
Introduction to integration

What is the area A between a mathematically defined curve and the x axis? We can approximate this

by summing a series of rectangular strips. 
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In the example on the left
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Clearly, in order to get a better estimate, we must reduce the size of the strip width, and thus increase

the number of strips to cover the interval [0,1]. The exact area is therefore:

The (fixed) strip width is therefore
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The area between a curve f(x) and the x axis is defined
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The area between a curve f(x) and the x axis is defined

as the integral of the integrand f(x)
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The Old English ‘S’ means “sum rectangular strips of height f(x)

and width ∆x, in the limit when ∆x tends to zero.” Note the dx

has the same meaning as dx in the gradient df/dx

Now, for polynomials:
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Note we have omitted limits here. This integral is said to be ‘indefinite’

(whereas an integral with limits is ‘definite’). An indefinite integral

must always have a constant of integration added to account for the fact

the limits have not been stated.

Hence, using this rule for integrating polynomials: ( ) ( )
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i.e. we work out definite integrals

by finding the difference in curve 

areas between the limits, relative 

to minus infinity. The constant of 

integration is therefore the same 

for each, and hence cancels in the 

difference.

In the example 

above the limits 

would be 

a = 0, b= 1



Integration is anti-differentiation
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Differentiate

Integrate

The caveat is that integration creates 

information (i.e. the constant

of integration)
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We can use the idea of integration as anti-differentiation to work out the integrals of many functions, using what we 

know about their derivatives

Polynomials Exponentials
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Since integration is essentially a summation of terms:
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Regardless of what the constant added 

to  x3 is, differentiating it will yield the 

same answer. 

Integrating the result will restore x3, but 

any constant is possible. 

More information e.g y = 3 when x = 1

is needed to define what the constant is.

Trigonometric
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Note this process is somewhat restrictive, for example it does not tell us what the integral of tanx is, or indeed logarithms of x.

To compute these results we need other techniques such as integration by parts and integration by substitution.



Integration of polynomials, exponentials and trigonometric functions – spotting the pattern from knowledge of the derivative
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Since ‘integration is 

anti-differentiation’ and

( ) ( )af x dx a f x dx=∫ ∫
for the following examples we 

can work out what the integral 

expression by inspection of what 

we need to transform the 

derivative to get back to the 

original function.
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Differentiate
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Polynomials

Sine
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Integration of polynomials, exponentials and trigonometric functions – spotting the pattern from knowledge of the derivative
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Since ‘integration is 

anti-differentiation’ and

( ) ( )af x dx a f x dx=∫ ∫
for the following examples we 

can work out what the integral 

expression by inspection of what 

we need to transform the 

derivative to get back to the 

original function.
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Differentiate

Integrate

Exponentials

Cosine
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sin cosxdx x c= − +∫ 1
2sin 2 cos 2xdx x c= − +∫ 1 1
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Integration of polynomials, exponentials and trigonometric functions – spotting the pattern from knowledge of the derivative

2y x= 3y x= 5y x= 1ny x +=

siny x= sin 2y x= 1
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Since ‘integration is 

anti-differentiation’ and

( ) ( )af x dx a f x dx=∫ ∫
for the following examples we 

can work out what the integral 

expression by inspection of what 

we need to transform the 

derivative to get back to the 

original function.

y dy
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Differentiate

Integrate

Polynomials

Sine

nx dx =∫
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=

FILL IN THE GAPS!
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Integration of polynomials, exponentials and trigonometric functions – spotting the pattern from knowledge of the derivative

xy e= 2xy e= 3xy e−= axy e=

cosy x= cos 2y x= 1
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Since ‘integration is 

anti-differentiation’ and

( ) ( )af x dx a f x dx=∫ ∫
for the following examples we 

can work out what the integral 

expression by inspection of what 

we need to transform the 

derivative to get back to the 

original function.

y dy
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Differentiate

Integrate

Exponentials

Cosine
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axe dx =∫

FILL IN THE GAPS!
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sin xdx =∫ sin 2xdx =∫ 1
2sin xdx =∫ sin axdx =∫

e dx =∫
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