
y = mx + c is the equation of a straight line, when drawn on a Cartesian x,y grid.

René Descartes

1596-1650

2 3y x= +

m is the gradient of the line

gradient = y change / x change

c is the y-intercept. i.e. the coordinate (0,c) where 

the line cuts the y axis.

Lines with the same gradient are parallel. i.e. y = 

2x, y = 2x -3 and y = 2x + 3 are all parallel.

2y x=

2 3y x= −

A  unique straight line can be drawn between any two different coordinates.

To work out the equation, firstly arrange the coordinates such that a right

angled triangle can be drawn between them.

You can now determine the gradient of the line and hence m.
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Note two perpendicular lines

(i.e.  ones which cross at right

angles) have a relationship

between their gradients
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Always arrange 

the coordinates 
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You can now determine the gradient of the line and hence m.
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To find c, use one of the coordinates. It doesn’t matter which, since both are on the line.
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Also, the gradient of the line is tanm θ=
o
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the coordinates 

like this as the 

gradient could be 

negative!
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Simultaneous linear equations

The solution to a system of simultaneous linear equations is equivalent to finding the point where they intersect. Unless a pair of lines are parallel (i.e. have the same gradient)

there will always be a coordinate which is the intersection of those lines.

2 1y x= +

3y x= − −

To solve a system of equations we firstly label them. Then we add or subtract equations to try an get rid of one

of the variables. Once a single equation in one variable is found, this can (always for linear equations) be solved

by rearrangement.
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Substituting back into the other 

equations yields the other variable

In (1):  ( )4
32 1y = − +

We can extend the idea to more than two variables. For x,y,z

this would be a intersection of 3D lines.

A system of N linear equations in N unknowns is readily solved via a 

matrix method, since the system of equations can be written as a matrix

equation:
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In (1):  ( )
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Another example of a pair of linear equations
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    
    − − =    
    − −    

     
     = − −     
     − −     
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   =   
   
   

The tricky bit is finding 

the inverse of the N x N 

matrix. There are 

computational recipes 

for doing this in 

programs such as 

MATLAB.


