
Universe by  
Numbers: Day 4 
July 2016 
Dr Andrew French 

mg

F

Mechanics 
& Machines 

F



Antique mechanical 

washing machine 

mechanisms 

Honda Cog advert 

Crème that egg 

crazy machine! 

http://www.youtube.com/watch?v=eAniA73C6WI
http://www.youtube.com/watch?v=_ve4M4UsJQo
http://www.youtube.com/watch?v=vrCb_fNmSTA


Work 

F

x

F

The work done (i.e. energy transferred) 
by the application of force F parallel 
to displacement x is 

W F x 

Note there is no work done by any 
component of a force perpendicular to 
the displacement.  i.e. force R does no work. 

R

R

For varying forces, the work done 
is more generally the area under the 
(displacement, force) graph 

F

x
W



Gravity & weight 

mg
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The force due to gravity upon a 
mass of m kg is mg where g is 
the gravitational field 
strength.  
 

F

F

The gravitational force 
mg on a mass of m kg 
is called its weight. 
 
It is measured in Newtons. 
 
Therefore a 70kg man 
weighs 686.7N on Earth. 
 
g depends on the mass and 
radius of a planet 
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A weighty puss indeed.... 

gravitational field 
strength on the 
surface of the Earth 

Work done rising a mass to height h against gravity = force x distance 

GPE mgh We call this Gravitational Potential 

Energy, as this is what would be released if the 

mass fell height h 



GPE mgh
KE 0

GPE 0
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If an object of mass m moves with speed v 

it has kinetic energy 
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2

KE mv

Speed is the magnitude 

of velocity, which is a 

vector quantity (i.e. has 

both magnitude and 

direction) 

By Conservation of Energy 

21
2
mv mgh



A 

B 
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Ignore friction on slope since assume 

barrel is rolling not sliding 

hx

b

Work done 

A to B  Fx

Conservation of energy Fx mgh 2 2

h h
F mg mg

x b h
  



Pythagoras: 
2 2x b h 



If barrel lifted vertically 

F mg

Using the inclined plane  
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The larger the ratio 

the lower the force 

needed to roll the barrel  

/b h

1

slope gradient

b

h


i.e. MECHANICAL  

ADVANTAGE 



Elasticity  

kx

mg

x

ll

-19.81msg 

Unstretched 
spring 

F

x

F kx x
l


 

Hookes’ Law  
k is the spring 
constant, 
alternatively 
expressed in 
terms of an 
elastic modulus  

The work done by the restoring 
force, if ‘left to its own devices’ 
is called the elastic potential 
energy. This is the area under 
the (displacement, force) graph. 
Since triangular in shape for a 
‘Hookean spring’ : 
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E kx

unstretched 
length 

If in equilibrium 

the forces balance 
mg

mg kx k
x

   Robert Hooke 

1635-1703 

Elastic materials can be modelled by springs. Hooke’s law means 
the restoring force due to a spring stretched by extension x is  
proportional to the extension 



Conservation 
of energy 

v

2
h
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lossesE mv kx mgh   

H

0v 

0v 

E mgH 21
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E mgh mv  21
2 2

E mgh kx 
3

lossesE mgh 

constantE 

Kinetic* Elastic 
potential 
energy 

Gravitational 
potential energy 

Drag, friction etc 

*Not just movement of the centre of mass, in general we must include vibration, rotation etc 

extension 
of bungee 
cord 



Friction & Normal 
contact forces 



R

mg

F

x

y
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v

Newton’s Third Law: If you push 
against a surface with force R, the 
surface will push back at you with a 
force of the same magnitude, but in 
the opposite direction 

Contact forces can be usefully 
decomposed into normal contact 
(perpendicular to a surface) 
and friction (parallel to the surface), 
which always opposes motion. 
 
The normal contact force ‘acts’ at the 
point of intersection of a vertical 
‘plumb line’ from the centre of mass 
of the object. 

Models of friction & sliding 

centre of 
mass 

static

static

slide

F R

F R

F R













No sliding, and object is in static equilibrium 

v > 0 i.e. object is sliding 

Object is on the point of sliding – friction is ‘limiting’ 

Coefficients of friction. Typically <<1. We often assume  static slide
 

An ‘inclined 
plane’ 



Air resistance 
& lift Lift 

Weight 

Drag Thrust 

v

If an aircraft has a constant airspeed then it is not 
accelerating. Therefore the vector sum of all forces must be 
zero 

At ‘modest speeds’ (i.e. several ms-1), both lift an drag forces are typically 
2v

21
2drag D

F c Av
Cross sectional area of 
aircraft perpendicular to 
velocity Density of air 

Drag coefficient 
Typically << 1 

At low speeds, drag 
is proportional to v 



Aerodynamics of a sportscar (and driver!) being analysed using a wind tunnel 



A lorry is travelling a constant speed of 60 mph. If friction between the tyres and the 
road can be ignored at this speed, and internal losses such has heating etc can be 
ignored, the driving force of the engine is balanced by air resistance. If the cab has a 
cross section of 8 m2, estimate the engine power P. 
 
Since lorry is in equilibrium, driving force = air resistance 
 
 

Assume drag coefficient cD = 1, density of air  = 1kgm-3 

v = 60/2.34 = 25.64ms-1 
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1 1 8 25.64

67.4kW

P
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The rate of work done is power 
x
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  
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Particles & centre of mass 

A particle is an object which has mass (and forces can act upon it) but it has no 
extension. i.e. it is located at a point in space. If objects are rigid, we can ‘model 
them as particles’ since one can decompose motion into displacement of the 
centre of mass + rotation of an object about the centre of mass. 
 
The centre of mass is the point where the entire weight of the object can be 
balanced without causing a turning moment about this point. 
 
It can be found practically by hanging a 2D object from various positions and 
working out where the plumb lines intersect. 

Hang object from 
position A 
and draw on  
plumb line 

Hang object from position 
B and draw on another 
plumb line. Where the two 
plumb lines intersect is the 
centre of mass. 

Centre of mass A 

A 

B 



Centre of mass 

mg

The entire weight of a rigid object effectively acts upon its centre of mass. 
 
If rotation is ignored, we can model a rigid object as a particle  i.e. just consider the motion 
of the centre of mass 

mg

Particle model 
of rigid body 



Centre of 

mass 



Centre of 

mass 



Weight due 

to gravity 

Lift due to 

main wings 

Lift due to 

tail wings 



Forces on the 

flat stone 

1
W

2
W

1 2
R W W 

2
d

1
d

Moment = Force x Distance from the Pivot 

1 1 2 2
W d W d

In equilibrium 

Pivot or 

fulcrum 



A rigid body is in mechanical equilibrium when: 

• the sum of all forces on all particles of the system 

is zero 

• the sum of all torques on all particles of the 

system is zero  

 

Forces from different directions balance 

Clockwise moments = Anti-clockwise moments  

 

Moment = Force x Distance from the Pivot 

Essentially another word for Moment 



If a body is not rotating, or rotating with a constant 

angular velocity, then the sum of moments must equate to 

zero. This is very useful in calculating forces in equilibrium 

problems involving rigid bodies, since it doesn’t matter in this 

case which point ‘we take moments about.’ (They must always 

sum to zero).  
 

Only when there is net torque is it a good idea to choose the centre of mass of an 

object. 

Pivot or fulcrum 
M

m

rR

mgMg

+ve Using the 

convention that 

clockwise 

moments are 

positiveif: 

0MgR mgr mr MR    

29.81msg 

Moment = Force x Distance from the Pivot 



f

F

R

r

A tool like a screwdriver or a wrench can deliver 

the required turning moment to tighten a screw or 

nut with less force. 

 

The torque on the nut is r x F. It is also R x f.  So if 

the ratio R / r is increased, for a given amount of 

force f, the effective nut-turning force F is 

magnified. 

 

 

 

 

 

 

 

 

 

This is called a  

mechanical advantage 

r F R f  
R

F f
r

 



A simple 1D example of centre of mass 

In order for the above 

system to be in 

equilibrium, the total 

moment about the 

pivot must be zero 
R 1

r

2
r

3
r

M
1

m 2
m

3
m

1 1 2 2 3 3

i i

i

MR m r m r m r

m r

R
M

  

 


If M is the sum of all the 

masses, then 

we can think of the three-

mass system being 

equivalent to a single mass 

M a distance R from the 

fulcrum. 



Centre of mass 

mg

The entire weight of a rigid object effectively acts upon its 
centre of mass. 
 
If rotation is ignored, we can model a rigid object as a particle  
i.e. just consider the motion of the centre of mass 

mg

Particle model 
of rigid body 



Vector and scalar quantities 

Vector quantities Units Scalar 
quantities 

Units 

Displacement   Mass 

Velocity Time 

Acceleration Speed 

Momentum Length 

Force 

x

v

a

mp v

f

m

t
s

l

mm,m,km

mm,m,km

-1 -1ms , kmh

s,mins, h

kg
-1 -1ms , kmh
-2ms

-1kgms

N

A vector has both magnitude and direction. 
Acceleration Velocity 

Force 

Displacement 

(Newtons) 

r rr 
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Addition and scalar multiplication using vectors 

a +b = b +a

2 a a +a

a b

Vectors add ‘tip to tail’ 
b a

a

a
a

Components of a vector are with respect to a coordinate system 

cos

sin

r

r





 
  

 
r

x component 

y component 

We often speak of ‘resolving’ a vector into 
components 



r

cosr 

sinr 

ˆ ˆcos sinr r  r x y

The algebra of vectors is very similar to 
scalars. Except vector multiplication is 
very different. This will not be discussed 
in this course! 



r
ŷ

x̂

These are unit 
vectors in the x 
and y directions 

ˆ ˆ 1 y x



Relationship between displacement, velocity and acceleration 

Useful speed conversions:     
 
1 ms-1 = 2.24 miles per hour  
 
1 ms-1 = 3.6 km per hour 

Speed in 

mph 

Time in minutes 

per 10 miles 

10 60 

20 30 

30 20 

40 15 

50 12 

60 10 

70 8.57 

/ miles
/ min 60

/ mph

x
t

v
 

gradient 
dx

dt

gradient 
dv

dt

x

v

a

Displacement is the vector between a fixed origin 
and the point of interest. If an object is moving, 
the displacement will vary with time t 

Velocity is the rate of change of displacement. If velocity is in 
the same direction as  displacement, it is the gradient of a 
(t,x) graph. 

Acceleration is the rate of change of velocity. If acceleration is in 
the same direction as velocity, it is the gradient of a (t,v) graph. 



Constant acceleration motion 

It is almost always a good idea to start with a (t,v) graph.  
Let velocity increase at the same rate a from u to v in t seconds. 

v

t

u

The acceleration is the gradient: 
v u

a v u at
t


   

The area under the graph is the displacement.  
Since this a trapezium shape:  

1

2
( )x u v t 

1

2

21

2

( )x u u at t

x ut at

  

 

We can work out other useful relationships for constant acceleration motion 

 

21

2

2 2

22 2 2 2

2 2

2 2

2

2

x ut at

ax uat a t

v u at u uat a t

v u ax

 

 

    

  



Projectile  
motion 
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0 2

cos
cos

tan (1 tan )
2

x
x ut t

u

g
y y x x

u




 

 

   



Concepts to reflect on  

(Lots today! Don’t worry you will meet these again and again and again .....)  

 

Work done = Force x distance 

 

Gravitational force (weight) = mass x gravitational acceleration 

 

Work done by gravity = weight x height 

 

Elasticity 

 

Air resistance 

 

Moments 

 

Centre of mass 

 

Vectors 

 

Kinematics 

 

Constant acceleration motion 

 

Projectiles        

 

Depending on your course, we may 

not cover all of these. Review the 

topics you did meet. If you have time 

to spare, read on! 



Velocity amplifying elastic collider – simple setup, surprising result! 
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m m
H h

m m

 
  
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1 2
1

9

m m

H h

To work this out requires three principles: conservation of momentum, restitution and conservation of energy 


