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Analysis of experimental errors 

 

All measurements will be subject to experimental error. To quantify such errors we might do one of two things:  The first is to guess the largest and smallest possible values the  

measurements could take. These are called the upper and lower bounds.  The second might be to perform a statistical analysis of measured data, if lots of repeats are performed. 

 

For example: a measurement of  x = 11mm using a ruler with marks every mm would have bounds between 10.5mm and 11.5mm.  

Given the rules of rounding numbers, we could write this an inequality:   

 

 

The upper and lower bounds idea can be readily extended to determine the largest and smallest possible values of a formula involving quantities which themselves are subject 

to upper and lower bounds. 

 

Example (we’ll ignore units for brevity): 
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Note in the division case, the mixture of upper and lower bounds means we can’t have a ‘less than equals’ to represent the lower limit. 

 

For a formula that is a product, we can derive a useful ‘rule of thumb’ for the combination of percentage errors. Let us assume that the quantities x,y are positive, have symmetric upper  

and  lower bounds, and that the range of x and y is much smaller than the middle of the range for each.  

,x x x y y y    where  x is the ‘middle of the range’ x x x x x   

The upper and lower bounds of product  z = xy  are defined by:     z z x x y y x y x y yx x y x y x y yx            

.     Also assume:  ,x x y y 

Hence if : 
z x y

z x y yx
z x y
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       z x y

Upper and Lower Bounds ‘rule of thumb’: 

Percentage error of a product are the sum of the percentage 

errors of the quantities that are multiplied 

Example:   9.8 0.7 6.5 0.4x y    9.8 6.5 63.7z x y    121 121
910 910

0.7 0.4
13.3% 63.7 8.47

9.8 6.5

z x y
z

z x y

  
         

Therefore: 63.7 8.5z  

Powers of x or y can be treated like multiples of various sub-products, so our rule of thumb for upper and lower bounds generalizes to ‘an addition of power weighted % errors’ 

a b a bz kx y z kx y
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 

Note we have a problem if the powers are negative.  

‘Common sense dictates’ the sensible way forwards is simply to ignore 

the signs of powers a or b ... 
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    ... But can we be a little more rigorous mathematically?   Yes we can! 

Note these notes only concern random 

error rather than systematic (offset) error. 

i.e. precision and not accuracy. 

i.e. we add the percentage errors:  7.1% + 6.2% = 13.3% 0.7/9.8 = 7.1% 0.4/6.5 = 6.2% 

[ Progression:  (i) Upper and Lower Bounds, (ii)  how and when to add power-scaled percentage errors,  

(iii) Law of Errors i.e. when to combine gradient scaled errors in quadrature, using data statistics ]. 

i.e. ignore  x y 
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A direct upper and lower bound analysis is useful when formulae are not products, or polynomials. In these situations, the special case of adding power-weighted percentage  

errors is inappropriate and should not be attempted. One must be mindful of the conditions which must be satisfied in order for the ‘rule of thumb’ to be valid.  

(i.e. small errors relative to average values, symmetric errors, polynomial formulae). 

 

Examples: 10

10 10
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However, is an upper and lower bound calculation always the most appropriate thing to do? What we really want is to estimate the uncertainty in a quantity z(x,y....) based upon 

estimates of the uncertainties in x,y...., which we can calculate from experimental data using standard statistical methods such mean average and standard deviation. 

 

The standard approach to this problem* is what is know as The Law of Error Propagation.   Let us assume:                                                     and all  x,y.... variables are 

Normally distributed with means                 and standard deviations  

 

If the standard deviations are small compared to the magnitude of the mean values, The Law of Error Propagation states: 

*See Barlow A Guide to the Use of Statistical Methods in the Physical Sciences pp55-59 
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So for arithmetic combinations, 

uncertainties add in quadrature. 

 

i.e. we take a weighted sum of 

the squares of the uncertainties, 

and then square root.  

For polynomial expressions, we 

combine the power-weighted 

percentage errors in quadrature, 

rather than simply adding them 

as in the upper and lower bound 

analysis. 
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Upper and lower bound 
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   

Law of Errors 

As expected, the 

estimated uncertainty 

using the Law of Errors 

is smaller than for  upper-

and-lower bounds. It is 

good news that a cruder 

calculation should yield a 

larger estimate of 

uncertainty rather than 

the converse! 

To determine unbiased estimates of the means and standard deviations of variables using 

experimental data samples (i.e. N independent measurements of each parameter) 

 
221 1

1

1 1

N N

N Ni i

i i

x x x x


 

   
The N - 1 is used since the mean 

estimate is used in the calculation of the 

standard deviation. i.e. the actual 

population mean is not known a priori.  

A good use of 

a spreadsheet! 
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 

min max

9.8 0.2 7.3 0.3

9.6 7.6 10.0 7.0
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  
Take care when a lower bound means the most negative 

i.e. add 

absolute 

errors for 

either 

addition or 

subtraction 
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Justification of the Law of Errors (based upon Barlow’s analysis*) 

 

 

*See Barlow A Guide to the Use of Statistical Methods in the Physical Sciences pp55-59 

Let z = f (x,y....) where x,y... are independent random variables that are normally distributed. Let’s consider small deviations from the mean values of the inputs and hence approximate 

z in this limit using a first-order Taylor expansion: 

  

, ,... , ,...

( , ...) ( , ...) ( ) ( ) ...
x y x y

f f
z f x y f x y x x y y

x y

 
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 

The uncertainty in z, i.e. its standard deviation , is the square root of its variance V[z] : 
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This is because: 

are constants – i.e. don’t vary with x or y 

and: 2[ ] [ ]V ax b a V x 
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Expectation means ‘mean average’ 
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Variance of a scaled variable 

Hence: 
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i.e. the Law of Error Propagation 

 
2

2 2

2 2

2 2

[ ]

[ 2 ]

[ ] 2 [ ]

[ ]

V x E x x

E x xx x

E x xE x x

E x x

  
 

  

  

 

i.e. there is no correlation between them – you can’t for example express  y = g(x) 

Variance 

for a discrete set of  

data samples.  

Hence: [ ] [ ]E ax b aE x b  
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