
Circular motion. For simplicity let us consider motion in a circle at a constant velocity. Hence the angular velocity ω is constant and rotating period is T
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The rotation frequency is Note 1 revolutions per minute (RPM) = 12
0.105rads
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Velocity
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π ω= = To execute a circular motion, the velocity vector must continuously
change in direction. Although its magnitude is not changing, the directional
part is, so therefore a body undergoing circular motion must be accelerating
since acceleration is the rate of change of velocity, and both are vector quantities.

d

dt
= v

aConsider an infinitesimally
small sector of the circular path
drawn downwards from the horizontal

The change of velocity vector              points at an angle of           from the horizontal
Hence the acceleration must point towards the centre of the c ircle

Now since the velocity vectors either side of the sector form an isosceles triangle

vδ
1
2 δθ

12 sinv vδ δθ=
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The time taken to traverse the arc is
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Hence the magnitude of the acceleration is
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In summary, for circular motion of constant angular  frequency:
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Circular motion . For simplicity we shall initially consider motion described by plane polar coordinates r,θ rather than general 3D motion described in spherical polars.
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Position vector r can be described in Cartesians or plane polars

Plane polar unit vectors are

cos
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θ θ
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= +r x y

The conversion is:

Use 
to work this out

ˆ ˆcos sinr rθ θ= +r x y

Unlike Cartesian unit vectors, time derivatives of plane polar unit vectors are not constant

Hence velocity and acceleration can be written in terms of plane polar
coordinate and associated unit vectors
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Define angular velocity

Example: What is the orbital speed of the Earth abo ut the Sun, 
assuming a circular orbit? How does orbital radius and period 
vary?

Newton’s Second Law expressed in 
plane polar coordinates looks like this:

m =∑a F

unit vectors
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Hence:
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If a circular orbit               Also since gravity is a central force, there 
can be no tangential acceleration so            .   Newton’s Second Law 
is therefore (expressed in plane polar coordinates)
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Centrifugal
‘force’

Coriolis and 
tangential ‘forces’

So if a body is in a rotating frame
of reference, i.e. rotates at angular 
speed ω,  it can appear that there
are additional forces acting.

These ‘forces’ are a consequence
that the frame itself is accelerating.
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Let the Earth be mass m and the Sun
mass M

This is Kepler’s Third Law

M = 2 x 1030 kg
G = 6.67 x 10-11 m3 kg-1s-2

T = 365 days = 3.154 x107s

r = 150 million km
v = 29.8 kms-1

r

v

M m

r̂



Rather than using plane polar coordinates, we can derive a useful expression for velocity and acceleration within a rotating Cartesian frame of reference.
This also will yield extra ‘forces’ or the Centrifugal and Coriolis variety.

ˆ ˆ '=z z

x̂

ŷ
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Define frame angular velocity vector
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Cartesian basis vectors 
form a right-handed set

The time derivatives 
of the rotated x and y 
basis vectors are not
constant

Hence = + ×v v' Ω r

The time derivatives
ˆ ˆ' '
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can be used to determine an expression for acceleration.

The algebra can be simplified by defining a ‘rotational frame derivative’
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x̂θ

What we want is an expression for velocity and acceleration
in terms of rotating frame coordinates x’, y’, z’ so we can use Newton’s
Second law and solve Mechanics problems. Note by our definition
of the rotating frame z’ = z
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Newton’s Second Law expressed in these coordinates looks like:
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So in the rotating frame, we have two additional ‘forces’ to add to the sum
of external forces
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Example:  A mass on a light inextensible string or length r is projected with 
a velocity u from the horizontal with the string taught. What angle does this 
pendulum swing before the string become slack? What is the minimum 
velocity such that the string will swing all the way round? Ignore air 
resistance.
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Using plane polar coordinates, noting  : 0r =ɺ

Newton’s Second Law is therefore
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Alternative derivation of the conservation of energ y equation via
direct integration of the tangential component of N ewton’s Second law
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Now in our situation the velocity of the mass (which is tangential in direction)
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By conservation of energy 2 2 (1 cos )mu mv mgr θ= + −

Hence: 2 2 2 (1 cos )mv mu mgr θ= − −
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The minimum value of cosθ is -1. 
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Substituting into the radial component of Newton II:

So for the mass to move all the way round the circle

Hence
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∫ ∫


