First order ‘ordinary’ differential equations (ODEs) are of the general form
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First order ODEs contain only the first derivative of the
variable y so one expects only one arbitrary constant, which
will result from integration, which must occur to remove the
derivative.

The goal is to find a closed form expression for y(x)

Hence to solve the ODE, we will need to know one point on
the (x,y) curve.

Case 1: ODE is separable
In this situation we can separate the x and y parts and then integrate
both sides
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Case 2: ODE is linear

dy
dx

a—+by=q(x)

The solution is the solution when q(x) = 0 (“The Complimentary Function”)
plus a “Particular Integral” which is typically something which has the same
form as q(x). If this doesn’t work try xq(x), x2q(x) etc...

d
ad—i+by=0 Example: 3%—y=x2; (0,2) is a solution
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y= Ae: The single arbitrary constant A
CF: y= Ae%x appears in the complimentary
i.e. complimentary function is function
of the form
y = Ae™ Pl:y=ax’®+bx Particular Integral
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X : 6a—b=0 =b=-6

y = Ae* — x* —6x
S x=0,y=1..A=1
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Case 3: Using Integrating Factors
The method of Integrating Factors can be used to
solve first order ODEs of the form:

dy

vl yp(x) =q(x)

U= ejp(x)dx Integrating Factor
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Multiply both sides of the equation by the integrating factor:

o o
ypu=qu
dx
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Now: * —u—2 ——uy2
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Hence a general solution can be found, assuming
that the integrals

e'[p(X)dX and J’q(x)e_[p(x)dxdx

can both be evaluated.

d :
Example: d—ycosx+ ysinx = tan x
X

% + ytan X =tan Xxsecx <—— Writein form % +yp(x) =q(x)
X X

U= ej'tan xdx Integrating Factor

Insecx

u=e""" =secx
1

AT —jtan Xsecxxsecxdx €<——Y :ﬂ'q(x)u(x)dx
secx

y = —— | tan xsec® xdx
secx

z=tanx

dz
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