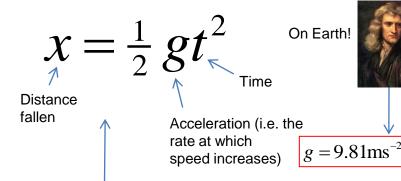

What is

Science?



Universe by Numbers: Day 1 July 2016 Dr Andrew French

The Scientific Method

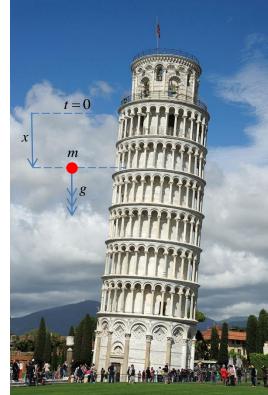
2 **Propose a theory**, involving things that can be measured

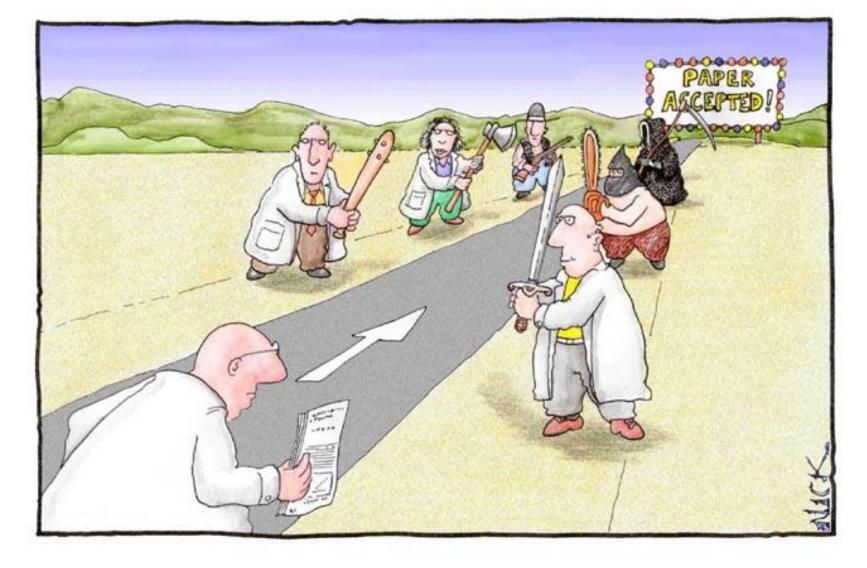
Galileo Galilei

1564-1642

Make some observations

"Falling objects seem to accelerate at the same rate... Independent of how massive they are!"


If we ignore


air resistance!

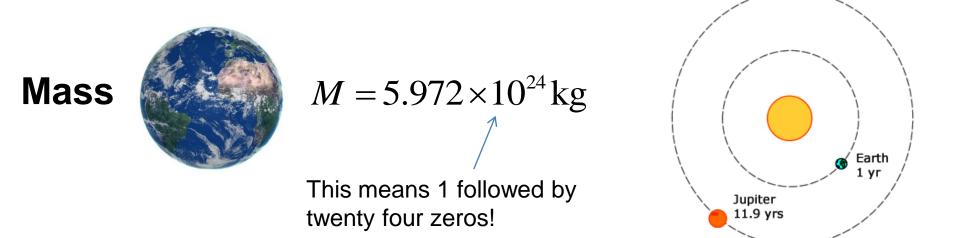
Write up your findings and allow your peers to review it

3 **Do an experiment** Is there a match between theory and measured results? Is the experiment repeatable?

Most scientists regarded the new streamlined peer-review process as 'quite an improvement.'

http://www.freethunk.net/nickkim/nickkim.php

How can we quantify the Universe?


Length

R = 6,371 km

Surface area	$4\pi R^2 = 1.139 \times 10^9 \text{ km}^2$
Volume	$\frac{4}{3}\pi R^3 = 1.083 \times 10^{12} \text{ km}^3$

Time 1 year = $365 \times 24 \times 60 \times 60s = 3.15 \times 10^7 s \approx \pi \times 10^7 s$

Charge, energy, momentum, force, entropy

Standard form

In Science, quantities can vary in scale from the very, very small to the truly enormous!

Distance light travels in one year (a "light-year")

$9.461 \times 10^{12} \, \text{km}$

= 9,461,000,000,000km

Diameter of an atomic nucleus

 $10^{-15}\,m$

Using **powers of ten** is a much better way than writing all the zeros!

= 0.000000000000001m

Proxima Centauri 4.25 light-years from Earth

Standard form

Using standard form is easy – the power is the number of zeros either side of the decimal point

$1 = 10^{0}$	$\frac{1}{10} = 10^{-1}$	
$10 = 10^{1}$	$\frac{1}{100} = 10^{-2}$	$1234 = 1.234 \times 10^4$
$100 = 10^2$	$\frac{1}{1000} = 10^{-3}$	
$1000 = 10^3$	$\frac{1}{10,000} = 10^{-4}$	0.0005678
$10,000 = 10^4$		$=5.678 \times 10^{-4}$
$100,000 = 10^5$	$\frac{1}{100,000} = 10^{-5}$	For standard form
$1,000,000 = 10^6$	$\frac{1}{1,000,000} = 10^{-6}$	this number is 1,2,3,4,5,6,7,8 or 9
Million	Millionth	i.e. <i>not</i> 0.8 or 19

The number of digits after the decimal point tell you how precise the number is

Write the following in standard form

1000000

31400000000

0.00000002718

 1234×10^{3}

 56789×10^{-10}

$1000000 = 10^7$

$31400000000 = 3.14 \times 10^{11}$

$0.00000002718 = 2.718 \times 10^{-9}$

$1234 \times 10^{3} = 1.234 \times 10^{3} \times 10^{3} = 1.234 \times 10^{6}$

Solutions

 $56789 \times 10^{-10} = 5.6789 \times 10^{4} \times 10^{-10}$

 $= 5.6789 \times 10^{-6}$

Laws of Indices

$$10^{2} \times 10^{3} = 10^{2+3} = 10^{5}$$

$$10^{a} \times 10^{b} = 10^{a+b}$$

$$10^{2} \times 10^{-6} = 10^{2-6} = 10^{4}$$

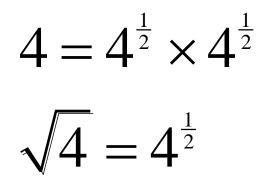
$$x^{a} x^{b} = x^{a+b}$$

$$x^{a} x^{b} = x^{a+b}$$
These can be any numbers!
$$10^{6} \div 10^{4} = \frac{10^{6}}{10^{4}} = 10^{6} \times 10^{-4} = 10^{2}$$

$$10^{a} \div 10^{b} = 10^{a-b}$$

$$\frac{1}{x^{a}} = x^{-a}$$

Laws of Indices - powers


$$(10^{2})^{2} = 10^{2} \times 10^{2} = 10^{2 \times 2} = 10^{4}$$

 $(10^{2})^{3} = 10^{2} \times 10^{2} \times 10^{2} = 10^{3 \times 2} = 10^{6}$

$$\left(10^a\right)^b = 10^{ab}$$

$$\left(x^a\right)^b = x^{ab}$$

$$(2^{-3})^{-2} = 2^{-3 \times -2} = 2^{6}$$

Laws of Indices – roots

 $\sqrt{x} = x^{\frac{1}{2}}$

 $8 = 8^{\frac{1}{3}} \times 8^{\frac{1}{3}} \times 8^{\frac{1}{3}}$ $\sqrt[3]{8} = 8^{\frac{1}{3}}$

 $\sqrt[n]{\chi} = \chi^{\frac{1}{n}}$

 $\sqrt[3]{343 \times 10^9} = (7^3 \times 10^9)^{\frac{1}{3}} = 7 \times 10^3$

Arithmetic for Science summary

Standard Form $123,000,000 = 1.23 \times 10^8$ $0.0000456 = 1.23 \times 10^{-5}$

Laws of Indices

$$10^2 \times 10^{10} = 10^{12}$$

$$\frac{10^2}{10^{10}} = 10^{-8}$$

 $(10^2)^{10} = 10^{20}$

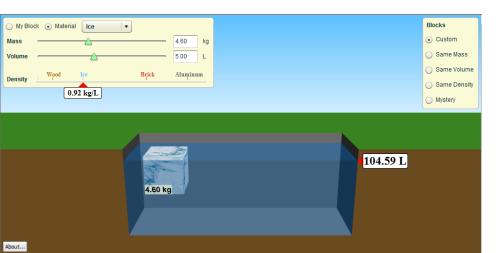
 $\sqrt[10]{10^{10}} = 10$

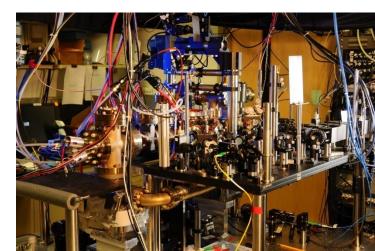
$$x^{a} x^{b} = x^{a+b}$$
$$\frac{1}{x^{a}} = x^{-a}$$

$$(x^a)^b = x^{ab}$$

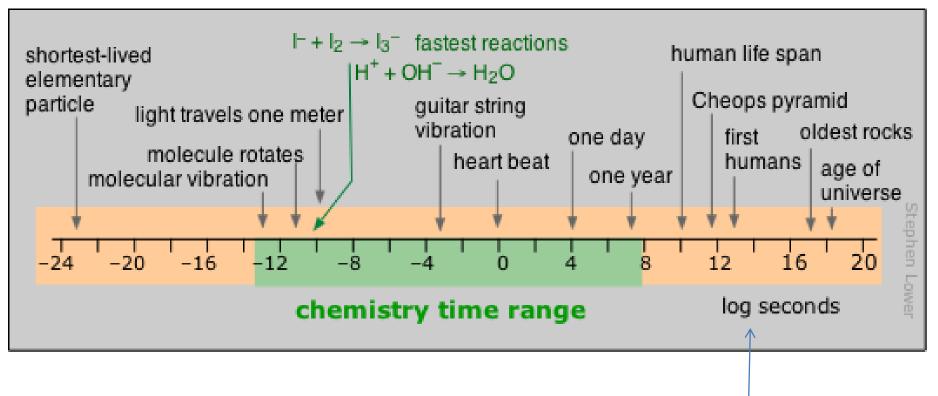
$$\sqrt[n]{x} = x^{\frac{1}{n}}$$

Note *x*, *a* and *b* just stand for 'any number'


The *relationship* between them is the important idea.


This is what **algebra** is all about!

Measuring distance, time and density



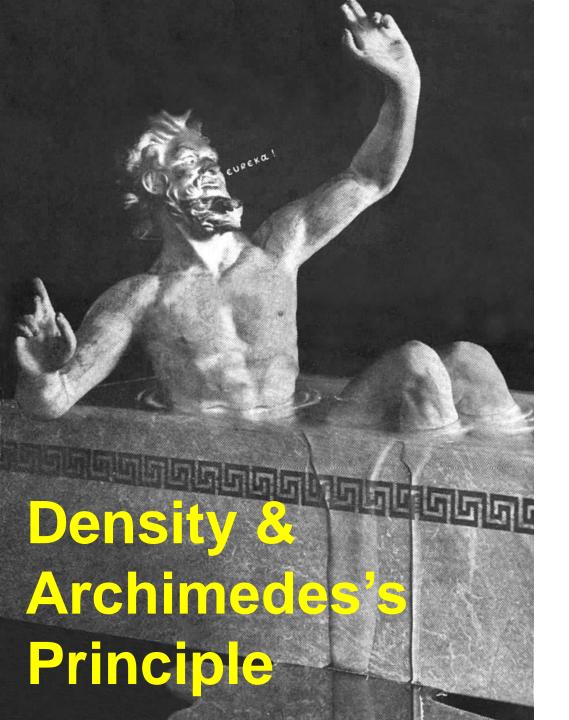
One kg: the mass of the International Prototype Kilogram

A cylinder of patinum iridium alloy, 89.17 min both diameter and height

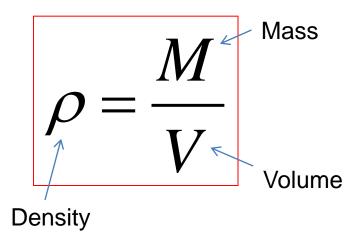
One second: the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom

Time scales in Chemistry

Essentially the 'power of ten'

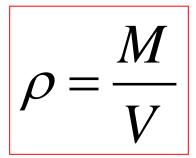

Recall one year is about $3 \times 10^7 s$

	Known from telescopes looking back in time, physical models								Geologic re	Geologic record, fossils, genetic drift		
Janu	ary	February	March	April	May	June	July	August	September	October N	ovember December	
					1							
The Big	g Bang				Milky Way disk forms			5	Solar System and life	Photo- E synthesis	cells	
Decei	mber 1	2	. DANGE	3		4		5	6		7	
8		9	173	10		11	+ NOT PAR	12	13		14 Sponges	
15		16	PIRCE	17 Fis	h	18		19	20 Lai	nd plants	21 Insects	
22		23	Reptiles	24		25 Dino	saurs	26 Mammals	27 Par	ngaea splits	28 Birds, flowers	
	29 Dinosaurs at top of food chain in top of food chain intervention 30 Dinosaurs go extinct, mammals diversify and return to the sea 31 10 In top of food chain intervention 10:15 AM Ape / gibbon divergence 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence Human / chimpanzee divergence 10:15 AM Ape / gibbon divergence Homo erectus evolves 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence 10:15 AM Ape / gibbon divergence Human / chimpanzee divergence 10:15 APM Anatomically modern humans evolve Modern humans migrate out of Africa 11:59 PM Neanderthals die out, megafauna stressed											
	Known from radiocarbon dating, DNA extraction from remains Written record											
Peak of last glacial period, humans migrate to the Americas First cities Agriculture, permanent settleme							Chi Roman repu es in Mesopo nents	es in America (rist born Iblic, Old Testa Itamia Dy	Mohamme	ed born		
60		55	50	45	40	35	30 2	5 20	15	10	5 0	



Forget the experts; domestication of the dog only took about 8 seconds.

One metre: The distance travelled by light in vacuum in 1/299,792,458 second



Density is *mass* per unit volume

Density is mass per unit volume

Note units!

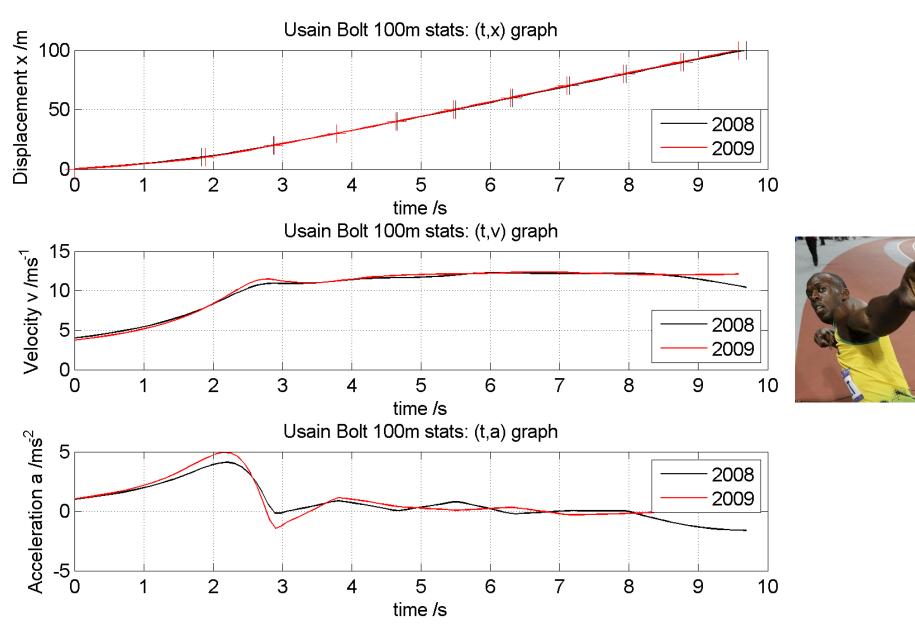
Air is about 1.2 **kgm⁻³** Wood is about 0.5 gcm⁻³ Water is about 1 gcm⁻³ Aluminium is 2.7 gcm⁻³

Iron is 7.8 gcm⁻³ Copper is 8.9 gcm⁻³ Mercury is 13.5 gcm⁻³ Gold is 19.3 gcm⁻³

Blocks							
	Custom						
\bigcirc	Same Mass						
\bigcirc	Same Volume						
\bigcirc	Same Density						
\bigcirc	Mystery						

Uranium is 19.1 gcm⁻³

104.59 L


$$1 \text{kgm}^{-3} = \frac{1000 \text{g}}{(100 \text{cm})^3}$$
$$1 \text{kgm}^{-3} = \frac{10^3}{10^{2 \times 3}} \text{gcm}^{-3}$$

Converting density units

$1 \text{kgm}^{-3} = 10^{-3} \text{gcm}^{-3}$

$\rho_{air} = 1.2 \text{ kgm}^{-3} = 1.2 \times 10^{-3} \text{ gcm}^{-3}$

Units of speed and acceleration

Converting speeds 1 mile = 1609.344 m1 km = 1000 mspeed = $\frac{\text{distance}}{\text{time}}$ 1 hour = 3600 s $1 \text{mph} = \frac{1609.344 \text{m}}{3600 \text{s}}$ $1 \text{ kmh}^{-1} = \frac{1000 \text{ m}}{3600 \text{ s}}$ $1 \text{mph} = 0.44704 \text{ms}^{-1}$ $1 \text{kmh}^{-1} = \frac{1}{3.6} \text{ms}^{-1}$ $1 \text{ms}^{-1} = \frac{1}{0.44704} \text{mph}$ $1 \text{ kmh}^{-1} = 0.2778 \text{ ms}^{-1}$ $1 \text{ms}^{-1} = 2.237 \text{mph}$ $1 \text{ms}^{-1} = 3.6 \text{ kmh}^{-1}$

Usain Bolt's **maximum speed** is about 12 metres per second

$$v = 12 \text{ms}^{-1}$$

 $v = 12 \times 3.6 \text{ kmh}^{-1}$

$$v = 43.2 \,\mathrm{kmh^{-1}}$$

$$1 \text{ms}^{-1} = 3.6 \text{ kmh}^{-1}$$

 $1 \text{ms}^{-1} = 2.237 \text{mph}$

$$v = 12 \text{ms}^{-1}$$

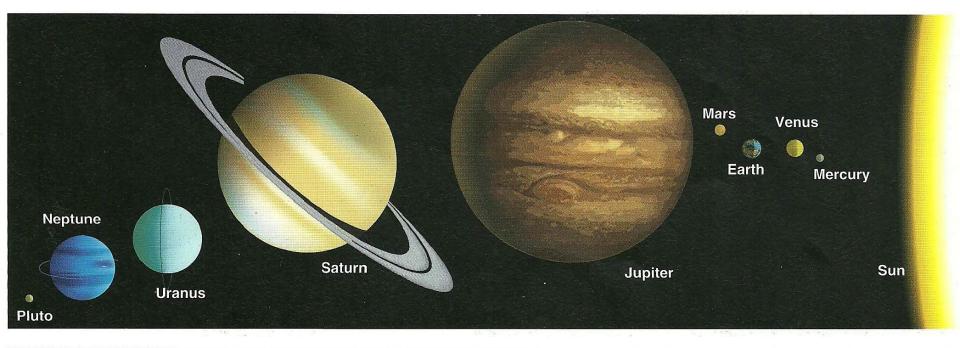
 $v = 12 \times 2.237 \text{mph}$
 $v = 26.8 \text{mph}$

By converting to km, (or miles) per hour we can compare Usain's top speed to that of a car

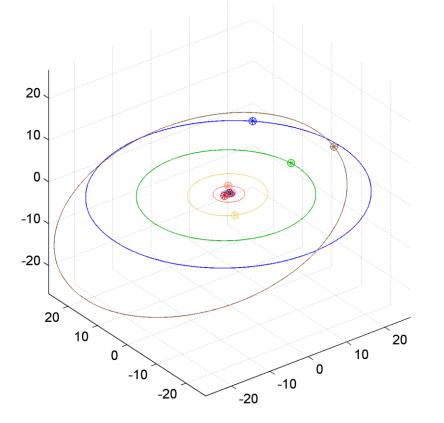
He would not quite break the UK residential speed limit!

Acceleration is the rate of change of speed

Objects that accelerate due to gravity **gain 9.81 ms⁻¹** every second i.e. an *acceleration* of 9.81ms⁻²

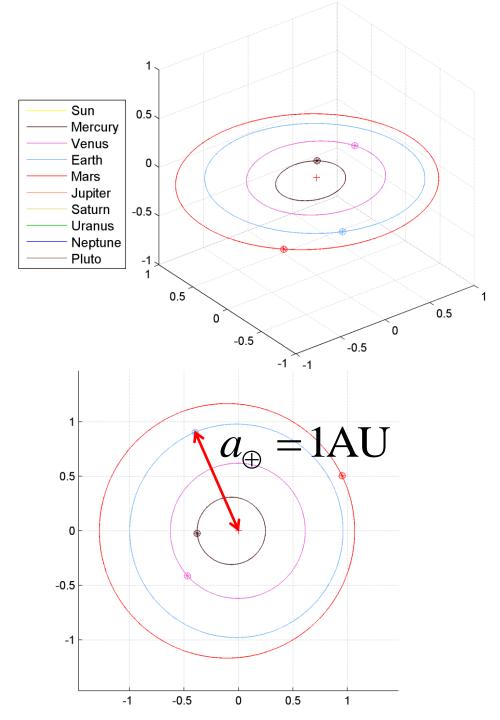

Usain Bolt has a maximum acceleration of about 5 ms⁻²

$$5 \text{ms}^{-2} = 5 \times \frac{\frac{1}{1000} \text{ km}}{\left(\frac{1}{3600} \text{ hours}\right)^2}$$
$$5 \text{ms}^{-2} = 5 \times \frac{3600^2}{1000} \text{ kmh}^{-2}$$
$$5 \text{ms}^{-2} = 64,800 \text{ kmh}^{-2}$$


Although this is an equivalent unit, it is *not as useful* as 5ms⁻² since Usain Bolt is only accelerating for a few seconds!

Top tip: use units appropriate to the problem you are working with

*Strictly speaking, the rate of change of *velocity*. The latter is a **vector** quantity (i.e. has *magnitude* and *direction*) whereas speed is a **scalar**. For movement down a 100m track, speed and velocity have the same meaning



Planet	Diameter of planet	Average distance of planet from the Sun	Time taken to go round the Sun	Number of moons	Average temperature on sunny side
Mercury	4900 km	58 million km	88 days	0	350°C
Venus	12 000 km	108 million km	225 days	0	480°C
Earth	12 800 km	150 million km	365¼ days	1	20°C
Mars	6800 km	228 million km	687 days	2	0°C
Jupiter	143 000 km	780 million km	12 years	14	-150°C
Saturn	120 000 km	1430 million km	29 years	24	-190°C
Uranus	52 000 km	2800 million km	84 years	15	-220°C
Neptune	49 000 km	4500 million km	165 years	3	-240°C
Pluto	3000 km	5900 million km	248 years	l a a	-240°C

Scale in astronomical units AU

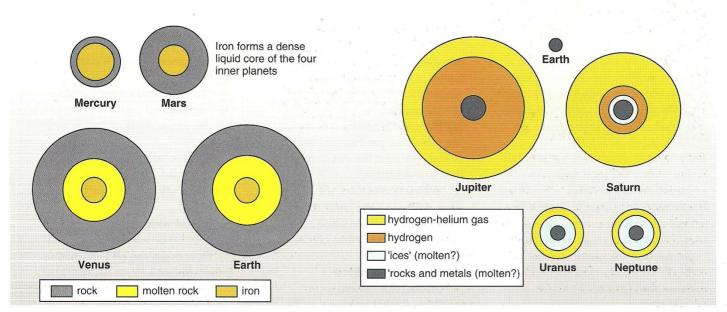
 $1AU = 1.496 \times 10^{11} m$

Object	M/M_{\oplus}	a /AU	R/R_\oplus	T_{rot} / days	P/Yr]
Sun	$332,\!837$	-	109.123	-	-	
Mercury	0.055	0.387	0.383	58.646	0.241	
$Venus^{\dagger}$	0.815	0.723	0.949	243.018	0.615	
Earth	1.000	1.000	1.000	0.997	1.000	0
Mars	0.107	1.523	0.533	1.026	1.881	
Jupiter	317.85	5.202	11.209	0.413	11.861]
Saturn	95.159	9.576	9.449	0.444	29.628	
$Uranus^{\dagger}$	14.500	19.293	4.007	0.718	84.747]
Neptune	17.204	30.246	3.883	0.671	166.344	1
Pluto [†]	0.003	39.509	0.187	6.387	248.348	•

Venus, Uranus and Pluto rotate clockwise about their internal axis All other planets rotate anti-clockwise

Earth parameters

$$M_{\oplus} = 5.972 \times 10^{24} \text{ kg}$$


$$R_{\oplus} = 6.371 \times 10^{6} \text{ m}$$

$$M_{\oplus} = 6.371 \times 10^{6} \text{ m}$$

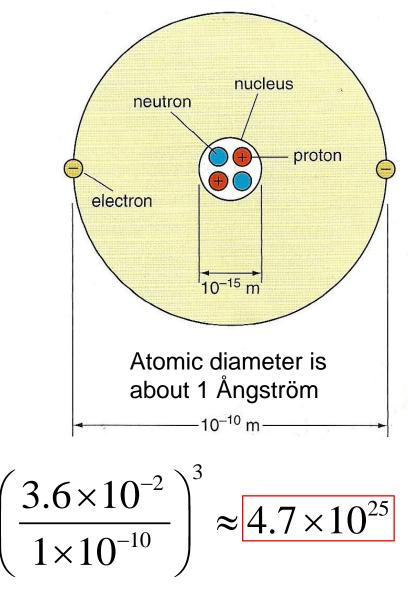
Planet	Mass relative to Earth	Radius (Earth = 1)	Relative density (water = 1)	Distance from Sun in AU†	% Rocks	% Ice	% Gas	Main gases in atmosphere
Mercury	0.06	0.38	5.4	0.39	nearly all	-	_	none
Venus	0.82	0.95	5.2	0.72	nearly all		some in atmosphere	CO2
Earth	T	I	5.5	$(\mathbf{J}_{\mathbf{r}})_{\mathbf{m}}$	nearly all	water in oceans, ice at poles	some in atmosphere	N ₂ , O ₂
Mars	0.11	0.53	3.9	1.5	nearly all	ice at poles	some in atmosphere	CO2
Jupiter	318	11.2	1.3	5.2		10% rock/ice	90%	H ₂ , He
Saturn	95	9.4	0.7	9.5		30% rock/ice	70%	H ₂ , He
Uranus	14.6	4.1	1.2	19.1		70% rock/ice	30%	H ₂ , He, CH ₄
Neptune	17.2	3.9	1.7	30.1		70% rock/ice	30%	H ₂ , He, CH ₄
Pluto	0.1?	0.4?	?	39.4		mostly rock/ice	? 3 " 1 3 m 2 m 3	none?

Table I

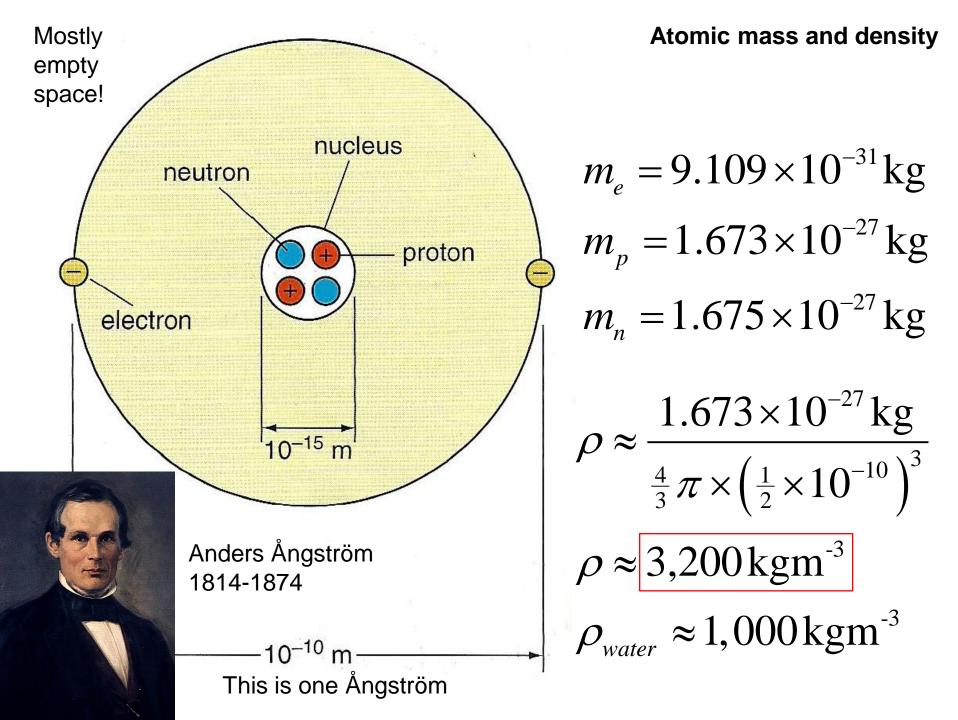
 \dagger I Astronomical Unit of AU is the average Earth–Sun distance. $\rm O_2$ oxygen, $\rm N_2$ nitrogen, $\rm CH_4$ methane, $\rm CO_2$ carbon dioxide.

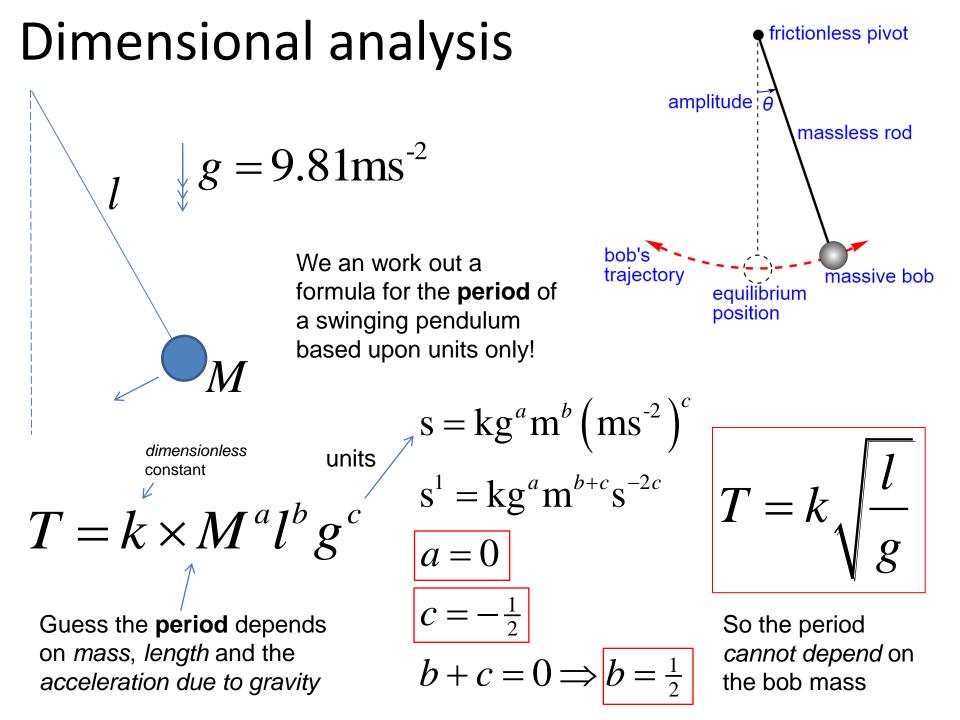
The size of an atom

Earth diameter = 12,756km



Marble diameter = 3.6cm


 $\left(\frac{1.2756 \times 10^7}{3.6 \times 10^{-2}}\right)^3 \approx 4.4 \times 10^{25}$


Volume of Earth in marbles

There are as many atoms in a marble as an Earth made of marbles!

Number of atoms in a marble

Topics to reflect on:

The Learning Cycle. Have an experience. Capture it (ideally in writing!) Reflect upon it. Conclude from it. Plan your next step.

The Scientific method. Make some observations. Propose a theory. Turn it into Mathematics, i.e. *equations* which relate *measureable quantities*. Conduct an experiment. Does the theory match what you measured?* Write up your ideas and have them peer reviewed.

'Scientific arithmetic.' Standard Form, Laws of Indices.

Units of length, mass, time. Finding density, speed and acceleration. Converting between units.

Dimensional analysis Depending on your course, we may not cover all of these. Review the topics you did meet. If you have time to spare, read on!

*Note you can *never prove your theory is correct*, only *disprove it* if there is insufficient match to experimental results.