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Newton’s laws of motion: 

I Unless acted upon by an external force, the center of mass of an object will continue to move at constant velocity. 

This is a special case of Newton II where there is zero vector sum of force. 

II mass   acceleration = vector sum of force.    i
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Forces are measured in Newtons (N), which in SI units are: 
21N 1kgms .  

III Force all contact forces, “for every action there is an equal and opposite reaction.” i.e. if body A is in contact with 

body B and exerts a force upon it, the force upon A due to B is equal in magnitude and opposite in direction. 

Systems involving objects in contact can be treated as (i) a whole system from a Newton II sense, and (ii) look at the 

component parts and use Newton III to relate the contact forces. e.g. trains and carriages, cars and trailers with tow bars… 

Systems of pulleys can often be modelled as having light, frictionless pulleys, connected by light inextensible string. To 

solve these systems, relate the accelerations of any masses, assuming the string doesn’t stretch.  

The force of gravity is weight. For an object of mass m  the weight is: mW g . On the Earth’s surface, g  acts towards 

the center of the Earth with strength 
19.81Nkgg  .  Outside a spherical body of mass M   (e.g. planet, star etc)
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r
  where r  is the distance to the center of mass of the body, and the Universal Gravitational Constant is: 

11 3 -2 -16.67 10 m s kgG   . Electrical forces between (static) charges work in a similar inverse-square way. However, 

unlike gravity (where mass is always positive, and all masses attract each other), charges can have both signs, and opposite 

charges attract, alike charges repel. e.g. electrons are negatively charged, and will be attracted to positively charged 

protons, but protons will repel protons, and electrons will repel electrons. 

Frictional forces: An object won’t slide if the friction force F R  where R  is the normal contact force and   is the 

coefficient of friction between the object and the surface that it is in contact with. When it does slide, the friction force is 

DF R . The ‘dynamic’ coefficient of friction should be similar to  , but may change in certain scenarios (e.g. ice 

skating, when a surface heats up during sliding).   

Drag forces are typically of the form 
21

2 DF c Av  where Dc  is the drag coefficient,  is the density of fluid (e.g. air, 

water), A  is the cross sectional area of the moving body, and v  is its speed. For low velocity drag, especially involving 

viscous forces, F v . Viscous drag (‘Stokes’ drag’) on a sphere of radius r   is given by 6F rv where   is the 

dynamic viscosity.    

If an object is immersed in a fluid, the upthrust on it (Archimedes’ principle) is equal to the weight of fluid displaced. 

 

Question 1    (In all questions, take 
19.81Nkgg   unless otherwise stated) 

(i) A car of mass 2000kg accelerates at 1.2m/s
2
.  Calculate the driving force on the car, if the total resistive forces 

sum to 600N. 

(ii) The four winds blow upon the ancient Macedonean meteorologist Andronicus of Cyrrhus (mass 90kg). Boreas 

blows with 30N from the North, Zephryos blows with 60N from the West, Notus blows with 50N from the 

South and Eurus blows with 42N from the East. Calculate the magnitude and direction (in terms of an angle 

clockwise from North) of the acceleration of Andronicus. 



(iii) Jennifer Bond escapes from a burning airplane and deploys a parachute. Her total mass is 65kg and she falls 

through air of density 
-31.23kgm  . If the drag coefficient is 0.8Dc   and her desired terminal speed is 

4.00m/s, calculate the radius of her (circular cross section) parachute (in m). 

(iv) A large suitcase (mass 30kg) slides down a metal ramp in Heathrow airport. The coefficient of friction is   

and the dynamic version is the same.  The suitcase slides with acceleration 6.0m/s
2
 when the slope angle is 

45
o
. Calculate  . Ignore air resistance. 

(v) A tractor of mass 11,000kg pulls a trailer of mass 21,000kg. They are connected by a rigid metal rod. Both the 

tractor and the trailer experience a resistive force equal to 10% of their weight. Both the tractor and the trailer 

accelerate at 3.14m/s
2
. (a) Calculate the driving force of the tractor. (b) Calculate the tension in the metal rod. 

(vi) A 1.23kg mass is connected to mass m  via a single frictionless, light pulley via a light inextensible string. 

Calculate mass m  if it accelerates downwards at 1
10

g , and the tension (in N) in the string. 

(vii) A locomotive of mass M  provides a net force to itself and the N  carriages (each of mass m ).  The 

acceleration of the whole train (which moves as a single rigid object) is a . Show that the force of the 

carriages on the locomotive is: 1f Nma . Hence show that the tension in the cable pulling the 
thn carriage is 

 1nf N n ma   .  If the locomotive has a mass of 110,000kgM   and each of the thirty carriages 

has a mass of 131,000kg, what is the required driving force if the whole train accelerates at 0.1m/s
2
? 

(viii) A uniform solid plastic sphere of density 920kg/m
3
 and radius 5cm is immersed in glycerol of density 1260 

kg/m
3
. Calculate the acceleration of the sphere if it rises at speed 0.5m/s. The dynamic viscosity of glycerol is 

-21.07Nsm  . Also calculate the magnitudes of the forces acting on the sphere: (i) weight; (ii) upthrust; 

(iii) viscous drag. Ignore any ‘kinematic drag’ proportional to the square of speed.
1
 

(ix) Calculate the mass of the Earth (in kg), given it is approximately spherical with a radius of 6371km. 

(x) Rather than enter orbit, a spacecraft of mass 100,000kg wishes to maintain its position and watch the Earth 

rotate, i.e. the spacecraft is stationary relative to the center of mass of the Earth. Calculate the distance from 

the surface of the Earth, in Earth radii, if the spacecraft engines provide a thrust of 4.0kN. 

Question 2 A mass of 123kg is to be dragged up a slope of 30
o
 via a pulley system. If the coefficient of friction is 

0.2  , the mass accelerates uniformly from rest, and the mass travels 22m up the slope in 6.0s, 

calculate the mass m  (in kg) on the end of the pulley, which drops vertically without resistance. 

 

Question 3      Consider the idealized pulley system on the right:  

(a) Show that: 
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(b) Sketch graphs of a and T   vs m M .    

 

 

Question 4    The following ‘Atwood machine’ is problem 3.27 in Morin’s Introduction to Classical Mechanics.  

Show that: 

 54 1
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1
 This would probably be more important than the viscous drag as the sphere rises faster. 



Question 5     

The following ‘Atwood machine’ is problem 3.29 in Morin’s Introduction to Classical Mechanics.  

Show that: 1a   31 1
1 2 35 5 5

, ,a g a g a g    and that the string tension is 6
5

T mg .  

 

Question 6 A skier of mass 100kg is sliding downhill on a slope of elevation 30
o
. The coefficient 

of friction with the slope is 0.05.    

(a)  Calculate the acceleration (in m/s
2
) down the slope, if air resistance can be ignored.  

The skier then deploys a parachute at an angle of 42
o
 to the slope.  

(b)  Calculate the parachute force on the skier resulting from the parachute which results in dynamic equilibrium, with 

friction acting uphill. i.e. the skier is sliding downhill at constant velocity. 

(c)  Calculate the parachute force on the skier such that the skier is in dynamic equilibrium, but the friction force acts 

downhill. Note this means the skier slides uphill, and an uphill gust of wind provides the force! 

(d)  What will be the instantaneous acceleration uphill, if the parachute force is 900N, but the skier is sliding downhill? 

Question 7 During a mountain rescue operation, a sled is dragged up a 40
o
 slope with coefficient of friction 0.5  , 

at constant speed, using a rope, inclined at 30
o
 to the slope, providing a constant tension of 700N. Calculate the mass of the 

sled (in kg). What is the minimum mass such that the sled starts to accelerate down the slope? 

Question 8 A projectile is launched radially at speed u  from the surface of an atmosphere-free spherical planet of 

radius R  and uniform density  .  Using the calculus trick dv dt vdv dx  where x  is displacement and velocity 

v dx dt , show that the velocity v  at distance x  from the surface of the planet is:  2 28
3
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Hence show that 8
3E

u G R  represents the escape velocity, i.e. when x , the projectile is still moving away from 

the planet if .
E

u u  Assume the only force acting on the projectile is the gravitational attraction of the planet. 

If the escape velocity is the speed of light 
8 -12.998 10 msc   , show that 
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  , where M  is the 

mass of the planet. (This is called the Schwarzschild radius, and has the same mathematical expression as the event horizon 

of a Black Hole, obtained using General Relativity!). Calculate the radius of a Black Hole with 
-31000kgm  .   

Question 9 ** This question requires some computer programming, or spreadsheet construction. ** 

If the atmosphere is of constant temperature
2
, the density   of air varies (approximately) with altitude h  as 

/

0

h He  

where 
3

0 1.225kgm   and 10,400mH  . A skydiver of mass m   100kg falls from rest from 0h   10km. The 

cross-sectional area of the skydiver is A   2.0m
2
 and the drag coefficient is 0.4Dc  . Use Newton II: 

21
2 Dma mg c Av    and the following Verlet method with a fixed time step of 0.1st   to compute (and plot) 

displacement, velocity and acceleration until the skydiver is 2.0km from the ground. (At this point a parachute is deployed). 

The Verlet iterative method (which uses the idea of constant acceleration motion between small, fixed, time steps) is: 
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Investigate how large A  must be when the parachute is deployed, in order to achieve a landing speed of about 5.0m/s. This 

means continuing the simulation until 0nh  , but with a larger A  when 2.0kmh  .   
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 Depending which layer you are referring to, there is a lapse rate in the atmosphere. In the troposphere, temperature 

reduces between 5 and 10 degrees every km in altitude. The lower limit is for more humid air, the upper limit for dry air.  

For a more realistic model, increase 

A  in a linear fashion over a set 

deployment time such as 10s. 


