Post-IGCSE Physics Course: Experimental Physics using Data Loggers and Computers

Electromagnetism

Dr Andrew French P5/6 Winchester College

Last updated April/May 2017

06

Experimental setup

Measuring the resistance of the fixed resistors using a multimeter

OF

1000

700

200

м-3800 Ш

hFE

2004

21

20m

204

200m 20m

7.2 40

330

104

MA IMA

22 kn

330 kn

nto nto

Charging a capacitor using a DC source

1. Switch closed. Current flows through resistor and positive charge builds up on right capacitor plate. An equal amount of negative charge builds up on left plate.

2. *Electrical field* set up between capacitor plates as no current can flow. Voltage V between the plates is V = Q/C where Q is the total charge deposited and C is the *capacitance* ('charge per unit volt')

3. As charge builds up on right plate, potential difference between capacitor and source reduces. This reduces the current flowing onto the plate. Eventually the voltage V becomes V_0 and hence no more current can flow.

3. Note the amount of charge which can be deposited depends on the resulting *electrical field strength* between the plates. Above the breakdown field strength, current will flow between the plates

Dielectric	Breakdown field strength /Vm ⁻¹
Air	3 x 10 ⁶
Mineral oil	15 x 10 ⁶
Neoprene	16 x 10 ⁶
Water	65 x 10 ⁶
Mica	118 x 10 ⁶

Discharging a capacitor

$$Q = CV$$
 $V = IR$

capacitor charge, voltage relationship

Ohm's law

$$\therefore I = \frac{V}{R} = -C\frac{dV}{dt}$$

Note $V = V_0$ when t = 0

2

0

8

6

10

RC

During **charging** phase, MATLAB **keytime.m** program is run, and a button on the keyboard is pressed when a fixed voltage is reached. 1,2,3,4,5,6,7,8, 9.5V are an appropriate set.

keytime.m stores the times of button presses to high precision. It is essentially a stopwatch with a split time facility.

Once charging is 'complete,' pressing 'q' and then return will stop the timer and export the timings into an Excel sheet.

The process is repeated for the **discharging** phase.

Charging and discharging is then repeated for the range of fixed resistors.

From the recorded data, both the capacitance and the internal resistance of the circuit can then be calculated.

%keytime % Program which displays the time, and time differences when a key is % pressed. function keytime %Display message to command window disp(''); disp(' Key press timer ') disp(' ') disp(' Press return key to start Although note q will quit the program'); %Wait for user input to start the clock i = input(' ', 's'); if strcmp(i, 'q') return else disp(' Timer started ') end MATLAB %Start clock keytime.m t0 = tic;program. %Loop timer, checking for user input stop = 0; tstart = 0;t=0; while stop == 0 i = input(' ', 's'); if strcmp(i, 'q') %Save time array to Excel if q key pressed finish time = strrep(datestr(now),':','-'); C{1,1} = ['Time data /s finished at ', finish time]; $C{3,1} = 'Time';$ for n=1:length(t) $C{3+n,1} = t(n);$ end xlswrite(['Timing ', finish_time],C); return end tstop = toc(t0);t = [t, tstop];disp([' Time elapsed is ',num2str(tstop),'s']); disp([' Time between key presses is ',num2str(tstop - tstart),'s']) tstart = tstop;

end

%End of code

Charging R = 100 ohms			Discharging R = 100ohms		
time /s	voltage /V	In((VS-V0)/(VS-V))	time /s	voltage /V	ln(V)
0	3	0.000	0	8	2.07944
1.8479452	4	0.128	1.1998906	7	1.94591
3.98388668	5	0.274	2.751837	6	1.79176
6.74392275	6	0.446	5.215849	5	1.60944
9.77592451	7	0.653	7.9038423	4	1.38629
14.1917552	8	0.915	11.343842	3	1.09861
21.4638202	9	1.271	16.959821	2	0.69315
37.7117969	10	1.828	26.199753	1	0
			35.591726	0.5	-0.69315

Charging R = 1k ohms			Discharging R = 1kohms			
time /s	voltage /V	In((VS-V0)/(VS-V))	time /s	voltage /V	ln(V)	
0.00	1	0.000	0.00	8	2.07944	
8.30	2	0.102	13.46	7	1.94591	
20.03	3	0.215	26.66	6	1.79176	
34.27	4	0.343	44.35	5	1.60944	
52.74	5	0.489	66.12	4	1.38629	
78.06	6	0.661	95.26	3	1.09861	
121.08	7	0.868	138.57	2	0.69315	
218.0 <mark>6</mark>	8	1.130	211.19	1	0	

Calculate capacitance from gradient of resistance vs RC time graph, and internal resistance R_0 from intercept and gradient.

0.0941*R* + 8.533 = (*R* + *R*₀)*C*
∴ *C* = 94,100µ*F*
∴ *R*₀ =
$$\frac{8.533}{0.0941}$$
 = 90.7Ω