Momentum is defined as the product of mass and velocity. It is therefore a vector quantity. A more general version of Newton’s Second Law is that force is the
rate of change of momentum. In the absence of any external force, the total momentum in a system is therefore constant. The ‘conservation of momentum’ in a
force-neutral system is one of the most basic laws of Physics.

BEFORE AFTER
p=mv Momentum
dp
f=—— " Newtonll z
dt 2 2 z 4z
d dv e - in this collis
If mass m is constant = —p = —(mv) =M—=mMma i.e. force = mass x acceleration Total momentum is conserved in this collision

dt  dt dt tve

If a time-varying force is acting upon an object (in a particular direction) the area under the (time, force) graph will correspond to a momentum change.

B e A momentum change caused by the application of a force is called an impulse Ap =j fdt
; : ; : ; In the example of the left, the force

fis related to time t by
The correct extension of Newton’s Second Law

Force /N

3 . 2
F| I— L S N S § f(t)=—t"+4t when mass is varying is:
: 1 ' ' O nAp=[(t At v am
0 ) m—=Ff+u,— Ug is the relative velocity
Ap = [—%ts + 2t2] dt dt of the ejected mass
0
3 R . o U
Ap=(—-164+32)—(0)=32x(-2+1
P ( 3 ) ( ) X( 8 ) For a space-rocket, there is no external force
; : ; Ap=10iN acting. If the relative velocity of propellant
- The impulse Ap is the ejected out the back of the rocket is C and mass
N ‘areaunderthe O\ dp ejection rate is x, Newton’s Second Law becomes:

time, forcé graph Note we must be careful about writing f = E

If mass is not constant: dv M, Rocket mass
: : : : ; q q q (mr+mf —,ut)—z,uC
11 el s - s g f:a(mv):md_\'[/+vd_r: dt My Propellant mass when t = 0
, t c
_ _ , v=[— dt
would seem like a natural thing to write, but °m, +m, — ut
5 it is in fact not correct, since transforming to ;
a moving (bit not accelerating) frame of V= [—C In (mr +m, — ’Ut)l)
reference will change the force. This violates
: the principle of (Galilean) relativity. i.e. v=Cln m, +m; This is called the
1 appropriate when velocities are - m +m. — ut < Tsiolkovsky
-1 ! ' : ! . P tMy — rocket equation
0 1 2 3 5 much less than the speed of light.
time /s

Note maximum burn time is t,., =M / 1
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In a collision, although momentum will always be conserved, the kinetic energy of the colliding objects may not. Frictional losses, the deformation of one of the bodies
following collision etc will extract energy. A elastic collision is defined as when no kinetic energy is lost. To model this, and also inelastic collisions (where kinetic
energy is lost) we shall define a parameter called the coefficient of restitution. This is defined as the speed of separation / speed of approach.

Collisions in a straight line

BEFORE

By conservation of momentum

mu, —mu, =myv, +m,v,

Define the coefficient of restitution
Vz B Vl
u, +u,

C=

Hence |Vv,=V,+C(u,+U,)

We can now solve for the velocities post-collision:
myu, —m,u, =my, +m, (v, +C(u, +u,))

m,u, —m,u, —m,C (U, +U, ) =v,(m, +m,)

u (m —m,e)—myu, (1+C)=v,(m +m,)

u,(m, -m,C)+u,(-m, —Cm,)

1

Special case: Elastic Collisions C= 1

" u, (m, —m,)—2m,u,
' m, +m,
v - 2um, +u,(m, —m,)
2 m, +m,

m, +m,
u (m -m,C)+u,(—m,—Cm
v, = 1(m zn)1+r;( 2 2)+C(u2+u1)
1 2
. :ul(ml—mZC)+u2(—m2—Cm2)+(ml+m2)C(u2+ul)
? m, +m,
v _u,(m -m,C+mC+m,C)+u,(-m,-Cm, +mC+m,C)
2 m, +m,
um, (1+&)+u, {C(m +m,)—m,(1+C)}
2 m, +m,
- u, (m -m,C)-m,u,(1+C)
v m, +m,
um (1+C)+u, {C(m,+m,)—m,(1+C)}
2 m, +m,

It is possible, if somewhat tedious, to show that kinetic
energy is conserved i.e.

1 2 1 2 _ 1 2 1 2
MU, +5Mmu; =5;my, +5m,V,

Special case: Inelastic Collisions C=0

mu, —-myu,
| —— i.e. both colliding bodies
m, +m, move with the same velocity.
They are stuck together!
V. = mu, —m,u, y 9

, =
m, +m,

In this case the total kinetic energy post-collision is
2
1 2 1 2_1(m1u1_m2u2)
MV, +5mV;, =3
m, +m,

The kinetic energy loss is

(mlul —m,u, )2 1 m (ul —Uu, )2

AE =imu’ +im,u’ —

N[

m, +m, S L

m,
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Example 1. Find the mass M, and then calculate the
amount of kinetic energy lost in the collision.

BEFORE
2 2 :
EEE— Note the coefficient of
+ve restitutionis C=0.51in
this case.
AFTER

By conservation of momentum
2M -2=M +3
M =5

The amount of kinetic energy lost is

AE =3(5)(2°) +3(D(2") -3 (5)(D) -3 ()(3")
AE :%(20+4—5—9)

AE =%(20+4—5—9)

AE =5]

Example 2: Find the velocities post-collision
Assume the collision is elastic. Masses are in kg

BEFORE

By conservation of momentum
4v, +v, =40) - OO
4v, +v, =3

Since collision is elastic
v, -V, =2

Subtracting these equations eliminates v,

ov, =1

Vi=3

Hence
AFTER

V,=2+V,

v, =2% @—99
1 21
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Interesting scenario: two balls dropped together

m,>m,

Both balls are dropped from height h. The
lower (and more massive one) collides
elastically with a hard floor

By conservation of momentum

|
+ve : , )
=2 [ Y2
: 2g \u
|
|
|
__________ P
BEFORE
Upper ball rises to
The balls then collide height H

Coefficient of restitution is defined in this case as:

Vo=V .
mu—m,u =my, +m,v, CZT SV =V, —2uC
If the collisions are elastic:
Hence: mu-mu=m, (v, —2uC)+m,y, —
_ m
mu —m,u +2Cmu =v, (m, +m,) V.=
m
_(2C+m -m, o 3-m a14m)
’ m, +m, V= U= 2u=————
- 1+% 1+%
(2C+1)- 2
V,=——"—u _3m
T+ Vi= ::1
1+

If the collisions are elastic and m, >m,

v,=3u

If the collisions are elastic and m, =m,

v, =Uu Hence |H =h

Hence |H =9h is the maximum height the upper ball will rise.

This can be quite a startling demonstration!

For best classroom results, use a basketball and a tennis ball.
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Now imagine a stack of N
balls dropped together. For brevity,
let us assume all collisions are elastic.

Let the ball massesbein m

n__
a geometric ratio m . K
n+l
Vn+1
BEFORE AFTER
: (™)
+ve
Note v, =U
By conservation of momentum
M Voo T MW, =—M U+ MV,
mi{v,—w, )—m_.u
RV o (Vo = Wp) =My =k(v, -w,)-u

m

n+l

Since collision is elastic
V.. —W
C=1l=—L__1 .- w=v_ -V -uU
v.+u

Vo = k(vn _{Vn+l —Vu —U})—U

V.., =—kv

n

v+ 2kv, +ku—u
V. (k+1)=2kv, +u(k-1)

2k k-1
V,=——V +——u=av, +b
k+1 k+1

v,=au+b
v;=av,+b=a(au+b)+b=a’u+ab+b
v,=av,+b=a’u+a’b+ab+b

N-2
vy =a""u+b) a'
i=1

N-1
Vy =a""u+b 1 Using the sum of a geometric series
a_
2k
a=—-—
k+1
b= X1,
k+1
.o 2k k+1 k-1
T k+1 k+1 k+1
b
So—=Uu
a-1

vy =a"u+ua"t —u

The recoil velocity of the nt mass can
now be determined

N-1
X&ZZQELJ 1
u k+1

If one repeats the above analysis
taking into account a coefficient of restitution

N
u k+1

Y =(MJN_1(1+C)—1

The Irish Moonshot (1)

A rather fun extension to this is to
calculate how many balls are required
to cause the upper one to escape from
Earth (!). Let us assume k = 2 and all
collisions are elastic, i.e. C=1

k=2
n-1
xl:4§j 1
u 3
v = [2Me
R@
u=,/2gh
n-1
2(& 1- GM,
3 R, gh
log| 4[24 4
Rsgh
n=
log4—1log3
) \/6.67><10“><5.97><1024 .
log| & 5 +1
6.38x10° x9.81x1
n= +1
log4—1log3
n=~ 26

The latter step assumes the 26 ball
system is dropped from 1 metre.
Realistic? Well if the top ball is 1kg, the
bottom ball is 225 kg, i.e. 33.6 million
tonnes! So perhaps the elastic collision
assumption may not be a good one!
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Oblique collisions — 2D
Example |

Collision line ——

BEFORE

Perpendicular velocities unchanged
_ucos@
cos¢

ucosd=v,cosg ..v, ()]
Conservation of momentum along collision line

musingd =m,v, —-my,sing  (2)

Restitution (along collision line)

Co v, Sing+v,
usiné
m,Cusin@ =my,sing+m,\, (3)

m,(1+C)usind =(m, +m,)v,
v - m,(1+C)usiné
2 m, +m,

(2)+@©)

1 I

|
__ Collision line —— “ G v,

AFTER

In an oblique collision between
particles, the only actual collision is
along a collision line joining the
particle centres.

Velocity components perpendicular
to this line are unchanged.

m,usin@ = m,v, —my, sing

m, (1+C)usin aj—ml[ucoserinqﬁ

m, +m, cos¢

- 2
Y m, +m,

m,using = mZE

_Mm,(1+C) tang
m+m, tand

tan¢=[w—ljtan9
m, +m,

1

v ~ m(1+C)using
2 m, +m,
|
tang = M—l tan @ '
m, +m, g
v = ucosd .
' cos¢ B

AFTER

BEFORE
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Oblique collisions — 2D
Generalized! |

Collision line ——

BEFORE

Perpendicular velocities unchanged
U, Cosé, =V, Cosg
u, cosé, =V, Cos g,

Conservation of momentum along collision line

mu,sing, —m,u, sing, =m,v, sing, —myv, sing (1)

Restitution (along collision line)

C v, sing +V,sing, )
u,siné +u,siné,

u, cos 6, y U cosd,
cosg = cosg,

v,
(3)in (1)
myu, sin@, —m,u, sing, = m,u, cos g, tan ¢, —m,u, Cos ¥, tan ¢,
(2) mC(u,sing, +u,sing,)=mu, cosé, tang +m,u, coso, tan ¢,
m,C (u,sin @, +u,siné, )+mu,sin 6, —m,u, sin 6,

=(m, +m,)u,cosd, tang,

| In an obligue collision between
particles, the only actual collision is
along a collision line joining the
particle centres.

Collision line ——
Velocity components perpendicular

to this line are unchanged.

AFTER

mu, (1+C)sing, —(m, —m,C)u,sing, = (m, +m, )u, cos 6, tan 4,
mu, (1+C)sing, —(m, —m,C)u,sin6,
(m, +m, )u, cos b,

¢, = tan‘l(

m,u, sin& —m,u, sind, =m,u, cosé, tang, —myu, cosé, tang,  (3) in (1)

m,C(u,sing, +u,sin g, ) =m,u, cosé, tan¢g +m,u, cosd, tang,  (2)

myu, sin 6, —m,u, sin 8, —m,C (u,sin 6, +u, sin 6, ) = —(m, + m, )u, cos g, tan ¢,
(m,—m,C)u,sing, —m, (1+C)u,sing, = —(m, +m,)u, cosd, tan ¢,

m, (1+C)u,siné, —(ml—mZC)ulsin@]

(m, +m,)u, cosé,

¢ = tan‘l(

U, cosé, _y u, cosé, _y

cosg = cosg
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Oblique collisions — 3D If collisions are not in a straight line, a vector analysis is required to work out the post-collision velocities

m,
u,
“‘z\
z

m,

BEFORE IMPACT

x
A4
m,

Y AFTER IMPACT

By conservation of momentum
mu, +mu, =myv, + m,v,

Define the coefficient of restitution
_ |V2 ~ V1|
|u2 - u1|

However, this doesn’t help us isolate v, and v,

To transform to the ZMF, we shall subtract a velocity V from
both masses such that the total momentum is zero

m,(u,—V)+m,(u,-V)=0

S V(m +m,)=mu, +m,u,

A

m, +m,

_mu, +myu,

In the ZMF, the m

in a straight line. Hence we can now write down
the post-collision velocities in terms of the original

velocities and the

asses are now colliding

coefficient of restitution, C

v,=C(V-u,)+V

v,=C(V-u,)+

In terms of C and

\%

the masses, this becomes

m, +m,

m —Cm

m,(1+C
v2=ul{—l(

m, +m,

]
tes

If C =0, i.e. an inelastic collision, one can
show the loss in kinetic energy is given by

AE =%m1|u1|2 "'%mz|u2|2 _%m1|vl|2 —%m2|v2|2

AE =
1+

%m1|u1_u2

|2

to do this requires the Zero Momentum Frame (ZMF)

Observer frame
of reference

Zero Momentum Frame

BEFORE
IMPACT

ZzMF

A%

Yzur

AFTER
IMPACT

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

C'is the coefficient of restitution

V[ZC(V-HI) +V

m,
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Ball bouncing on a horizontal surface A ball is dropped from rest from vertical height The ball-floor collision has a coefficient of

h onto a horizontal floor. The impact velocity is 1/Zgh restitution of C.
(via conservation of energy)
@ The ball therefore leaves the floor with velocity C./2gh
|
e
| |
: h I @ Ball bounce. C = 0.8, T = 4.0637s, D = 4.5556m
| c.2on | 2 oan 1 : : :
l \
| | 1 C*h 08 |
—_——— —_—_—— -1 —_——— _— _____L _____ "‘
£ ‘\
Zos | [\
By conservation of energy, the ball rises to To generalize, the distance travelled after n bounces is % '\I / “\‘
new height o 804 | |
2 D=h+2C*h+2C*h+...+2(C*) h 2 A
mgh'zém(c 2gh) © | |/ \ |
D ) 2\2 2 \n-1 ) | | | ‘f \ N
h'=C’h o FE=1+C (CF) .k (C7) T Ceomerie T VAR VA N
w \/ YRRV
2n | | VAR VAV
And therefore the impact velocity is 24_% zi 9% | ; \‘ I 5 /- ‘“é"/\ D 2
2h 1-C timet/s
«/Zgh :C1/29h 1_C2 1
D =2h 3| - |D,=2h| —=—3
And the rebound velocity is  C?,/2gh 1-C 1-C

Ball bounce. C = 0.8, T = 4.0637s, D = 4.5556m

The fall time before the first bounce is
h = 7 gtz

—+
Il
N
a|X
_|
I
N
BE
+
N
O
N
|
_l’_
N
O
N
N
BE
+
_l’_
N
O
=3
L
N
BE
velocity v /ms !
o -
/’ T
— T
// i
e
-
/’/
I
—
_

T /9 2 n-1 ' A \ \ \
Between the first and second bounce the 2\ 2n +7=1+C+C +..4+C Geometric 2/ \ \ \
o : progression \ \ \
time interval is 3 \ \
T |g 1-C" ‘
2\an :

+%= “l ‘\‘\\ \
At=2 /ﬂzzc /@ 2h 1-c L
g g 2h(1-C" . 2h 1 ~0 1 2 3 4
TZZ‘/E(l—C —%) ST =2 E(R— ) time t /s

N
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