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NOTE:   No rotation, moments, torque. Only constant velocity circular motion. 1 & 2D constant acceleration motion. 



Relationship between displacement, velocity and acceleration 

Useful speed conversions:     
 
1 ms-1 = 2.24 miles per hour  
 
1 ms-1 = 3.6 km per hour 

Speed in 

mph 

Time in minutes 

per 10 miles 

10 60 

20 30 

30 20 

40 15 

50 12 

60 10 

70 8.57 
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Displacement is the vector between a fixed origin 
and the point of interest. If an object is moving, 
the displacement will vary with time t 

Velocity is the rate of change of displacement. If velocity is in 
the same direction as  
displacement, it is the gradient of a (t,x) graph. 

Acceleration is the rate of change of velocity. If acceleration is in 
the same direction as velocity, it is the gradient of a (t,v) graph. 



Constant acceleration motion 

It is almost always a good idea to start with a (t,v) graph.  
Let velocity increase at the same rate a from u to v in t seconds. 
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The area under the graph is the displacement.  
Since this a trapezium shape:  
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We can work out other useful relationships for constant acceleration motion 
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Trajectory equation 
An inverted parabola! 



The apogee of the trajectory is when vy=0 
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The speed v of the projectile is:  
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Since parabola is symmetric: 
When y = y0 , x = R 
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Vector and scalar quantities 

Vector quantities Units Scalar 
quantities 

Units 

Displacement   Mass 

Velocity Time 

Acceleration Speed 

Momentum Length 

Force 
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-1 -1ms , kmh
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A vector has both magnitude and direction. 
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Addition and scalar multiplication using vectors 

a +b = b +a

2 a a +a

a b

Vectors add ‘tip to tail’ 
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Components of a vector are with respect to a coordinate system 
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We often speak of ‘resolving’ a vector into 
components 
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The algebra of vectors is very similar to 
scalars. Except vector multiplication is 
very different. This will not be discussed 
in this course! 
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These are unit 
vectors in the x 
and y directions 
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Newton’s three laws of motion 

mass x acceleration = vector sum of forces 

‘inertia’ 

i
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If no net force,  acceleration is zero, which means velocity = constant 

constant  a 0 v

Newton’s First Law 

Newton’s Second Law 
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Resolving forces 
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Newton II: 
mass x acceleration = vector sum of forces 



Gravity & weight 

mg
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The force due to gravity upon a mass of m kg is mg where g is the gravitational field 
strength.  
 
Amazingly, ‘gravitational mass’ appears to be the same as the inertia in Newton II i.e. 
inertia x acceleration = vector sum of forces. Therefore gravitational field strength is the 
acceleration of a particle freely falling (i.e. where other forces such as drag are not acting). 

F

F

The gravitational force 
mg on a mass of m kg 
is called its weight. 
 
It is measured in Newtons. 
 
Therefore a 70kg man 
weighs 686.7N on Earth. 
 
g depends on the mass and 
radius of a planet 
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A weighty puss indeed.... 

gravitational field 
strength on the 
surface of the Earth 



R



Newton’s law of universal gravitation 
states that the gravitational field strength at a 
distance R from a spherical object is proportional to 
the mass contained within a sphere of radius R 
centred on the object and inversely proportional to R2 

Isaac Newton 
1643-1727 

If a planet has uniform density   34
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Particles & centre of mass 

A particle is an object which has mass (and forces can act upon it) but it has no 
extension. i.e. it is located at a point in space. If objects are rigid, we can ‘model 
them as particles’ since one can decompose motion into displacement of the 
centre of mass + rotation of an object about the centre of mass. 
 
The centre of mass is the point where the entire weight of the object can be 
balanced without causing a turning moment about this point. 
 
It can be found practically by hanging a 2D object from various positions and 
working out where the plumb lines intersect. 

Hang object from 
position A 
and draw on  
plumb line 

Hang object from 
position B 
and draw on another 
plumb line. Where the 
two plumb lines 
intersect is the centre of 
mass. 

Centre of mass A B 

A 



Centre of mass 

mg

The entire weight of a rigid object effectively acts upon its centre of mass. 
 
If rotation is ignored, we can model a rigid object as a particle  i.e. just consider the motion 
of the centre of mass 

mg

Particle model 
of rigid body 



Friction & Normal contact forces 
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By Newton’s Third Law, if you push 
against a surface with force R, the 
surface will push back at you with a 
force of the same magnitude, but in 
the opposite direction 

Contact forces can be usefully 
decomposed into normal contact 
(perpendicular to a surface) 
and friction (parallel to the surface), 
which always opposes motion. 
 
The normal contact force ‘acts’ at the 
point of intersection of a vertical 
‘plumb line’ from the centre of mass 
of the object. 

Models of friction & sliding 

centre of 
mass 

static

static

slide
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No sliding, and object is in static equilibrium 

v > 0 i.e. object is sliding 

Object is on the point of sliding – friction is ‘limiting’ 

Coefficients of friction. Typically <<1. We often assume  static slide
 

An ‘inclined 
plane’ 



Resolving forces and applying Newton’s Second Law 
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A mass of 10kg is being pulled up 
a rough slope by a tow rope 
which provides tension T 
 
It accelerates up the slope with 
acceleration a 

To calculate this we would need 
a model for the friction force F 
e.g.  
 
 

0.1F R

coefficient of friction 

Resolve parallel 
to x and y directions 



Air resistance & lift 

Lift 

Weight 

Drag Thrust 

v

If an aircraft has a constant airspeed then it is not 
accelerating. Therefore the vector sum of all forces must be zero 

At ‘modest speeds’ (i.e. several ms-1), both lift an drag forces are typically 
2v

21
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F c Av
Cross sectional area of 
aircraft perpendicular to 
velocity Density of air 

Drag coefficient 
Typically << 1 

At low speeds, drag 
is proportional to v 



Aerodynamics of a sportscar (and driver!) being analysed using a wind tunnel 



Elasticity  Elastic materials can be modelled by springs. Hooke’s law means the  
                                   restoring force due to a spring stretched by extension x is  
                                   proportional to the extension 

kx

mg

x

ll
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Unstretched 
spring 

a

By Newton II applied to the mass attached to the spring: 

ma mg kx 

F

x

F kx x
l


 

Hookes’ Law  
k is the spring 
constant, 
alternatively 
expressed in 
terms of an 
elastic modulus  

The work done by the restoring 
force, if ‘left to its own devices’ 
is called the elastic potential 
energy. This is the area under 
the (displacement, force) graph. 
Since triangular in shape for a 
‘Hookean spring’ : 
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Work 

F

x

F

The work done (i.e. energy transferred) 
by the application of force F parallel 
to displacement x is 

W F x 

Note there is no work done by any 
component of a force perpendicular to 
the displacement.  i.e. force R does no work. 

R

R

For varying forces, the work done 
is more generally the area under the 
(displacement, force) graph 
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x
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Conservation of energy 
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Kinetic* Elastic 
potential 
energy 

Gravitational 
potential energy 

Drag, friction etc 

*Not just movement of the centre of mass, in general we must include vibration, rotation etc 

extension 
of bungee 
cord 



A lorry is travelling a constant speed of 60 mph. If friction between the tyres and the 
road can be ignored at this speed, and internal losses such has heating etc can be 
ignored, the driving force of the engine is balanced by air resistance. If the cab has a 
cross section of 8 m2, estimate the engine power P. 
 
Since lorry is in equilibrium, driving force = air resistance 
 
 

Assume drag coefficient cD = 1, density of air  = 1kgm-3 
v = 60/2.34 = 25.64ms-1 
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Motion in a horizontal circle 

r

a

v

A particle moves around a circle of radius r 
at a constant speed v.  
 
Since the direction of the velocity changes constantly, 
the particle must be accelerating 

2 r
v

T


 Time taken for one 

complete revolution 

2v
a

r
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Centripetal 
acceleration – always 
towards the centre of 
the circle 

O 

centre of 
the circle 



What is the orbital speed of the Earth about the Sun, assuming a circular orbit? 
How does orbital radius and period vary? 
 

Assume a circular orbit (ellipses are more accurate, but circular orbits are a good 
approximation for many planets in the solar system) 
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Let the Earth be mass m and the Sun 
mass M 

M = 2 x 1030 kg 
G = 6.67 x 10-11 m3 kg-1s-2 

T = 365 days = 3.154 x107s 
 
r = 150 million km 
v = 29.8 kms-1 

r

v

M
m

r̂Newton II in the radial direction: 

mass x acceleration 

Newton’s 
model of 
gravitational 
force 
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 Kepler’s Third Law 



The Solar System 
 
Orbits of the planets are ellipses 
i.e. ‘squashed circles’ 

Johannes Kepler 
1571-1630 
 



1AUa 
Kepler’s Third Law of planetary motion relates the 
‘radius’* of the orbit to the time taken to complete the 
orbit (the period) 
 
 
*since the orbits are ellipses, the orbital radius is 
not constant. a is actually the ‘semi-major axis’ 
of the ellipse. 
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Radii of planets not to scale! 

Mercury, 
Venus, 
Earth, 
Mars 

Jupiter 

Saturn 

Uranus 

Neptune 



Conservation of momentum and collisions 

Example 1:  Find the mass M, and then 
calculate the amount of kinetic energy lost 
in the collision.  

-12ms -12ms

+ve 

M 1kg

BEFORE 

-11ms
-13ms

M

AFTER 

By conservation of momentum 

2 2 3

5kg

M M

M
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Note the coefficient of 
restitution is C = 0.5 in 
this case. 

The amount of kinetic energy lost is 
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Momentum is a vector quantity 

mp v

Total momentum is conserved 
in collisions 

i.e. each mass receives an equal 
magnitude but opposite signed impulse 
which is a change in momentum 

speed of separation

speed of approach
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1kg

C = 1    ELASTIC          C = 0    INELASTIC 



Example 2:  Find the velocities post-collision 
Assume the collision is elastic. Masses are in kg and velocities in ms-1.  
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By conservation of momentum 
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Since collision is elastic i.e. C = 1 
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Subtracting these equations eliminates v2 
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Frames of reference are essentially coordinate systems used to describe the motion 
of an object. It is useful to be able to transform between different frames of reference 
to get a change in perspective. For example, how does the motion of a ball thrown on a moving train 
differ from (i) the person throwing the ball; (ii) a stationary observer watching the rain pass by? 
 
When objects move close to the speed of light, the rules of converting between frames of 
reference become more complicated. This is called Special Relativity, developed by Albert Einstein. 
We will consider the modest speed version, which is often called ‘Galilean Relativity’ after the great 
Renaissance Physicist Galileo. One major difference is that time passes at the same rate in the latter, 
regardless how fast a reference frame is moving relative to another. 
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What is the position and velocity of the ball from the 
perspective of the two frames of reference? 
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The effect of an accelerating frame of reference  (these are called ‘non inertial frames’) 
 
If you are in an accelerating reference frame, you will experience a force with magnitude 
equal to the acceleration of the frame x your mass. This is because the frame is accelerating 
away from you, so, relative to the frame, you will experience a mass x acceleration in the 
opposite direction. 

a

ma

This explains why you 
get pushed into your 
seat when a car 
accelerates forward, and 
why you get thrown 
forward when a car 
breaks. (Which is why we 
use seat belts!) 


