Simple Harmonic Motion (SHM)

. . . 1 ,_do 2z 2r
The swing of a pendulum, the compression of a spring, P2 - 0=— —6, sm(t + ¢j
the oscillatory movement of charge in a circuit o(t) = 6, cos t + ¢ In;gzle 051 d T T
containing a capacitor, inductor and resistor circuit, in M P . d2 o0 o
fact all vibrational phenomena can be described by aX||mudm perlod tlme : = ; - = —t 0= i = ( T j 0, COS[Tt+¢)
sinusoidal variation* amplitude 050 1 % 10/ 12

L 2

If the ‘displacement’ of a system varies according to an equation 8 =—| — | 8 -1+ T
then we can use this to determine the period of oscillations. T

Rather than apply variants of Newton’s Second Law to determine the equation of motion of a system, it is often easier to start with an expression

for the total energy. If the system does not lose energy to friction, air resistance etc, then the time derivative of the total energy will be zero, since
the total energy will be constant. For systems involving a single type of ‘displacement’, this mathematical approach will yield the equation of motion.
For more general systems (e.g. the motion of a coupled pendulum), the Calculus of Variations and Lagrangian (or alternatively Hamiltonian) dynamics
can be used. The benefit of all of these techniques is they generate the equation of motion of a system from a scalar, rather than a vector expression.
A scalar expression for the total energy of a system is often easier to determine than an expression for the vector sum of forces, torques etc.

Example2: Mass on a Hookean spring or elastic cord

0~ —90 Pendulum

Examplel: A simple pendulum | I N If a spring or elastic cord obeys Hooke’s Law, then the restoring force
_ ) experienced is in direct proportion to the amount it is stretched
E= v mgh §=_ 2 0  SHM Elastic cord beyond its natural length . .
v=10 T or Hookean X k is the spring constant
spring — F F=kx=1- A is the elastic modulus
h=1-lcos¢ Hence the period of [ +x |
. |E —1mI20° + mgl (1_ 0059) | (small) pendulum oscillations is: -
A >
— — ) g kx I+ X, X
E =%m|2(26’€)+mglsm€9 2r g N
. ? = I_ When a spring is stretched, the work done
E=0 m to achieve this is
.'.mlzé(é+gsim9)=0 ST =27 l w =J.XFdX=J'XkXdX=%kX2 i.e. the area of the
| g mg \/ 0 0 green triangle!

The potential energy in a stretched spring is therefore

m,6 =0 Vvt

|@+=sin@=0 ] . o mg
I If the spring hangs in equilibrium Mg = kX0 =X, =— Robert Hooke
k mg 1635-1703
If @ isin radians and @ <1 . The equilibrium displacement from the hanging point of the mass is therefore | + — Born in Freshwater
This is called the k Isle of Wight

“small gnglg . The total energy of the mass-spring system above is:

approximation

|0~ - ?6 E:%mX%mg(H%— —J +1kx® =1imx? +mg(%—xj +4kx?
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Example2: Mass on a Hookean spring or elastic cord continued ...

E =%mxz+mg(%—x)+%kxz

E = mxX — mgx + kxx

E:mX(X‘—g+ﬁj
m

Assume system is lossless

~E=0
:>5('—g+ﬁ=0
m

Define a new displacement, from the
equilibrium position

Hence spring oscillations will
have period

(z_ﬂj _k
T m
m

ST =27, |—
k

Note in this case, Newton’'s Second Law

can also be used to derive the equation of motion in
a fairly straightforward fashion. In this case it is the
most efficient method!

mX = mg — kx
X =7+ mg z is the displacement from
k equilibrium
i m
~.mZz=mg—k z+—g
k
k
I=——1
m

Example3: Hinged rod and light elastic cord*
A

of mass m and length 2a

Consider a rigid rod
g
freely hinged at A.

A light elastic cord is also attached
to A and threaded through the rod.
It is attached to a fixed point at C
directly below A. The elastic cord
has natural length 2a and elastic
modulus 4 =5mg

The moment of inertia of the rod
rotating about one end is

|=J‘261 ﬂdX><X2
0\ 2a

=M gy = M 192)° = 4ma?
I_Zaj'o X'dx =2 -4(2a)" = tma

Hence total energy is:
. X2
E =1(4ma®)6* +%(5mg)g+mg (a—acosd)

Kinetic Elastic Gravitational

Cosine rule:
x?=(3a) +(2a)" —2(3a)(2a)cos®
x* =(13-12cos6)a’

wln

2’0" +$mga(13-12cos@)+mg(a—acosd)
a’6’ +mga($x13+2—($x12+1)cosd)
2ma’6” +mga (181 -16c0s0)

mi{m m
1
wln

m
m
m

E = 4ma’dd +16mgasin 09

E :%mazé(é#lz—gsin 0)
a
E=0
0= —12—gsin0
a
0<«l..sin@~=0
2
éz—lz—ge é:_(z_”J 0 SHM
a T

*Adapted from OCR Mechanics 4 textbook Small Oscillations & Stability
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Example 4: Light springs and a sprocket wheel Example 5: chargein atube Example 6: Bead on a frictionless circular wire Stability test
|

L

kx’zéHki(l - x)_2

A bead of mass m is threaded on
a frictionless circular wire
mounted vertically. It is
connected by a light inextensible
string to a mass om via a
frictionless ring.

Sprocket
radius r

| X

N
N~

Consider a frictionless sprocket wheel A charge is placed in a tube of length .

_Of mome_nt of |ne_rt|a I ponn_ecte(_j via I'ght Itis repelled with an inverse square law from
inextensible chains to identical light springs, identical immobile charges placed at the
each of elastic modulus 4 and natural length 1. ends of the tube.

The other mass hangs vertically.
The ring is one unit above the
circle centre and the circle has
radius 2 units. The string

If the change has mass m, by Newton Il connecting the two masses has

In equilibrium AB=BC =d +1

o - - length 4 units.
Let sprocket be rotated clockwise mX =kx? —k(l —x) ¢
such that AB is stretched by a further . o . ) . .
distance a from equilibrium. a < d Define a small perturbation z from equilibrium Consider gravitational potential energies relative to the circle centre.
atx = 0.5l Total energy of the system is therefore
. o\ 2 o\ 2
The system is released, and the x=1l+z E =4m(20) +mg(2c0s6)++am(26) —amgy
displacement of B right of the
equilibrium is x. .l S ) . ’\
Total fth t . mZ—k(§|+Z) _k(I_EI_Z) y+1+x=4 Note vertically hanging mass
otal energy of the system IS: m7 =k (;| + Z)_Z —k(31- Z)_Z y=3-X must be moving with the same
2 g 2 ) ) ) ( )( ) velocity as the bead, since the string
X A 2 A 2 2717 27\7 X =1"+2"-2(1)(2)cos @ which connects them is inextensible
E=%'(—j +3(d+x) +37(d - x) mz=k(21)?[1+ 22| —k(21)?[1-%2
r I I (1) I (1) I x> =5-4cosé
Note angular speed w of the sprocket is related 2| ™
to the movement of point B via X =r® 27\ 4 E=2m(1+a)9 +2mgcos‘9—amg(3_\/5—4C059)
E :L)-(z +Li(d2 + X% +2dx+d? —2dX+X2) (1 Tj ~1_T Generalized Binomial
2r? 2 >, expansion. Ignore Is this system stable? Is there an equilibrium point? If there is will
| p) (1 22 1 4z higher order terms. small perturbations result in SHM?
B0 X+ (0 +x) ) T
2r I We can write the total energy (assumed constant) as
- . 2AxX . _ 4z _ 47
B =%+ = mzzk(%l)2(1—Tj—k(%l)2[1+Tj E=T+V
r .
I% 2 Ar’x 4 8 32k T=2m (1+ a)92 Kinetic energy
z
E=0=—|X = mi~k—| —— I~— z
r ( I ] |2 | ml® V =2mgcosf —amg (3—\/5—40056') Potential energy
3
24r* [ T~y M
X=— i = : : ~ 27
==X SHM, period |T =27 o SHM, with period 30K See next page ...
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Stability and the potential
energy function V

E=T+V
T =2m(1+a)é’

V =2mg cose—amg(3—«¢5—4cose)

The graph of V vs @ exhibits general features.

If there is a local minima, equilibrium is stable at the minima.
Small perturbations about this minima will result in SHM.

If there is a local maxima, this means an unstable equilibrium.
A small perturbation from this point will result in divergence towards
any nearby stable minima (if there are any).

=-2mgsin&+1amg(5- 4cos¢9)7% (4sin o)

v
d
dv . a da , :
— =2mgsinf| —————-1 v at the stationary point of V
do («\/5—4COS¢9 j d6? >0 means a local minima.
d—V=O:>sinH=0:>t9=0,7r
‘ ﬂ—ngcose(L—l}t
VN 2 _1_p de&? J5-4cos0
do «/5—40036’ .
.o’ =5-4cosd ...+2mgsin 0[—%(40{5%}
2 2 S—4cosd)’
.-.00549:5 a ezcosl(5 aj
4
cosd > -1
5-a >_1 Consider situation |1<a<3, 0<<1|
i sind =6, cosd~1 ) . dVv -
—a’>- E=4m(1+a)00+—0
dv do
>a’=>a<3 —zngH(a—l)
do . (.. 2mgd(a-1)
E~d4m(l+a)0| 0+ ——=
cosd <1 4m(1+a)
5-¢° . -
2 <1 I T Gl PR
4 2(1+a)
-’ <4
“ 2(a+1)
<t =a>1 T=2x
g(a-1)
Stable equilibrium Unstable equilibrium
a<l O=rx 6=0
_ _ 2 _ 2
l<a<3 =0 9:cos‘1(5 aj 0=27r—cos‘1[5 aj
O=r 4 4
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