Post-IGCSE Physics Course: Experimental Physics using Data Loggers and Computers

6

Magnetic field Electromagnetism

Dr Andrew French P5/6 Winchester College

Magnetic field experimental setup

.....

Windows PC running CAPSTONE software

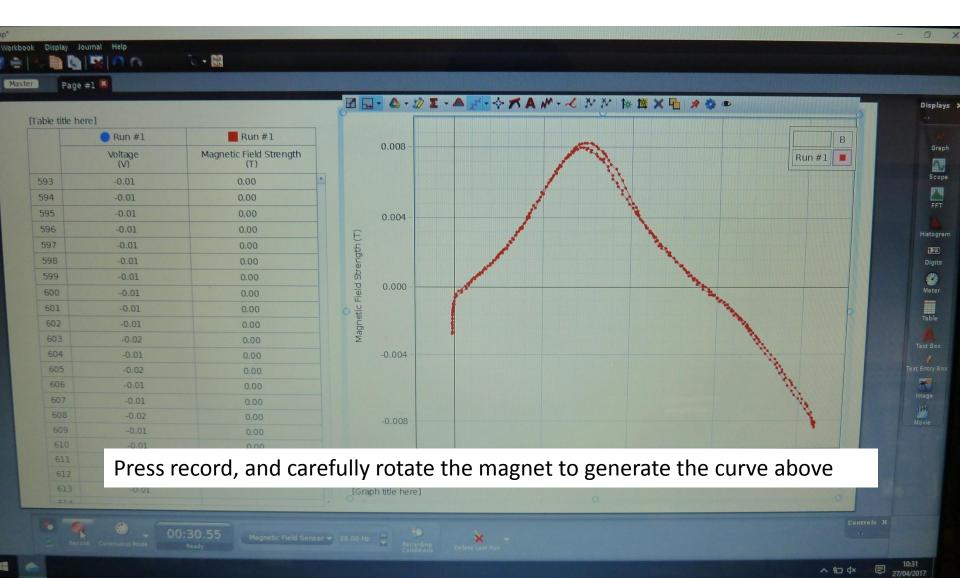
PASCO USB datalogger with magnetic field sensor and voltage sensor

Switch

Neodymium magnet mounted on a rotatable turntable. Rotation varies the resistance of a potentiometer. Hence voltage across it is proportional to angle of rotation.

2V DC power supply for potential divider

PASCO USB datalogger with magnetic field sensor and voltage sensor


> Neodymium magnet mounted on a rotatable turntable. Rotation varies the resistance of a potentiometer. Hence voltage across it is proportional to angle of rotation.

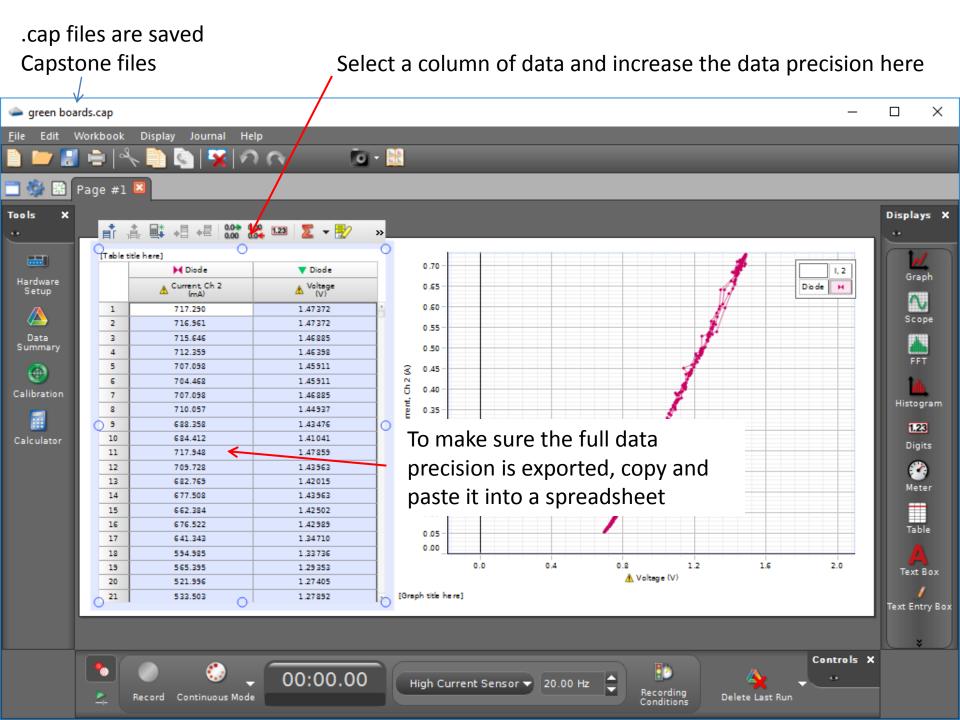
Run Capstone Connect USB Switch on Sutton on back

0

PASCO USB datalogger with magnetic field sensor and voltage sensor

- Run CAPSTONE and choose the Table and Graph option.
- Set the graph axis and table columns to correspond to **Voltage** and **Magnetic field strength.**
- You may wish to set the units of magnetic field strength to be *milli-tesla* (mT)

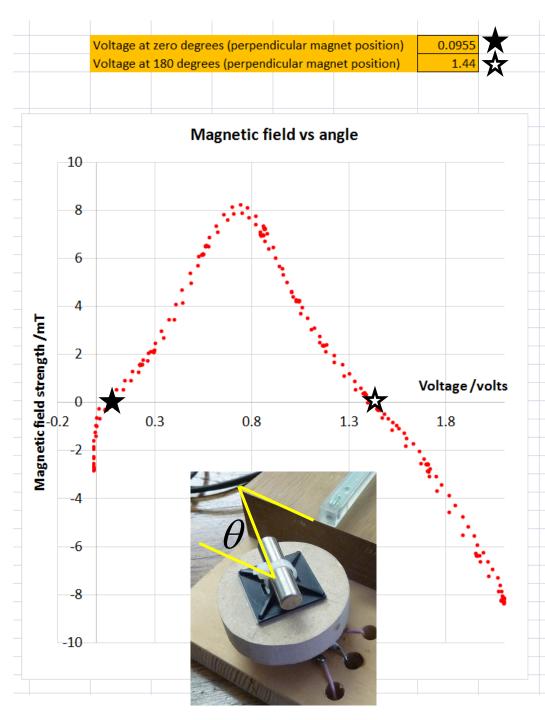
Export data health warning!


Simply exporting the data to a .csv file **may not work very well for this** experiment.

This is because the variations in magnetic field are quite small and the exporting option tends to round the numbers to a low precision.

Instead, **save the Capstone data to a memory stick**, and then open the file in a PC which runs *both* Capstone and a spreadsheet (such as Excel, WPS Offfice etc).

Change the table settings **such that an appropriate number of significant figures are displayed**, **select all** the data (Ctrl+A) and **copy** (Ctrl+C) and **paste** (Ctrl+V) into a blank spreadsheet.


Save the spreadsheet. This can then be used to generate graphs, perform further analysis etc.

Analysis

Determine the linear relationship between voltage and rotation angle, and hence **calibrate** the voltage measurement. This is easily done by assuming the minimum *radial* magnetic field strength corresponds to the magnet in a position perpendicular to the magnetic field sensor.

$$\frac{\bigstar}{V - V_{\min 1}}_{\substack{V_{\min 2} - V_{\min 1} \\ \bigstar}} = \frac{\theta}{180^{\circ}}$$

_	А	В	С	D	E	F	G	Н	1	J	K	L	М	N
1	Datalogging Expe	eriment 06: Magn	etic (Electrom	agnetism)										
2	Winchester Colle	ge. April 27th 201	.7. A. French &	A. Chesters										
3														
	Magnetic Field	Magnetic Field		Angle										
4	Strength (T)	Strength (mT)	Voltage (V)	/deg										
5	-0.008132426	-8.132426225	2.09708	250.1975										
6	-0.008132773	-8.132772891	2.09708	250.1975					Magneti	c field vs	angle			
7	-0.008132773	-8.132772891	2.09708	250.1975		10								
8	-0.008132773	-8.132772891	2.09708	250.1975		10					lt mi	ght b	e pre	ferable
9	-0.008132426	-8.132426225	2.09708	250.1975								-	•	
10	-0.008132773	-8.132772891	2.09708	250.1975		8		•			_to al	so sei	t the i	zero ang
11	-0.008132773	-8.132772891	2.09708	250.1975					< €		to th	o mo	vimu	m
12	-0.008132773	-8.132772891	2.09708	250.1975		-			.			e ma	xiiiiu	
13	-0.008132426	-8.132426225	2.09708	250.1975		6					field	stren	oth i	e. when
14	-0.008132426	-8.132426225	2.09708	250.1975							nciù	Juch	5	c. writtin
15	-0.008132773	-8.132772891	2.09708	250.1975		4		•			mag	net ar	nd pr	obe are
16	-0.008132773	-8.132772891	2.09708	250.1975		는 그		••		·•.				
17	-0.008132773	-8.132772891	2.09708	250.1975		5				- E	align	ed		
8	-0.008132773	-8.132772891	2.09708	250.1975		1 5 2								
19	-0.00813312	-8.133119556	2.09708	250.1975		Magnetic field strength /mT -10 -5-	1.5							
20	-0.008220826	-8.220825931	2.09708	250.1975		t				•		Ang	gle / degr	ees
21	-0.008302292	-8.302292326	2.09708	250.1975			-	40	00	140	100	240	<u>`</u>	200
22	-0.008332452	-8.332452225	2.09708	250.1975		jeg -10	J	40	90	140	190	240)	290
23	-0.008366079	-8.36607878	2.09708	250.1975		-2-								
24	-0.008314079	-8.314078953	2.09708	250.1975		nge					- A			
25	-0.008264852	-8.26485245	2.09708	250.1975		Σ					•	•		
26	-0.008166399	-8.166399445	2.08734	248.98		-4								
27	-0.008034667	-8.034666551	2.08734	248.98										
28	-0.007860294	-7.860293799	2.08247	248.3713		-6								
29	-0.007600295	-7.600294666	2.0776	247.7625		-0						×.		
30	-0.007278589	-7.278589071	2.06299	245.9363									•	
31	-0.006938857	-6.93885687	2.03864	242.8925		-8							1	
32	-0.006600858	-6.600857997	2.01429	239.8488									-	
33	-0.006238939	-6.238939204	1.98994	236.805		10								
34	-0.005899207	-5.899207003	1.96072	233.1525		-10								
35	-0.005516142	-5.516141613	1.94124	230.7175										
36	-0.005138276	-5.138276206	1.91202	227.065										
37	-0.004726784	-4.726784244	1.8828	223.4125										
38	-0.004277506	-4.277505742	1.84384	218.5425										
39	-0.003838627	-3.838627205	1.81462	214.89										
40	-0.003422629	-3.422628591	1.77566	210.02										
41	-0.00305759	-3.057589808	1.74644	206.3675										
42	-0.002743511	-2.743510855	1.71722	202.715										