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Fresnel Equations

Alexander I. Lvovsky
Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada

Abstract
The Fresnel equations, which determine the reflection and transmission of light incident on an 
interface of two media with different indices of refraction, are among the most fundamental find-
ings of classical optics. This entry offers a detailed derivation of the equations and discusses some 
of their major consequences (in particular, Brewster effect, total internal reflection, and the Goos-
Hänchen shift), as well as applications both in everyday optics and in specialized equipment.

Introduction

The Fresnel equations relate the amplitudes, phases, and 
polarizations of the transmitted and reflected waves that 
emerge when light enters an interface between two trans-
parent media with different indices of refraction, to the cor-
responding parameters of the incident waves. These 
equations were derived by Augustin-Jean Fresnel in 1823 
as a part of his comprehensive wave theory of light. How-
ever, the Fresnel equations are fully consistent with the rig-
orous treatment of light in the framework of Maxwell 
equations.

The Fresnel equations are among the most fundamental 
findings of classical optics. Because they describe the 
behavior of light at optical surfaces, they are relevant to 
virtually all fields of optical design: lens design, imaging, 
lasers, optical communication, spectroscopy, and hologra-
phy. Good understanding of the principles behind Fresnel 
equations is necessary in designing optical coatings and 
Fabry-Perot interferometers.

This entry begins with a detailed derivation of the 
Fresnel equations based on Snell’s law and the boundary 
relations for the electric and magnetic fields at an interface 
between two media with different electromagnetic proper-
ties. We then proceed to discuss the primary consequences 
of these equations, such as intensity reflectivities and 
Brewster’s effect. The final section of the entry is dedicated 
to numerous applications of the Fresnel equations.

Derivation

To derive the Fresnel equations, consider two optical 
media separated by an interface, as shown in Fig. 1. A 
plane optical wave is propagating toward the interface with 
wave vector ki oriented at angle θ

i
 with respect to the inter-

face normal. The electric field amplitude of the wave is 
given by E

i
.

On incidence onto the interface, this wave will be par-
tially transmitted and partially reflected. The transmitted 

wave will propagate at angle θ
t
 which is determined by 

Snell’s law:

sin

sin

θ
θ

i

t

n

n
= 2

1

� (1)

where n
1
 and n

2
 are the refractive indices of the two media. 

The angle θ
r
 of the reflected wave is equal to θ

i
 according 

to the law of reflection. We denote the amplitudes of these 
two waves as E

t
 and E

r
, respectively. Our goal is to deter-

mine these amplitudes.
To accomplish this, we apply the boundary conditions 

for the electric and magnetic fields at an interface between 
two media with different electromagnetic properties, which 
are known from electrostatics. Specifically, the components 
of the electric field E and magnetic field H, which are tan-
gent to the surface, must be continuous across the boundary.

Because the electromagnetic wave is transverse, the field 
incident onto the interface can be decomposed into two 
polarization components, one P-polarized, i.e., with the elec-
tric field vector inside the plane of incidence, and the other 
one S-polarized, i.e., orthogonal to that plane. (Under the 
plane of incidence, we understand the plane that is formed 
by the vector ki and the normal to the interface.) We will 
derive the Fresnel equations for these two cases separately.

We begin by concentrating on the case when the inci-
dent wave is P-polarized (Fig. 1). Due to symmetry, the 
transmitted and reflected waves will have the same polari-
zation. Because the E, H, and k vectors must form a right-
handed triad for each of the waves, the directions of all 
field vectors are uniquely defined up to a sign convention, 
which is chosen as illustrated in Fig. 1. The boundary con-
dition for the electric field then becomes:

E E Ei i r i t tcos cos cosθ θ θ+ = � (2)

For the magnetic field, which is collinear in all three waves, 
this condition takes the form:

H H Hi r t− = � (3)
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2� Fresnel Equations

tS =
n i2 1 1( / ) cosµ θ

n ni t+1 1 2 2( / ) cos ( / ) cosµ θ µ θ
� (13)

Eqs. 7 and 8, as well as Eqs. 12 and 13 present Fresnel 
equations in their general form, which is also valid for 
materials with negative indices of refraction (also known as 
metamaterials or left-handed materials). When applying 
these equations to such materials, absolute values of the 
refractive indices must be used.[1–3]

Most commonly used optical materials are non-
magnetic, so one can approximate μ

1
 = μ

2
 = μ

0
. Under this 

approximation, the permeabilities in Eqs. 7, 8, 12, and 13 
cancel, and the Fresnel equations can be further simplified 
by incorporating Snell’s law:

rP
i t

i t

= −
−
+

tan( )

tan( )

θ θ
θ θ

� (14)

tP
t i

i t i t

=
+ −

2sin cos

sin( ) cos( )

θ θ
θ θ θ θ

� (15)

rS
i t

i t

= −
−
+

sin( )

sin( )

θ θ
θ θ

� (16)

tS
t i

i t

=
+

2sin cos

sin( )

θ θ
θ θ

� (17)

We now proceed toward discussing the main consequences 
of the Fresnel equations.

Consequences and Special Cases

Intensity Reflectivity and Transmissivity

For most practical purposes, the reflection and transmission 
coefficients for the intensity, rather than field amplitudes, 
are of interest. For a wave of amplitude E propagating in a 
non-magnetic medium with the refractive index n, we have:

I nc E= 2 0
2ε � (18)

where c is the speed of light in vacuum and ε
0
 is the electric 

constant. Because the incident and reflected waves propagate 

To solve these equations, we need to incorporate the rela-
tion between the electric and magnetic field amplitudes for 
each wave. We know from Maxwell equations that these 
amplitudes in any plane electromagnetic wave must satisfy

H Eε
μ= � (4)

where ε and μ are the electric permittivity and magnetic 
permeability, respectively, of the material in which the 
wave propagates. Since the index of refraction of a material 

is given by n c= εμ, we have:

H n E ci r i, /= 1 1µ  and H n E ct t= 2 2/µ � (5)

and thus, from Eq. (3),

n E E n Ei r t1 1 2 2( )/ /− =µ µ � (6)

Combining Eqs. 2 and 6, we arrive at the Fresnel equations 
for the P-polarized wave:

r
n n

n nP
t i

t i

=
−
+

( / ) cos ( / ) cos

( / ) cos ( / ) cos
1 1 2 2

1 1 2 2

µ θ µ θ
µ θ µ θ

� (7)

tP =
n i2 1 1( / ) cosµ θ

n nt i+1 1 2 2( / ) cos ( / ) cosµ θ µ θ
� (8)

where we defined the amplitude reflection and transmis-
sion coefficients:

r
E

E
r

i

=  and t
E

E
t

i

= � (9)

In the case of S polarization (Fig. 2), in much the same 
way, we write the boundary conditions as

E E Ei r t+ = � (10)

− + = −H H Hi i r i t tcos cos cosθ θ θ � (11)

from which we derive the second pair of Fresnel equations:

r
n n

n nS
i t

i t

=
−
+

( / ) cos ( / ) cos

( / ) cos ( / ) cos
1 1 2 2

1 1 2 2

µ θ µ θ
µ θ µ θ

� (12)

Interface

Normal

Incident wave Reflected wave

iE

iH

ik

rE
rk

rH

tE
tk
tH

Transmitted wave

Medium 1
Medium 2

x
z

i r

t

Fig. 1  Field vectors of the incident, transmitted, and reflected 
waves in case the electric field vectors lie within the plane of 
incidence (P polarization).

Normal

Incident wave Reflected wave

iE

iH
ik

rE rk

rH

tE

tktH
Transmitted wave

x
z

i r

t

Fig. 2  Field vectors of the incident, transmitted, and reflected 
waves in case the electric field vectors are perpendicular to the 
plane of incidence (S polarization).

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
ga

ry
],

 [
A

le
xa

nd
er

 L
vo

vs
ky

] 
at

 1
1:

24
 2

2 
A

ug
us

t 2
01

3 



Fresnel Equations� 3

waves are physically identical and have the same reflectivity 
of about 4%. At an incidence angle of θ

i
 = 90°, all of the 

incident light is reflected, so the interface acts as a mirror.

Brewster’s Effect

By analyzing Eq. 20 and Fig. 3, we observe that the reflectiv-
ity for the wave polarized in the plane of incidence vanishes 
when θ

i
 + θ

t
 = 90°, so the denominator in the right-hand side 

of Eq. 20 becomes infinite. At this point, all incident light 
that is polarized parallel to the plane of incidence is transmit-
ted. If the incident wave has both polarization components 
(or its polarization is random), the reflected wave is com-
pletely S-polarized.

The value of the angle of incidence at which this occurs 
is known as Brewster’s angle θ

B
. 

Writing Snell’s law at Brewster’s angle:

n n n nB t B B1 2 2 22
sin sin sin ) cosθ θ

π
θ θ= = − =( � (25)

we find an explicit expression for that angle:

tanθB
2

1

n
n

= � (26)

which is referred to as Brewster’s law.
Brewster’s law may be understood by the following 

intuitive argument (Fig. 4). Consider an interface between 
vacuum and glass. The reflected wave is generated by ele-
mentary molecular dipoles inside the glass that are excited 
by the transmitted wave. These oscillations are parallel to 
the electric field in this wave. But when the transmitted and 
reflected wave vectors are directed at a right angle to each 
other, the electric field in the transmitted P-polarized wave, 
and hence the elementary dipoles inside the glass, oscillate 
parallel to kr. Hence, the dipoles would have to excite a 
wave propagating in the same direction as the direction of 
their oscillation, and this is impossible because the electro-
magnetic wave is transverse.

Phase of the Reflected Wave

For the direction of the incident wave close to normal, we 
find the amplitude reflectivities (Eqs. 14 and 16) to be nega-
tive if n

1
 < n

2
  (if the sign convention of Figs. 1 and 2 is used). 

in the same medium, we can write for the intensity reflection 
coefficient:

R
E

E
rr

i

= =
2

2
2� (19)

and thus,

RP
i t

i t

=
−

+

( )

tan

tan

( )2

θ θ

θ θ

2

� (20)

RS
i t

i t

=
−
+

sin ( )

sin ( )

2

2

θ θ
θ θ

� (21)

From these, we obtain intensity transmissivities as follows:

2 2

4sin sin cos cos
1

sin ( )cos ( )
i t i t

P P
i t i t

T R= − =
+ −

θ θ θ θ
θ θ θ θ

� (22)

2

4sin sin cos cos
1

sin ( )
i t i t

S S
i t

T R= − =
+

θ θ θ θ
θ θ

� (23)

Note that, in contrast to the reflection coefficient, the inten-
sity transmissivity is not simply the square of the amplitude 
transmissivity, as two additional factors must be taken into 
account. First, one must account for the refractive index of 
the propagation medium, which enters the expression for 
the intensity (Eq. 18). Second, the intensity is calculated 
per unit of the wavefront area, and the wavefronts of the 
incident and transmitted wave are tilted with respect to the 
interface at different angles θ

i
 and θ

t
, respectively. There-

fore, the intensity transmissivity is given by

T
n

n

E

E

n

n
t

i

t

i

t

i

= =2

1

2

2
2

1

cos

cos

cos

cos

θ
θ

θ
θ

t 2� (24)

A graph of the reflectivities (Eqs. 20, 21) for the vacuum–
glass interface as a function of the angle of incidence is illus-
trated in Fig. 3. At normal incidence, the S- and P-polarized 

Fig. 3  Intensity reflectivities of the S- and P-polarization 
components at the interface of vacuum and glass with the index 
of refraction of 1.5.

Fig. 4  Reflection and transmission at Brewster’s angle. The 
arrows correspond to the electric field vectors.
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4� Fresnel Equations

This implies that the phase of the wave shifts by 180° when 
reflection from a medium with a higher index of refraction 
occurs. For the S-polarization case, the amplitude reflectiv-
ity has the same sign for all incidence angles; for the 
P-polarization, it changes sign when the angle of incidence 
exceeds Brewster’s angle.

Because the amplitude transmission coefficients are 
always positive, the transmitted wave does not experience 
any phase shift with respect to the incident wave.

Total Internal Reflection

Another phenomenon that can be derived from examining 
the Fresnel equations is the phase shift of the wave that has 
undergone total internal reflection. Total internal reflec-
tion occurs when n

1
 > n

2
 and  (n

1
/n

2
)sin θ

i
 > 1; thus, Snell’s 

law cannot hold. The result is that the incident wave is 
totally reflected and the transmitted wave is of evanescent 
rather than plane wave character. Since the behavior of the 
evanescent wave is largely counterintuitive, it is instruc-
tive to briefly summarize its properties before proceeding 
to modify the Fresnel equations for situations involving 
such waves.

The spatiotemporal behavior of the electric field in this 
wave can be written as

E r t E e c.c.t
ik r i tt( ,   ) = +⋅ − ω � (27)

where ω is the angular frequency, kt is the wave vector, and 
c.c. refers to the complex conjugate term. The component 
of the wave vector that is parallel to the interface must be 
the same for the incident and transmitted waves: 
( ) ( ) ( / ) sink k c nt x i x i= = ω θ1 . Since the evanescent wave must 
comply with the wave equation:

∇ =2
2
2 2E r t n c E r t( , ) ( / ) ( , )¨ � (28)

we find that ( ) ( ) /k k n ct x t z
2 2

2
2 2 2+ = ω ; thus, the component of 

the transmitted wave vector that is normal to the interface 
is imaginary:

( ) sink i c n nt z i= −
ω

θ1
2 2

2
2 � (29)

This is not surprising because substituting an imaginary 
(k

t
)

z
 into Eq. 27, we obtain a wave that decays exponen-

tially with the distance from the interface, as expected from 
an evanescent wave. We thus find,

n c S iC= 2 0
ω
( , , )kt � (30)

where S = (n
1
/n

2
) sin θ

i
 and

C S= −2 1� (31)

Knowing the wave vector components, we can determine 
the components of the electric field amplitude vector in the 
transmitted wave using Gauss’s law ∇⋅ =E r t( , ) 0, which 

we rewrite using Eq. 27 as k Et t⋅ = 0. Accordingly, we find 
that

E E C iSt t= − −( , , )0 � (32)

for the P-polarization case (where we assumed, as previ-
ously, that the x-component of the transmitted electric field 
vector is real and negative) and

E Et t= (0, 1, 0)� (33)

for the S-polarization.
Now by applying Faraday’s law ∇× = −E r t H r t( , ) ( , )μ

⋅
 

to Eq. 27, we find for the electric and magnetic field ampli-
tudes of the transmitted wave:

E Ht t× = μωk � (34)

and thus,

H E
n

c
it t= 2

2

0 0
µ

( , , )� (35)

for the P-polarization case and

H E
n
c

iC St t= −2

2
0µ ( , , )� (36)

for the S-polarization. Note that Eq. 4, which we used for 
plane waves, is not applicable to evanescent waves.

Equalizing the x- and y-components of the electric and 
magnetic field amplitudes above and below the surface, we 
obtain the Fresnel equations for the case of total internal 
reflection:

r
n i n n n

n i n
P

ii

i

= −
− −

+

( / ) cos ( / ) sin

( / ) cos ( /

2
2

2 1 1 1
2 2

2
2

2
2

2 1

µ θ µ θ

µ θ µµ θ1 1
2 2

2
2) sinn ni −

� (37)

r
n i n n

n i n
S

ii

i

=
− −

+

( / ) cos ( / ) sin

( / ) cos ( / ) s

1 1 2 1
2 2

2
2

1 1 2 1
2

µ θ µ θ

µ θ µ iin2
2
2θi n−

� (38)

These results can be interpreted as follows. In the case of 
regular refraction, the z-component of the transmitted wave 
vector equals

( ) ( / ) cos ( / ) sink n c n c
n

n
t z it= = −2 2

1
2

2
2

21ω θ ω θ � (39)

For total internal reflection, this component becomes com-
plex, so one can formally write:

cos sinθ θit iC i
n

n
= = −1

2

2
2

2 1� (40)

Substituting this expression into Eqs. 7 and 12, one obtains 
Eqs. 37 and 38, respectively.
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Fresnel Equations� 5

The absolute values of the numerators and denomina-
tors of Eqs. 37 and 38 are equal; thus we find for total inter-
nal reflection, that R

P
 = R

S
 = 1, in accordance with Eq. 19. 

On the other hand, the amplitude reflectivity being a com-
plex number implies that the reflected wave experiences an 
optical phase shift with respect to the incident wave, which 
is given by

tan
sin

cos

δ π µ
µ

θ
θ

P i

i

n n n

n

−
= −

−
2

2

1

1 1
2 2

2
2

2
2

� (41)

tan
sin

cos

δ µ
µ

θ
θ

S i

i

n n

n2
1

2

1
2 2

2
2

1

= −
−

� (42)

with the zero phase corresponding to the vector orienta-
tions defined in Figs. 1 and 2. We see that these phase 
shifts are different for the S- and P-polarized waves. In 
other words, a linearly polarized wave will generally be 
elliptically polarized after it has experienced total internal 
reflection.

If medium 2 is a metamaterial, the associated phase 
shifts are opposite with respect to those obtained in reflec-
tion from a right-handed material with the same magni-
tudes of n

2
 and μ

2
.[2,3]

Goos-Hänchen shift

An important consequence of the phase shift associated 
with the total internal reflection is the spatial displacement 
experienced by an optical beam undergoing such reflec-
tion, known as the Goos-Hänchen shift (Fig. 5).[4] This phe-
nomenon can be understood by analyzing the spatial 
distribution of the incident field amplitude in the interface 
plane, E xi ( ) and its Fourier transform over x, given by 
E kx( ), such that

E x E kx eik xx( ) ( )=
−∞

+∞

∫ kxd � (43)

(where we neglect the dependence of the field on y, which 
plays no role in this argument). In other words, we consider 
the incident field as a sum of infinitely many plane waves, 
each having a slightly different x component of its wave 
vector, and hence, a slightly different angle of propagation 
θ

i
(k

x
) = arcsin(k

x
/k

i
). Accordingly, in total internal reflec-

tion, each of these plane waves experiences a different 
phase shift, which can be decomposed into the first-order 
Taylor series as

δ δ
δ

( ) ( )
( )

( )k k
d k

dk
k kx x

x

x k

x x

x

≈ + − 00

0

� (44)

where k
x0

 corresponds to the direction of the incident 
beam axis. Eq. 44 is valid if the beam diameter greatly 
exceeds the wavelength; thus, the relevant range of val-
ues of Δk

x
 is small. For the reflected wave, we then 

obtain:

E x E k e k

e E k e

r x
i k x k

x

i k
x

ik x

x x

xx

( ) ( )

( )

( )

( ) (

=

≈

+[ ]

−∞

+∞

+

δ

δδ

d

d0 // )

( )

d d

d

d

k
x

i k
i

x

x

x

k

e E x
k

−∞

+∞

= +⎛
⎜
⎝

⎞
⎟
⎠

δ δ
0

∫

∫

� (45)

Neglecting the constant phase factor, we find that the 
reflected wave is spatially displaced with respect to the 
incident one. The lateral displacement of the reflected 
beam is then obtained as (Fig. 5):

d kx i= −d dδ θ/ cos � (46)

Substituting Eqs. 41 and 42 into the foregoing result and 
keeping in mind that k

x
 = k

i
 sin θ

i
 , we find the expressions for 

the Goos-Hänchen shift in the two polarizations.[2,3]

2
2 1
2

1 21

12
P

n
d

k n
=

×

µ
µ 2

2 2
2
1

sin i
n

n
−θ

4 2 2
2 22 1 2

2
21 1

cos sini i
n n

n n

     + −   
    

2
2
2
1

1 sin i
n

n

 
− 

 
θ

µ θ θ
µ

� (47)

2
2
2
1

2
2 2 21 1 2 2 2 222

2 2
1 1 1

1 sin
2

cos sin sin

i

S

i i i

n

n
d

k n n

n n

 
− 

 
=

   + − − 
  

θ
µ
µ µ θ θ θ

µ

� (48)

where k
1
 = ω n

1
/c. As seen from the foregoing equations, at 

incidence angles that are significantly larger than the criti-
cal angle, the Goos-Hänchen shift is on a scale of the opti-
cal wavelength. For right-handed materials, it is always in 
the positive x direction. This can be visualized using the 
ray picture of light: in total internal reflection, the incident 
rays bounce not off the interface, but slightly below the 

d

x
z

i

Fig. 5  Good-Hänchen effect (the totally internally reflected 
beam undergoes a spatial dislocation shift by a small distance d 
with respect to the position of its specular reflection, illustrated 
by dashed lines).
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6� Fresnel Equations

interface, accounting for the existence of the evanescent 
wave. However, if medium 2 is a metamaterial, the Goos-
Hänchen shift is in the negative x direction due to counter-
intuitive direction of refraction in metamaterials.[2,3]

Applications

One of the primary consequences of the Fresnel equations 
is that any interface between transparent optical media 
results in a significant fraction of the light being reflected. 
This is particularly important for complex lens systems 
such as microscope, telescope, and camera objectives. 
Given that the spurious reflectivity at a single glass–air 
interface is 4%, a system of 8 optical elements will suffer 
from about 50% loss due to Fresnel reflections.

To avoid these losses, antireflection coatings are com-
monly used in lens systems. In fiber optics, an alternative 
solution is offered by index-matching materials: liquid or 
gel substances whose index of refraction approximates that 
of the fiber core. Placing an index-matching fluid in fiber 
connectors and mechanical splices greatly reduces Fresnel 
reflection at the surfaces and thus decreases the power loss.

Brewster’s effect is extensively used in photography. 
Unpolarized light, incident on a building window or water 
surface, becomes largely S-polarized after reflection. 
Dependent on the orientation of a polarizing filter in front 
of the camera, the amount of the reflected light can be reg-
ulated. In particular, aligning this filter to transmit only the 
P polarization permits taking pictures of objects beneath 
the surface or behind the window.

Polarizing sunglasses provide another example of prac-
tical application of Brewster’s effect. These sunglasses are 
designed to block horizontal polarization, which helps 
reducing glare from horizontal objects such as water or 
road surfaces.

A further application of Brewster’s effect is found in laser 
physics, specifically in gas laser design. The end windows of 
laser tubes are routinely manufactured to be oriented at the 
Brewster angle with respect to the cavity mode, with an aim 
to eliminate reflection losses in the P-polarization. In this 
way, a stronger gain per cavity roundtrip can be achieved for 
one of the polarization components while reducing the gain 
for the other. This helps in obtaining strong emission in a 
single polarization mode.

An interesting application of Fresnel equations was pro-
posed by Fresnel himself. As mentioned earlier, total inter-
nal reflection causes different phase shifts to the S-  and 
P-polarized components of the incident wave. Fresnel used 
this phenomenon to design an optical element that converts 
light polarization from linear into circular. This is accom-
plished by means of two total internal reflections in a paral-
lelepiped prism, as illustrated in Fig. 6. For a prism made 
of glass with a refractive index of 1.5, an internal reflection 
angle of incidence of 54.6° can be used. It should be noted 
that at present, polarization transformations in free space 
are typically performed by birefringent waveplates rather 
than the Fresnel rhomb. This is because waveplates are 
more compact and do not distort the beam position.

Conclusion

We have derived the Fresnel equations from the first princi-
ples of wave optics. Subsequently, we discussed the conse-
quences of these equations, such as the Brewster effect and 
the optical phase shift in partial and total internal reflection. 
Finally, we discussed a few applications of the Fresnel 
equations and the related effects in optical design.

Historical notes

Augustin-Jean Fresnel (1788–1827) is one of the found-
ing fathers of the wave theory of light. In response to an 
1818 competition held by the French Academy of Sci-
ences, Fresnel wrote a memoir describing diffraction as a 
wave phenomenon. Although the corpuscular (Newto-
nian) concept of light was universally accepted at that 
time, Fresnel’s theory received immediate experimental 
confirmation, thus revolutionizing contemporary optical 
science. In 1823, Fresnel was unanimously elected a 
member of the Academy, and in 1825 he became a mem-
ber of the Royal Society of London. At that time, Fresnel 
developed his theory based on the theory of elastic ether. 
In 1827, the Royal Society of London awarded him the 
Rumford Medal.

Sir David Brewster (1781–1868) is mostly remembered 
for his invention of the kaleidoscope and optical improve-
ments of the microscope. However, his main experiments 
were on the theory of light and its uses. His first paper, 
“Some Properties of Light,” was published in 1813. 
Brewster’s Law was named after him in 1814 when he 
made measurements on the angle of maximum polarization 
using biaxial crystals. He was awarded all three of the prin-
cipal medals of the Royal Society for his optical research 
(Copley medal, 1815; Rumford medal, 1818; Royal medal, 
1830). He was also knighted in 1831.
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Fig. 6  Fresnel rhomb.
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