use the compass to measure the separation between ‘5’ and ‘6’, and then ‘walk’
this separation in a ladder-like fashion up the vertical perpendicular line. Where the
compass intersects with the line, mark a point and label these 7,8,9.... etc. For
completeness, also mark point ‘3’ below ‘4’.

7. Now choose the number of sides of your desired
polygon (or construct them all!)
Using a compass, draw a circle of radius from point

10 /f N to either A or B.

e.g. construct a decagon by
drawing a circle with centre at
point 10, and radius set by the
separation of this point and Aor B




8. Set the compass to the distance AB and ‘walk’ the
compass round the circle you have just drawn. The
intersections will be the vertices of the N-gon.

9. Connect up the vertices using a ruler
and you have an (approximately)

regular N-gon!

So how approximate is it? ...



Regarding the original equilateral triangle with base AB:
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With the exception of n = 4 (square) and n = 6 (hexagon)

the construction is only approximate, although a discrepancy
of only about a degree means any difference would be hard
to detect without direct measurement.

As n increases, the approximation improves. This is fairly
intuitive given the radius of the construction circle increases
with n while the polygon side length AB remains the same.
Relative to the circumference, the step side becomes
increasingly insignificant until, in the infinite limit, a circle is
constructed.
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n=10,001

Note although angular discrepancy
reduces with n, the additive effect
of ‘walking the compass’ means
quite a significant final deviation
for the top vertex. This tends
towards 45°.

Solution — extra steps for large n?




The approximate N-gon angle formula will therefore yield a series of approximations of ©
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