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SHM equation from driven mechanical oscillations 
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Consider a particle of mass m suspended from a 
light elastic string from a fixed surface. The string 
has natural length l. 
 
Assume a Hookean law of elasticity i.e. restoring 
force is proportional to extension. The elastic  
constant in this case is k. 
 
Also assume mass is subject to air resistance 
which is proportional to velocity and mass m. 
 
The mass is also pulled ‘driven’ via an oscillatory 
force of magnitude F0 and frequency f = /2p 

In the absence of any driving force, the mass 
rests at string extension l. It is assumed at time  
t = 0 that extension from this equilibrium point, 
(x), is zero and the mass is at instantaneous rest. 

By Newton’s Second Law:  
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SHM equation from driven mechanical oscillations 
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By Newton’s Second Law: 
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This equation has a very similar form to the generic 
equation of Simple Harmonic Motion (SHM) 
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     can have oscillatory solutions if  0 

The general solution is: 

‘Transient solution’ (which exponentially decays) Steady state oscillation at same 
frequency as driving force 

The steady state amplitude exhibits 
resonance phenomenon i.e. it has a 
maximum at a particular ‘resonance 
frequency’ 

Transient amplitude and phase 
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Steady state oscillation at same 
frequency as driving force 

The steady state amplitude exhibits 
resonance phenomenon i.e. it has a 
maximum at a particular ‘resonance 
frequency’ 
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SHM parameters for the driven mechanical oscillator 
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Mechanical oscillator 
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Solving the SHM equation (steady state) using complex variables 
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Steady state solution to the LCR circuit 

Steady state solution to SHM equation 

0 cosV V t

Sum of 
potential 
differences 

EMF – ‘back EMF’ due to 
induction in the coil 

Let current I flow through the circuit. The net EMF  
V - VL must equal the sum of the potential drops 
across each electrical component. 
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Steady state solution to the LCR circuit .... cont 
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Steady state solution to SHM equation 
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Using dimensionless variables ... 

Note  0 0f CV

is the average current 
when the maximum amount 
of charge stored in the capacitor 
is discharged over one complete 
period at frequency f0 
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Let current I flow through the circuit. The net EMF  
V - VL must equal the sum of the potential drops 
across each electrical component. 
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Ohm’s Law, 
generalized for AC 

Impedances 
for L,C,R 
components 

Sum of 
potential 
differences 

EMF – ‘back EMF’ due to 
induction in the coil 
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No voltage gain here! 
better to take output voltage across 
the capacitor or inductor 







LCR circuits can be used as 
electrical filters. If a signal 
consists of a superposition 
of oscillations at different 
frequencies, an LCR circuit can 
be tuned to preferentially 
boost signal components 
whose frequencies are near the 
resonance peak of the circuit. 
 
This has enormous application 
in communications or Radar 
technology, whereby a weak 
signal of a known frequency 
(e.g. a local radio station, or 
indeed the broadcasts from 
Voyager!) may be buried in 
electrical noise ‘across the 
waveband’. 



Designing a mains noise filter 
 
In many applications we would like to filter out electrical signals associated with 
mains AC at 50Hz 
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If L = 0.05, therefore   C = 2.03 x 10-4 F 
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‘Knotch filter’ 
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A 50Hz knotch filter 
which could be used 
to remove ‘mains hum’ 
from a signal 



Low pass filter 

Band stop filter Band stop filter 

High pass filter Band pass filter 

Band pass filter 

Other types of filter using just R,L,C configurations 



More complicated L,C,R filter circuits 
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Write down equations for the currents in each loop ... 
Apply V = IZ ... 
Solve simultaneously! 



Impedance matching 

Note maximum power is transferred 
from input to output if impedances 
 
 

 
if source impedance is fixed. (If it is 
adjustable, then setting ZS = 0 will 
maximise the power dissipated in the 
load).  
 
A change in impedance will cause a  
fraction of the signal to be reflected, 
which results in a loss of power 
conveyed to the output 
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See next page! 



Maximizing the load power in the ‘power dissipation theorem’ is equivalent to maximizing 
y given constant a in the equation 
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Radiated electromagnetic waves 

Guglielmo Marconi 
Wireless transmission pioneer  
1874-1937 

James Clerk Maxwell 
1831-1879 

Henrich Hertz 
1857-1894 

Maxwell developed the experimental work of Faraday and others 
into a mathematical theory of electric and magnetic fields. 
 
It is a vector theory, encapsulated in four equations which are 
now know as Maxwell’s Equations.  
 
One can combine them to form a wave equation in both the 
electric and magnetic fields. In each case, the velocity of  
waves (in ‘free space’ i.e. a perfect vacuum) is 
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i.e. the speed of light 
c = 2.998 x 108 ms-1. 
 
This is independent of the 
frame of reference! ..... A big clue 
that Albert Einstein used to help 
him develop the theory of Relativity. 
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Permittivity & permeability 

Coulomb’s Law of force (F) between two charges (Q1,Q2) 
separated by distance r 

Charles-
Augustin de 
Coulomb 
1736-1806 
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Magnetic field strength inside a solenoid 
of N turns and cross section A 

Inductance of a coil of N 
turns and cross section A 
 

Joseph Henry 
1797-1878 
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Wave equations for electric fields E 
and magnetic fields B 

c = 2.998 x 108 ms-1 independent of any 
coordinate system! So no matter how 
fast you are moving, electromagnetic 
waves always propagate at the same 
speed ..... 



The Electromagnetic Spectrum 

c f 

f

f



Maxwell’s Equations (from Woan, The Cambridge Handbook of Physics Formulas) 


