1665. A bale of damp cloth is delivered to the Derbyshire village of **Eyam**... George Viccars, the tailor's assistant, dries the cloth and releases fleas infected with *Yersinia Pestis* bacteria – **Plague**

Rector William Mompesson *quarantines* Eyam and records Infected, Susceptible and Dead populations *as time progresses*

Dead

Can we develop a mathematical model to predict I,S,D vs time? What does this tell us about *Epidemiology* in general? _______ e.g Flu, Ebola

Calculus methods, differential equations numerical methods, line of best fit, iteration, loops ...

We performed the Eyam analysis in **Python**, then in **MATLAB**. You can also construct an Euler model via a spreadsheet (**Excel**).

	Α	В	С	D	E	F	G	Н	1	J	К	L	Μ	N	0	Р	Q	R	
1																			_
2		Black Deat	h Epidemio	logical mo	del using t	he Eyam da	ta												
3		Andy French & John Cullerne. 24th February 2018.							Eyam population during 1666 plague outbreak										
4											C	T		J_4	т Ј. 4. – – – –	DJ-t-			_
5		Initial population N0			249.5					- 5	1	-D S	data +	I data –	D data			_	
6		Initial number of succeptables S0				235			250.0										_
7		Initial number of infectives I0			14.5				*									L	
8		Transmission rate constant beta				0.017759													_
9		Death rate constant alpha			2.9													_	
10			-						200.0		\times								_
11		timestep d	t /months			0.1													_
12																			
13		t /months	S	<u> </u>	D	N	N+D = N0		_			\sim					+		_
14		0	235.0	14.5	0.0	249.5	249.5		.j 150.0						+				_
15		0.1	228.9	16.3	4.2	245.3	249.5		ula										_
16		0.2	222.3	18.3	8.9	240.6	249.5		dod										_
17		0.3	215.1	20.2	14.2	235.3	249.5		E .					+					_
18		0.4	207.4	22.0	20.1	229.4	249.5		<u>ج</u> 100.0										-
19		0.5	199.3	23.7	26.5	223.0	249.5												_
20		0.6	190.9	25.3	33.4	216.1	249.5										· · · ·		-
21		0.7	182.3	26.5	40.7	208.8	249.5												-
22		0.8	1/3./	27.4	48.4	201.1	249.5		50.0										+
23		0.9	165.3	27.9	56.3	193.2	249.5											-	+
24		1	157.1	28.0	04.4 70.5	185.1	249.5												-
25		1.1	149.3	27.7	72.5	1/7.0	249.5							+					-
20		1.2	141.9	27.0	80.0	161.1	249.5		0.0								+	-	╞
27		1.3	133.1	20.0	05.0	152.6	249.5			0	0.5	1	1.5	2	2.5	3	3.5	4	┝
20		1.4	120.9	24.7	102.1	146.4	249.5						tiı	ne/months	3				╞
29		1.5	125.5	23.2	105.1	120.7	249.3												+
50		1.0	110.2	21.5	109.8	139.1	249.0												L

 $-\beta SI \quad \frac{dI}{dt} = \beta SI - \alpha I \quad \frac{dD}{dt} =$ αI *At*

 $\frac{dS}{dt} = -\beta SI$ $\frac{dt}{dt} = \beta SI - \alpha I$ dD $= \alpha I$ dt

Leonhard Euler 1707-1783

Euler numerical *iterative* solution scheme $\alpha = 2.894, \quad \beta = \frac{\alpha}{163.3}$ $t_0 = 0, S_0 = 235, I_0 = 14.5, D_0 = 0$ $t_{n+1} = t_n + \Delta t$ $S_{n+1} = S_n - \beta S_n I_n \Delta t$ $I_{n+1} = I_n + (\beta S_n I_n - \alpha I_n) \Delta t$ $D_{n+1} = D_n + \alpha I_n \Delta t$

i.e. fix a time interval and work out what happens after each time step.

%Euler method solver for differential equations which %describe model of Eyam epidemic. [function [t,I,S,D] = eyam_model(dt, I0, S0, alpha, beta, tmax)

```
%Initialize output vectors for t,I,S,D
t = 0 : dt : tmax;
N = length(t);
S = S0*ones(1,N);
I = I0*ones(1,N);
D = zeros(1,N);
```

$$\alpha = 2.894, \quad \beta = \frac{\alpha}{163.3}$$

$$t_0 = 0, \quad S_0 = 235, \quad I_0 = 14.5, \quad D_0 = 0$$

$$t_{n+1} = t_n + \Delta t$$

$$S_{n+1} = S_n - \beta S_n I_n \Delta t$$

$$I_{n+1} = I_n + (\beta S_n I_n - \alpha I_n) \Delta t$$

$$D_{n+1} = D_n + \alpha I_n \Delta t$$

%Loop through vectors to compute t, I, S, D. %using the Euler first order differential equation method for n=2:N

MATLAB code for Euler Eyam model

$$\frac{dS}{dt} = -\beta SI, \quad \frac{dI}{dt} = \beta SI - \alpha I$$

$$\therefore \frac{dI}{dS} = -\frac{\beta SI - \alpha I}{\beta SI} = \frac{\alpha}{\beta} \frac{1}{S} - 1$$

$$\therefore I - I_0 = \int_{S_0}^{S} \left(\frac{\alpha}{\beta} \frac{1}{S} - 1\right) dS = \left[\frac{\alpha}{\beta} \ln S - S\right]_{S_0}^{S}$$

$$I = I_0 + \frac{\alpha}{\beta} \ln \frac{S}{S_0} - S + S_0$$

$$\frac{\alpha}{\beta} \ln \frac{S_0}{S} = \underbrace{I_0 + S_0 - I - S}_{y}$$

Note we to find I_0

Eyam Equations

$$\frac{dS}{dt} = -\beta SI$$
$$\frac{dD}{dt} = \alpha I$$
$$\frac{dI}{dt} = \beta SI - \alpha I$$

 $\therefore y = \frac{\alpha}{\beta} x$

we can integrate d I(S) analytically

.... But not I(t), S(t), D(t)

alpha/beta = 163


```
%Line of best fit function yfit = m^*x, with product moment correlation
 %coefficient r
\Box function [yfit, xfit, r,m] = bestfit(x,y)
 %Find any x or y values that are NaN or Inf
 ignore = isnan(abs(x)) | isnan(abs(y)) | isinf(abs(x)) | isinf(abs(y));
 x(iqnore) = [];
 y(iqnore) = [];
                                                   alpha/beta = 163
 %Compute line of best fit
 xybar = mean(x.*y);
                                           Linear fit
 xxbar = mean(x.^2);
                                         + Data
                                   150
 yybar = mean(y.^2);
 m = xybar/xxbar;
 r = xybar/( xxbar*yybar );
                                S
 yfit = m*x;
                                   100
                                -
                               s.
S
 xfit = x;
                                +____0
                                    50
                                             0.2
                                                    0.4
                                                           0.6
                                                                   0.8
                                                                           1
                                                       \ln(S_0/S)
```


Euler Eyam solver implemented in MATLAB with a **Graphical User Interface** (GUI). Change the inputs via the sliders or edit boxes, and the curves are computed automatically.

SITUATION REPORT

$$\begin{aligned} z_{+} &= -\ln\left(1-\eta\right) - \ln\left(-\frac{\ln\left(1-\eta\right)}{\eta}\right) \\ z_{-} &= -\ln\left(-\frac{\ln\left(1-\eta\right)}{\eta}\right) \\ x_{\max} &= -\frac{\ln\left(1-\eta\right)}{\eta} - 1 - \ln\left(-\frac{\ln\left(1-\eta\right)}{\eta}\right) \\ \rho &= \frac{I_{\max}}{x_{\max}} \\ \tau(z) &= \int_{0}^{z} \frac{dz'}{x_{\max} + 1 - e^{-z'} - z'} \\ x &= x_{\max} + 1 - e^{-z} - z \\ y &= e^{-z} \\ t &= \frac{\tau}{\alpha} + t_{\max}, \ I &= \rho x \ S = \rho y, \ D &= \rho\left(z - z\right) \\ N &= I_{\max} + \rho - \rho z_{-} \\ R_{0} &= \frac{N}{\rho} \end{aligned}$$

Eyam model: α =2.99, β =0.0183, Δ t=0.005

Probability map computed from 50,000 iterations. Black circles are from the Mompesson Plague data set and black dashed lines correspond to the Euler model.

