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1.1 Abstract 
 

This report describes the computer simulation of a pair of interacting 
galaxies. Using observations of real galactic structure as a guide, a 

model for each galaxy was constructed consisting of a central mass 
and five rings of test particles moving in (initially) anticlockwise 
circular orbits. The rings (of linearly increasing radii) have number 

densities 12,18,24,30 and 36. The test particles only interact (via 
Newtonian gravity) with both central masses. ‘Test-Test’ interactions 
have been ignored. This simplification will not allow us to model any 

collective phenomena caused by test-test interactions but will allow us 
to compute the problem over an appreciable evolutionary period with 

fairly limited resources.  
 
System evolution was computed for parabolic and mutually circular 

orbit initial conditions using the Verlet Integration Method (with a 
time step of 0.01s) and Newtonian equations of motion scaled to be 

spatially dimensionless. Inter-galaxy test mass exchange via ‘bridge’ 
like structures was observed in both scenarios resulting in a  
(possibly) equilibrium mass distribution. ‘Tidal tails’ were also 

observed to form from outlying test particles, consistent with the 

results of Toomre and Toomre and known astronomical observations.

                                                           

 See Reference 1. 
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2.1 Introduction 
 

This project details the computer simulation of two gravitationally 
interacting galaxies. We will label these “central” and “perturbation” 

by virtue of the initial conditions described below. 
 
Cosmological observations have determined many galaxies to have a 

disc-like structure with a bulging sphere of condensed stars at the 
centre. We will therefore model our galaxies as a large central mass 
with many, effectively massless ‘test’ particles distributed in a circular 

disc around it. To avoid excessive computation 120 test particles will 
be placed in initially circular orbits around the central masses as 

shown below.  

 

We will only consider interactions between the central masses and the 
dynamics of the test particles due to the gravitational attraction of the 

two central masses. We will ignore test-test interactions.  
Although we will lose insight into possible collective phenomena 
exhibited by mutually attracting test particles, the essence of the 

interaction dynamics should be preserved. This simplification should 
dramatically reduce the computational resources required for the 
simulation and hence for a given amount of real time a greater degree 

of system evolution will be observable. 
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3. Analysis 
 

3.1 System Dynamics and numerical trajectory solution 
 

Classical Newtonian mechanics will be used to model the gravitational 
interactions and the resultant dynamics of the particles involved. 
 

We will record the positions of all particles in the system using 2D 
vectors and a Cartesian basis. Using the subscripts c, p, and i for 

central, perturbation and test masses respectively we can write down 
Newton’s 2nd law to describe the motion of the system. 
 

 
 

3

)(

c

c

c

rr

rr
r






p

p

cpc mGmm    (1) 

 
 

3

)(

pc

pc

cpP mGmm
rr

rr
rP




   (2) 

 
 
 

33

)()(

ip

ip

pi

ic

ic
cii mGmmGmm

rr

rr

rr

rr
ri









   (3) 

 
For computational purposes it would be preferable to work with units 

that take ‘sensible’ values, i.e. within the range 0.1 – 10. If the 
numbers generated by the problem far exceed or are much smaller 
than this, computational errors resulting from the finite size of 

storable numbers in a computer could yield false and possibly 
unpredictable results. In this instance we can get around the problem 
entirely by defining a length scale such that our working variables are 

dimensionless.  
 

Consider the scaling relation rGmr c
 3/1)( . By substitution into (1) we 

find: 
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 . i.e. our new working variable r  is 

dimensionless. Hence for purposes of computation we will use this 
dimensionless scale and then, if required, we could infer from our 

data real astrophysical quantities by multiplying by 3/1)( cGm . 

 
Total energy is also a quantity that we will need to use in this problem 

and thus we need to know it’s scaling relation. (And check the scaling 
above leads to a dimensionless energy). 
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Since test masses are deemed negligible compared to central and 

perturbation masses we can write down a greatly simplified expression 
for the total energy of the system. 
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Noting that in our dimensionless scale the velocity v  is given by 

3/1)( cGmvv   we find: 
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We can thus identify 
3/2)( cc

TOT

Gmm

E
as the dimensionless total energy 

TOTE  .  

 

The set of dimensionless equations that describe the classical time 
evolution of our system are therefore as follows: 
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We will solve the first three (2nd order ordinary differential equations) 
using the Verlet Integration Method1. (VIM) 

 

If h  is a small unit of time progression, i.e. htt nn 1 : 

 
2
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Error in this method is O( 4h ) and thus is particularly suited to this 

problem, i.e where longer time steps are desirable to quickly compute 

how the system evolves.

                                                           
1
 See Appendix for derivation. 
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3.2 Initial conditions 
 

As illustrated above we will centre our 2D Cartesian basis on the 
initial position of the central mass. The perturbation galaxy will start 

it’s motion from the x axis (i.e. have no y component) to simplify the 
following analysis. (Note since we have an arbitrary choice of axis 
positioning, this does in fact represent a perfectly general scenario). 

 
We will apply more specific conditions in the distribution of test 

masses and the velocities of each particle. We will aim to achieve the 
following: 
 

(i) Initially circular orbits of test masses around their respective 
galaxy centre. We will start with both galaxies rotating 
anticlockwise though this could be generalised to investigate 

orientation dependant behaviour. 
 

(ii) The perturbation test masses shall also move with the same 
initial velocity as the perturbation mass. i.e. the entire 
perturbation galaxy shall move, and rotate as a whole initially. 

 
(iii) The perturbation mass shall be initially equal to the central 

mass. However, if the mass ratio could be alterable this could 
provide the added feature of simulating a collapsing galaxy or 
even a ‘black hole.’ 

 

(iv) Parabolic ( 0
TOTE ) orbits of the central and perturbation 

masses should be simulated as well as mutual circular  orbits 
about their centre of mass. 

 
Initial test mass distribution will be evenly spaced rings. 

 
 

Ring Density Radius 

1 12 2 

2 18 3 

3 24 4 

4 30 5 

5 36 6 

 

 
To achieve initially circular test mass orbits let us consider the 
acceleration vector in 2D polar co-ordinates. 
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     rrrr  22
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For a particle in an inverse square orbit at a  
radius r  from a “central” mass; using dimensionless variables as 

before (and dropping the ‘ from now on) 
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For a circular orbit 0 rr   and hence by equating re coefficients of 

(11) and (15) 
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we therefore find the correct initial velocity for a circular orbit (in 

terms of r  and  ) to be 
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The clockwise and anticlockwise orientations will of course depend on 
the pair of signs chosen. 
 

(17) will yield the correct initial velocities for the central test masses. 
For the perturbation test masses we must add the initial velocity 

vector of the perturbation mass itself. 
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Now for mutually circular orbits of the central and perturbation 

masses the magnitude of the separation vector cp rrd  must be time 

independent. To find the correct initial condition to satisfy this let us 
consider the centre of mass vector R , defined by the total linear 
momentum of the system.  
 

  pc rrR 
pccp mmmm    (19) 

 

Now the force acting on the perturbation mass due to the gravitation 

of the central mass pcF  is by Newton’s 2nd law equal to prpm . Similarly 

ccp rF 
cm . Now by Newton’s law of gravity pccp FF  . Hence 

0 pc rr 
pc mm . Since (19) is the time integral of this equation we 

deduce R constant regardless of the initial conditions. This is of 
course a statement of momentum conservation. Hence if the total 

momentum is zero, the centre of mass vector is also a constant. 
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Substituting the above into (6) and (7) and letting  0 RR   we arrive 

at the same equation in d . i.e. we have reduced our problem to a 

single variable. 
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Now our condition for mutually circular orbits was that d = constant. 

Since (22) is practically identical to the equation used to calculate the 
initial velocities of the test masses for circular orbits (where 

ir constant) we can write down the solution for d  which results in 

mutually circular orbits. 
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So if initial conditions are xed d  then our initial velocities are 
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Perturbation mass 1.000 Central mass radius Perturbation mass radius Time interval 0.010 Time 0.000 New time 0.010

0.500 0.500

Particle Index x coordinate  x new y coordinate new y vx component new vx vy component new vy

Central mass 0.000 0.000 0.000 0.000 -0.001 0.000 0.000 -0.139 -0.139

Perturbing mass 0.000 13.000 13.000 0.000 0.001 0.000 0.000 0.139 0.139

1st ring 1.000 2.000 2.000 0.000 0.006 0.000 -0.002 0.568 0.568

2.000 1.732 1.729 1.000 1.005 -0.354 -0.355 0.474 0.473

3.000 1.000 0.994 1.732 1.734 -0.612 -0.613 0.215 0.213

4.000 0.000 -0.007 2.000 1.999 -0.707 -0.707 -0.139 -0.141

5.000 -1.000 -1.006 1.732 1.727 -0.612 -0.611 -0.492 -0.494

6.000 -1.732 -1.736 1.000 0.992 -0.354 -0.352 -0.751 -0.752

7.000 -2.000 -2.000 0.000 -0.008 0.000 0.002 -0.846 -0.846

8.000 -1.732 -1.729 -1.000 -1.008 0.354 0.356 -0.751 -0.750

9.000 -1.000 -0.994 -1.732 -1.737 0.612 0.614 -0.492 -0.490

10.000 0.000 0.007 -2.000 -2.001 0.707 0.707 -0.139 -0.136

11.000 1.000 1.006 -1.732 -1.730 0.612 0.611 0.215 0.217

12.000 1.732 1.736 -1.000 -0.995 0.354 0.352 0.474 0.475

2nd ring 13.000 3.000 3.000 0.000 0.004 0.000 -0.001 0.439 0.439
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This corresponds to the anticlockwise configuration of mutually 
circular orbits about common centre R  from the origin of our axis. 
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d
ETOT  i.e. 0  since 0 . Hence system is in a 

bound state as expected. 
 
 

4. Computational solution of problem.  

 
4.1 Choice of software. 
 

The essence of this problem is to compute the positions and velocities 
of all particles in our system using the VIM scheme illustrated above. 
This could be done rapidly by a Fortran or similar program that can 

store and modify elements of an array of numbers according to 
iterative rules. (In our case the VIM scheme). Although computational 

speed is fast with this method, the extra work required to deliver live 
plotting of results is beyond my current expertise and time allowed for 
this project. In this particular problem live plotting of particle 

trajectories is quite essential, in my view, to forming an understanding 
of the overall dynamics of the system. Hence I have resorted to a more 

standard package that can provide live update, Microsoft Excel. 
 
As well as providing a direct on screen environment for 

simultaneously editing and plotting data, a ‘macro’ language is 
provided, based around Microsoft Visual Basic. This facility allows one 
to perform iterative tasks on arrays of cells in an equivalent manner to 

that required of a Fortran program. Since all the plotted data is linked 
to a particular array of cells, every time the macro updates them a 

new graph is generated. The moderate speed of Excel (about two 
iterations per second on most PC’s for this problem) causes this to 
behave as a live animation of the system. 

 
4.2 General structure of Excel worksheet 
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A section of the Excel spreadsheet created to solve this problem is 
illustrated above. 

 
The positions and velocities of all the particles are given in two 

columns. The first of these specifies the initial conditions/start of 
iteration and the second gives the values after one time step. The 
Excel macro copies the second column and uses the “paste as values” 
function to update the original column with the new data while 
preserving the column linking equations that implement the VIM 
algorithm. This function is also used to update the ‘clock’ cell at the 

top right of the spreadsheet.  
 

A graph of the first column positions of all the particles is plotted 
using separate data series for each type of particle. A different colour 
is used to distinguish each particle type. The graph of course updates 

automatically every iteration.  
 

The number of iterations is controllable from within the Excel macro 
code2 and is linked to a ‘hot key’ (Ctrl +G) which starts the process and 
the Escape key which causes the macro to be interrupted. This allows 

snapshots of the system plot to be saved. 
 

Using the ${row}${column} function cells at the top of the spreadsheet 
are used to contain fixed constants such as the time step, mass ratio 
(given as “perturbation mass”) and ‘softening’ radius. The last 

constant is used to prevent the unlikely scenario of two interacting 
particles effectively colliding i.e. having a separation less than their 

real radii. In a computational sense, ‘collision’ results in often 
unrealistic accelerations since the inverse square law of interaction 
becomes infinite as the inter particle acceleration tends to zero. To 

avoid this problem a small, constant radius is added to the particle 
radii in the force law expression for the test masses to ensure a non 

singular acceleration when the particle positions coincide. The force 
laws of the central-perturbation mass interaction will be unaltered 
since it is unlikely that these particles will collide using our initial 

conditions and also since the softening radii will alter our condition 
for circular/parabolic orbits. 
 

i.e. only equation (8) is altered.  
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where c and p are the softening radii of the central and perturbation 

masses respectively. (Default values are 0.5 units each). 
 

                                                           
2
 Listed in the Appendix 
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The ${row}${column} function is also used to set up the initial 
condition that all the perturbation test masses rotate about the 

perturbation mass AND move with it’s initial velocity. i.e. one can 
specify the initial velocity of perturbation galaxy by just editing the 

cells corresponding to the perturbation mass. The same property also 
sets the position of the perturbation test masses. 
 

4.3 Tests of the Program 
 
The initial condition of circular test mass orbits is easily seen by 

running the program for the first few iterations. Setting the 
perturbation mass to zero and turning off the display of perturbation 

test masses allows us to check the stability of the circular orbits by 
observing over a much longer time scale. It was found a time step of 
0.01 seconds caused inner orbits to deviate from their initial values of 

2 units by 4% after 15.4 seconds. (1540 iterations). A time step of 0.1 
seconds caused the test mass rings to collapse at an increasing rate 

after ~13 seconds. Hence a time step of 0.01 seconds was deemed 
appropriate for this simulation. 
 

The correct trajectories of the central and perturbation masses (i.e. 
mutually circular and parabolic) were easily checked by setting d to be 

a relatively small amount (say 4 units) and turning off the test mass 

display. Since the angular speed of rotation varies as 2/31 d (16) for 

circular orbits, reducing d allows us to view a complete rotation within 

a relatively short time. This check proved very helpful as in the fist 
instance my I had incorrectly derived the initial velocities to result in 

mutually circular orbits. Setting d = 2 units I discovered an elliptic 

orbit was performed – indicating that the error was in my mathmatics 
and not integration errors. (For which a notable change in d after one 

closed orbit would be expected). 
 

For circular orbits, period T is given by 2/32 dT  . So for 13d  units 

we expect a complete cycle to occur after 295 seconds. Now for a time 
step of 0.01 seconds we expect a complete cycle to occur after ~4 

hours. (1 iteration takes about ½  second of real time). 
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5.1 Results 
 

The time evolution of our system is illustrated below for three distinct 
initial conditions. 

 
(i) Central and perturbation masses are identical. Initial separation 

of galaxies is xcp err d , where d = 13 units. Initial velocities 

are such to yield a parabolic orbit. i.e. 0TOTE . To achieve this 

0cv  and 
d

v p

2
 . (c.f. equation (18) ). 

 

(ii) Central and perturbation masses are identical and undergo 
mutually circular orbits. Separation is therefore constant 
( 13d  as above) though of course the separation vector d will 

rotate about the common centre of mass from the initial case of 

xed d . Initial velocities are given by equations (24) and (25) 

and since in this case 1  they reduce to yc er
d2

1
 , 

yp er
d2

1
 . 

 
(iii) Perturbation galaxy contains ‘supermassive’ object. In this case 

500 . Initial conditions for position and velocity are identical 

to that of (i). i.e. we expect the system to be unbound by the   

 independence of equation (18). 

 
Case (i) :  Parabolic Orbits of identical galaxies3. 

 
t=0 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3
 Note mutual anticlockwise rotation. 
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t=8.520 
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t=22.570 
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t=35.320 
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Case (ii) :  Mutual circular orbits of identical galaxies 
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Case (iii) Massive Perturbation Galaxy ( 500μ  ) in parabolic orbit 
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t=0.620 
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6.1 Conclusion 
 

The in-depth physical interpretation of the above results is beyond the 
scope of this report. However, there are some general comments I can 

make concerning the “success” of the computational procedure 
employed. i.e. does the method used yield physically reasonable 
results consistent with the above theoretical discussions of the initial 

conditions? 
 
I will consider each of the three cases above in turn and then make 

some general comments. 
 

For case (i) the above plots clearly demonstrate the right form of orbit. 
i.e. the separation of the galaxies after initial exchange of test masses 
continues to increase indicating an unbound system. (Or near to it – 

the parabolic case is at the boundary between unbound and bound 
states). Clearly visible are the ‘tidal tails’ created from the outlying test 

particles as the galaxies move past each other. An interesting 
observation (which also holds true for the mutually circular orbit) is 
that an sort of equilibrium test mass distribution is created by the 

system after initial penetration of one galaxy by its counterparts test 
masses. This could be an artificial property caused by an overly large 

softening radius (0.5 units for each large mass) in the sense that 
instead of being absorbed or scattered by a mass particle, test 
particles reside in an artificially shallow potential well. The MathCAD 

figure below demonstrates how the softening radius distorts the 
Gravitational potential. ( )(rg  is the normal scaled gravitational 

potential, )(rf  is the softened version). 
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For case (ii) we observe very similar behaviour initially to that of the 
parabolic orbit. Quite beautiful structures result as the test mass 

distribution is perturbed such as the “shell-like” formation at around 
31 seconds. (Units of scaled time!!) In the latter stages the circular 

orbits become apparent and, as before, large tidal tails of test masses 
are swept out as the galaxies rotate around each other. Note the 
lengths of these tails are much larger than the dimensions of the 

central clusters. 
 
For case (iii) the expected symmetric collapse of test masses into the 

centre of the massive perturbation galaxy is observed followed by a  
“sucking” of the central mass galaxy into orbits around it. The last 

caption demonstrates the effect of not including a softening radius in 
the non test mass force law. The central mass acquires an enormous 
velocity as it approaches the perturbation mass. Unless the co-

ordinate of the perturbation mass lies symmetrically within a step of 
position the central mass will be ejected from the system with a huge 

velocity as the acceleration suddenly changes sign. Hence explaining 
the x length scale of ~1000 units in the last figure. Although a rather 
dramatic confirmation of the prediction of an unbound system (the 

initial velocities were fixed for a parabolic orbit) the (probably) 
superluminal real ejection speed hardly represents a real event! 

 
Overall my comments can be summarised as follows: 
 

 The computer simulation of interacting galaxies (modelled by 
two interacting masses plus non self-interacting test particles) 

yields the well known tidal tail phenomenon observable in real 
galaxies. 

 

 “Bridges” of test particles that penetrate their opposing galaxy 
are observed before a ‘equilibrium’ distribution results. 

(Running the program for many more iterations would confirm 
whether the latter statement is generally true). 

 

 Overall the VIM solution of the particle trajectories seems to 

yield physically reasonable results except in the case when the 
interacting masses become very close. For the test particles, 
introduction of a softening radius removes much of the 

problems though one wonders whether this may lead to a 
fallacious equilibrium condition mentioned above.  

 

 Obvious extensions to the project are to firstly compare the 
results with known observations and possibly attempt to predict 

current galactic structures from previous conditions as 
described by more sophisticated cosmological models. (i.e. as in 

the paper by Toomre and Toomre given in References). Another 
would be to reduce the time step and run the program on a 
faster computer (or a slower machine for longer). This would 
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show how much of my results can be attributed to trajectory 
errors and how much is behaviour characteristic of the true 

solution of the equations of motion. Of course there is a limit to 
how much information can possibly be gained from my model 

since the use of Newtonian Gravity is itself an approximation. 
The behaviour of “supermassive” galaxies like that of  case (iii) 
really need to be described by a more correct theory such as 

General Relativity. 
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8. Appendix 
 

8.1 The Verlet Integration Method 
 

Derivation of the VIM equations for numerical calculation of position 
and velocity given the known time dependence of acceleration. 
 

Consider a small, finite time step of length h . Let us expand the 

position vector of a particle )(tr  using a Taylor series involving h . 

 

)()()()()()( 43

6
12

2
1 hOhththttht  rrrrr   (I) 

 
Similarly 
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Now (I) + (II) gives 
 

)()()()(2)( 42 hOhthttht  rrrr    (III) 

 

Now the average velocity in region hth  is given by 

 

h

htht
t

2

)()(
)(




rr
r      (IV) 

 
We can generate two more equations from (III) and (IV) by change of 
variable htt  . 
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Eliminating )2( ht r  and )( ht r from (III) - (VI) we arrive at the VIM 

set of equations. 
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8.2 Annotated listing of Excel Macro 
 

Sub Dynamic1()   Begins subroutine “Dynamic1” 
' 

' Dynamic1 Macro 
' Macro recorded 01/11/99 by Andy French 
' 

 
' 
For a = 0 To 30 Step 1  Specifies iteration range and step length. 
    Range("D6:D247").Select Selects cells containing the VIM generated  

co-ordinates. 

    
    Selection.Copy   Copies selection to the internal clipboard. 

    Range("C6").Select Selects destination column – the original set of 

co-ordinates 

    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 
SkipBlanks:= _ 

False, Transpose:=False Utilisation of “Paste as values” command. This is 

a subset of the general “Paste special” 
command, hence the extra logical statements to 
define the operation. 

    Range("F6:F247").Select 
    Application.CutCopyMode = False   

 
{The next lines repeat the above for each of the 
columns of cells corresponding to x and y 
components of position and velocity} 

    Selection.Copy 
    Range("E6").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 

SkipBlanks:= _ 
        False, Transpose:=False 

    Range("H6:H247").Select 
    Application.CutCopyMode = False 
    Selection.Copy 

    Range("G6").Select 
    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 
SkipBlanks:= _ 

        False, Transpose:=False 
    Range("J6:J247").Select 

    Application.CutCopyMode = False 
    Selection.Copy 
    Range("I6").Select 

    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 
SkipBlanks:= _ 

        False, Transpose:=False 
    Range("J3").Select 
    Selection.Copy 

    Range("H3").Select 
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    Selection.PasteSpecial Paste:=xlValues, Operation:=xlNone, 
SkipBlanks:= _ 

        False, Transpose:=False 
         

Next a    Perform iteration a +1.  
 
End Sub    End subroutine. 

 

 


