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Michael Faraday 

1791-1867 

Electric fields 

Electric charge is a fundamental characteristic of matter. Point charges (i.e. that are infinitesimally small with respect to the characteristic distance scales of interaction) will 

interact with each other according to Coulomb’s Law. This is an inverse-square law, and directly analogous to Newton’s law of Universal Gravitation.. 
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Charge is measured in 

coulombs, with the 

fundamental unit being 

the charge on the 

electron. 

Like charges will repel 

with a force 
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Compare the strength of gravity for two protons 

at separation d with electrostatic repulsion 
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For two electrons: 

So electric force is 

MUCH stronger at 

an atomic scale. 

So how does a nucleus 

stay together? 

Over scales of 10-15 m 

the Strong and Weak 

nuclear forces counteract 

electrostatic repulsion.  

Neutrons as well as protons 

contribute to these forces. 

Electric field produced by 

a positive charge. (For a 

negative charge, lines of 

force go inward) 

This is 

Coulomb’s 

Law of 

Electrostatics 

Permittivity of free space 

11 3 -1 -26.6741 10 m kg sG  Universal Gravitational constant 

It is instructive to imagine the possible influence of a charge 

on another, if the second charge could be at any location in space. 

This is the concept of an electric field E. At any point in space we can 

imagine a vector describing the magnitude and direction of the 

force per unit charge, acting on a charge q. 

qF E

The electric field sourced by a point 

charge Q is given by: 

Using Newton’s Second Law, the charge would accelerate in the 

direction of F. The vector field E therefore tells us where a charge 

would move at a point in space. This is just like a magnetic field 

describing the direction that a compass needle would point at any 

point in space, but also how strong the force is at any point. 

2

0

1
ˆ

4

Q

r
E r r̂ is a unit vector 

pointing in the radial 

direction away 

from the point charge Q 

So the field lines due to the point 

charge radiate outwards, if Q is positive. 

The field line divergence is indicative of 

the decay in strength of E with radius r 

The field lines indicate the direction the positive charge would 

move at this point in the electric field due to the charge in the 

centre of the diagram 
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If there is more than one point charge, the vector fields will superpose, i.e. add in a vector sense. A Dipole is an arrangement of two opposite charges, whereas a parallel plate capacitor 

can be modelled by two lines of opposite point charges, separated by a fixed distance. In all the examples below, a MATLAB computer program has added up the E fields due to the point charges 

for any x,y location. Notice the field strength between the capacitor plates appears to be constant. 
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Gauss’ Law 

Rather than adding up point charges, we can use Gauss’s law to 

work out the electric field which passes through a surface S which 

encloses a charge Q  
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Carl Friedrich Gauss 

1777-1855 

force on charge q 

in electric field E 

charge density 

i.e. Gauss’s Law is 

consistent with 

Coulomb’s Law for a 

point charge 
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Electric potential 

The work done W in bringing a charge from an infinite distance to a specific position in an electric field 

is proportional to the electric potential V. This quantity can be used in Conservation of Energy calculations 

The electric potential is the electrical energy per unit charge, i.e. voltage. 

 
For the electric potential at radius r from a point charge of strength Q 

For more complex distributions of charges,  

it is often easier to compute the electric 

potential since this is a scalar function. The 

resulting electric field can be found from the 

gradient of the potential 

This is called the gradient (‘grad’) vector  

operator. In other words, we have to find 

the slope of the electric potential in each 

of the x,y,z directions. 

A useful result is that the 

line integral of electric fields 

from position A to B is the 

difference in the electric 

potential, regardless of the 

path taken. 

 

Fields that work in this way 

are called conservative. 

( ) ( )
B

A
d V A V B   E l

In this situation, both charges in the dipole are positive, so the field 

lines diverge. Note there is a region between the charges where the 

electric field is very small. Indeed it tends to zero at the very centre 
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So the electric field strength above an infinite 

conductive plane with charge per unit area  is 

a constant 
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Parallel plate capacitor Electric field strength above an infinite conducting plane 

 

Consider an infinite conducting plane with charge per unit area . 

The electric field at a perpendicular distance z from the plane must 

only be in the z direction. Why? If we consider concentric rings of 

charge contributing to the electric field, by symmetry we can clearly 

see that any field in the x,y direction will be opposed by an equal 

and opposite signed field from a charge at the diametric opposite in 

the circle. 

Concentric 

ring of 

charge 

A parallel plate capacitor can be modelled 

as two infinite charges planes separated 

by distance d, separated by an insulating 

dielectric, and rolled up like a Swiss cheese. 

 

Noting there are two planes (with opposing 

but equal charges Q ) 
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A real capacitor will have finite 

area A. Let us assume this is 

much larger than the plate 

separation d so the ‘infinite 

plane’ argument has some 

validity 

For an excellent description of Capacitors see the MIT Physics 9.02 Electricity & Magnetism course 

i.e. a constant electric field between the plates 

We can obtain the same result using Gauss’ law: 
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Assuming the electric field 

is both constant and perpendicular 

to the conducting plane surface 

The electric potential is: 

Hence: 

We can define the 

Capacitance (units are 

Farads) as the ratio of charge 

stored on the plates to 

voltage between them 
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Electric field of a dipole* 
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Electric field of a line charge Electric field outside a charged sphere of charge Q 
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The charged sphere will exhibit general features of any 

hollow conductor. Unless it is polarized via the application 

of an external electric field, the charges will tend to 

distribute uniformly on the conductor surface. If this was 

not the case, any inhomogeneities would cause charge to 

move. Since charge is highly mobile in a conductor, we 

may assume a steady state is rapidly attained. 

Gauss’s Law – outside the conductor 

i.e. a spherical 

conductor looks just like 

a point charge 
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Gauss’s Law – inside the conductor 

i.e. there is no electric field inside 

a hollow conductor. This is why a 

conductive container can be used 

as an effective shield of EM 

radiation. We call this a Faraday 

Cage. 

Note the plot on the right 

is only an approximation. 

Instead of a sphere there 

is a ring of positive charges. 

While these will result in a zero 

field strength at the centre, this 

is not the case for all positions 

inside the ring. 

This shortcoming has been 

‘overcome’ (!) by setting the 

field strength to be zero inside 

the sphere. 

 

For a realistic simulation of a 

charged sphere, charges would 

have to be uniformly distributed 

on the surface. This is a three 

dimensional distribution. Due to 

the inverse square law, this 

means the field, due to all the 

charges, is zero everywhere 

inside the conductor. 

Charges on a conducting 

line will distribute themselves 

until there is no net 

electric field along the line. One 

expects this steady state situation 

to happen rapidly. 

 

Therefore the electric field 

is perpendicular to the line, and 

will only vary with radial distance 

from the line, assuming the 

line is both long and straight. 

 

Let the charge per unit length be l 

dzd is the vector separation 

of opposing charges 

of magnitude q 
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Capacitance of a charged sphere 

Consider a charged sphere of charge Q placed 

inside a hollow conducting sphere of charge -Q 

If the line charge was actually a cylindrical conductor of radius 

a, and this was placed inside a hollow cylindrical conductor of 

radius b such that b > a, the voltage between the outer and inner 

conductors would be 
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This means the 

capacitance per 

unit length of a 

coaxial cable is: 
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*This shall be justified in another Eclecticon note 
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Conductive sphere in a uniform electrical field 

A conductive sphere placed in a uniform electric field will 

be polarized by it. In other words, charges will be separated 

on the surface of the sphere to align with the field.  

 

Note unless the sphere was initially charged,  

the total charge must still sum to zero. Either way, although 

the distribution of charge is modified by the external field, 

the total amount on the sphere must remain the same. 

To determine the electrical field outside the sphere 

(if we assume a hollow conductor, then the field 

must be exactly zero inside) we shall make a sensible 

guess that it comprises of something which looks like 

a dipole, superimposed upon a uniform field. 
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radius a 

External field 
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Imagine a dipole corresponding to two opposing 

charges placed at the top and bottom of the sphere 

 

Let us assume the ‘sphere-dipole field’ 

has a similar expression, where ‘polarization’ p 
is to be found: 
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We can therefore evaluate the electric field. 

Given the form of V it is most convenient to 

do this in plane polar coordinates* 
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Now there cannot be any tangential 

electric fields at the surface of the conductor. 

If there were, then the charges would move. 
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Note to aid in plotting this field 
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where  is the charge per unit area 

on the sphere surface. 

Hence: 
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polarized by a 

uniform electric field 

Simulation of the electric field 

around a conducting sphere 
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