Circular motion. For simplicity let us consider motion in a circle at a constant

velocity. Hence the angular velocity wis constant and rotating period is T

. . 1 . . 2
T T T~ The rotation frequencyis |f = T O |w=2rf Note 1 revolutions per minute (RPM) = 6—75'-: 0.105rads
pe N
ol AN
/ \\
/
/ \\ Velocit Ve 2m f To execute a circular motion, the velocity vector must continuously
,/ \ elocity T change in direction. Although its magnitude is not changing, the directional
[ r — part is, so therefore a body undergoing circular motion must be accelerating
|\ o6 Iy since acceleration is the rate of change of velocity, and both are vector quantities.
\ r dv
\\ / Consider an infinitesimally a:E
AN i small sector of the circular path
AN /// drawn downwards from the horizontal
T . ov . :
The change of velocity vector <<__  points at an angle of 106 from the horizontal
Hence the acceleration must point towards the centre of the ¢ ircle
Y
r
o0 7 Now since the velocity vectors either side of the sector form an isosceles triangle
| .
| _ov oV = 2vsin; o0
r
% , , roo
Hv The time taken to traverse the arc is Ot :T
180 = p+ o0 _ o oV _ 2v¥sini dg
p=90"-106 oV Hence the magnitude of the accelerationis a= >t = T
£=90 -0 2 — :
g+ =g F— B In the limit when 08 is small sind8 =136
a=@p- :59 \ V2
a =90 -130- 90 + 30 Hence: |&8=-"
a=106
2ir 2
In summary, for circular motion of constant angular frequency: T V=rw r 1RPM=-—= 0.105rads
w=2rf a=rut 30
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Circular motion

unit vectors.._

Define angular velocity

Hence:

. For simplicity we shall initially consider motion described by plane polar coordinates

r,@rather than general 3D motion described in spherical polars.

Position vector r can be described in Cartesians or plane polars| I = XX + yy The conversionis; X~ cosg
r=rf y=rsiné

Plane polar unit vectors are

6r

f

=

ar

=CcostX + singy

-singx + coy

Use I =rcoséX +r sindy

to work this out

w=p=39
ot
2
1) é—df
ot

V=IF +rad

a=(i -raf)i+(2rw+rw)o

VV=vIV=r?+rw?

Oif r=0
2
YV orw?
r
2
a=—r+rad

r =rcoséX +r singy

Unlike Cartesian unit vectors, time derivatives of plane polar unit vectors are not constant

dr
dt
de
dt

s

=-6f

Hence velocity and acceleration can be written in terms of plane polar
coordinate and associated unit vectors

~

—(rr :r'rA+r£:r‘rA+r96
(rf) "

V=F=1F +r60
a=t=(r-r")f +(2r6+rd)o

rna:ZFi

Newton’s Second Law expressed in
plane polar coordinates looks like this:

Soif a body is in a rotating frame
of reference, i.e. rotates at angular
speed w, it can appear that there
are additional forces acting.

These ‘forces’ are a consequence
that the frame itself is accelerating.

ut the Sun,
and period

Example: What is the orbital speed of the Earth abo
assuming a circular orbit? How does orbital radius

vary?

If a circular orbit ' =0 Also since gravity is a central force, there

Let the Earth be mass m and the Sun

(mr - mra)z)r + (2mra)+ mra)) ZF can be no tangential acceleration so @w=0. Newton’s Second Law
is therefore (expressed in plane polar coordinates)
o A . . v r

mif = >F, +mr o - (2mfw+mrv)o mZ . GMm. GM

i ma=- r=-———r Hv=,/— m

r r r M r
Centrifugal Coriolis and
‘force’ tangential ‘forces’ Va Arr
—=raf = r

r T2 mass M
2
Hence V— = G'\Z/l
rr M =2 x 103 kg
477 (= GM G = 6.67 x 101 m3 kg-1s2
T2 2 T = 365 days = 3.154 x107s
T2 AT s r = 150 million km
GM v =29.8 kms™!

This is Kepler's Third Law
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Rather than using plane polar coordinates, we can derive a useful expression for velocity and acceleration within a rotating Cartesian frame of reference.
This also will yield extra ‘forces’ or the Centrifugal and Coriolis variety.

Qxr =07 x (X')A( +y'y'+ 22) XXY =2 Cartesian basis vectors
A _ 2 A n XxZ=-y formaright-handed set
z2=7 Qxr =Qx'y '-QyX' N
yXxz=X
=X +W+zZ
y r=xX+yy'+z Hence | v=V'+Qxr
y Define frame angular velocity vector The time derivatives ﬁ =y ﬁ - 0%’
% Q=05 Assume | O =0 can be used to determine an expression for acceleration.
o X' o
X . . a= d(d— X' dyy+d—z+ny nyJ
R R o The time derivatives dt\ dt dt dt
= COSOX + sindy of the rotated x and y
9 ' = —sinB% + ~ basis vectors are not
. y =-sin coly constant The algebra can be simplified by defining a ‘rotational frame derivative’
o dx' e A
6 X = "Qsingk+Q coy =0 S B P (v +Qxr)
I dt (ot
X ﬂ = —Qcosf% - Q singy = -QX
d’x'., d?y'., d’z',
a=a+2Qxv' +QxQxr where a'=—7/7-X'+ OI2y'+ e
t t

What we want is an expression for velocity and acceleration
in terms of rotating frame coordinates x’, y’, 2’ S0 we can use Newton’s

Second law and solve Mechanics problems. Note by our definition Newton’s Second Law expressed in these coordinates looks like:

of the rotating frame z’ = z ma=> F
V:%(X'f(# y'§/'+z'2) ma'+2mQ xv' + mQ x Q xr :ZFi
vz d dy9+ydy L9z ma'=) F - 2mQxV +mQxQxr
at dt da dt '
V=V X X' dy So in the rotating frame, we have two additional ‘forces’ to add to the sum
dt Y dt of external forces
V:Vl+Xl§Zy _y Q( fcentrifugalzmxgx(xls\(l-i- yI§/I+ 22) ZF
ma'= .
dX " dy " dZ R dX R dyl dzl R conolls centnfugal
where y'=—X'+ +—7 f . .. =—2mQx —X'+—y'+—7Z
dt dt y dt coriolis ( dt dt y dt
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Example: A mass on a light inextensible string or length r is projected with
a velocity u from the horizontal with the string taught. What angle does this
pendulum swing before the string become slack? What is the minimum
velocity such that the string will swing all the way round? Ignore air
resistance.

Using plane polar coordinates, noting £ =0
2

) ] Voo~ N
accelerationais a=——r+ réo
r

Newton’s Second Law is therefore

2

r

2

Hence: f: - =-T + mgcosf

By conservation of energy < mu® =1mv* +mgr (1- cos)
Hence:  mv’ =mu’-2mgr (1- co¥ )
Substituting into the radial component of Newton |I:

2mgr (1- co¥ - mu?
r

=-T + mg cosd

mu?

r

T =mg(3cosf~- I+

2

The string is taughtfor T >0 U mg(3cos9— 3+
r

The minimum value of cosé is -1.

So for the mass to move all the way round the circle £ -

> = 001§?>§—3tJ
gr

v F +nmrde = =Tf + mgcosé& —mg sirde

2

y equation via
ewton’s Second law

Alternative derivation of the conservation of energ
direct integration of the tangential component of N

0: réd=-gsind Now using the chain rule §=99 _pd0
dt dé
Hence g% = —gsine
dé r
6dé =-Isinade

r

Nowligr’w our situation the velocity of the mass (which is tangential in direction)
V=r

no=Y g do=%
r r
= 6d0=""
Hence
g:—%sinede

j:vdv: - gr'[:sinede

1v? —1u? = gr[cosd];

v> =u®-2gr (1- cod |
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