
Gravity 
& orbits  
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Isaac Newton 
(1642-1727) developed 
a mathematical model of 
Gravity which predicted the 
elliptical orbits proposed by 
Kepler 
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Force of 
gravity 

Planet and Solar 
masses 

Eccentricity of 
ellipse 

Orbital 
period P 

Polar 
equation 
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since Sun at left 
focus in this case 
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Eccentricity of 
ellipse 

Orbital 
period P 

Polar 
equation 
of ellipse 

Equal areas swept out in 
equal times 
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This is a constant 



O
rb

it
al

 p
er

io
d

 P
 /

ye
ar

s 

Semi-major axis of orbit a / AU 

3
2P a

3
2

Yr AU

P a 
  
 

 

2
2 34

P a
G M M






Radii of planets not to scale! 

Mercury, 
Venus, 
Earth, 
Mars 

Jupiter 

Saturn 

Uranus 

Neptune 

Johannes Kepler 
1571-1630 

 

Kepler’s 
Third Law 



Albert Einstein (1879-1955) proposed a radical new theory of gravity, 
General Relativity, in which both space & time (‘spacetime’) are curved 
by the presence of mass. This helped to explain anomalies in the 
Newtonian model such as the precession of the orbit Mercury and the 
amount that light is bent by massive objects (Gravitational lensing). 
Note General Relativity predicts the same planetary dynamics as 
Newton’s model when gravity is fairly weak. i.e. Newton’s model can be 
thought of as an approximation. 



Escape velocity 
To escape the gravity of a spherical  astronomical body of mass M and radius R the total energy of the 
system must be positive at an infinite distance from the body.  
In other words, it will have some kinetic energy and will never be gravitationally attracted back towards 
the body. 
 
For a mass m blasting off with velocity v,  it will escape the gravitational influence of M if: 
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For Earth, the escape velocity is: 
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It is interesting to work out the radius of a star of mass M such that the escape velocity exceeds that of the speed of 
light. Since this is not possible, the star becomes a Black Hole. 
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This inequality defines the maximum radius of a Black Hole, 
which  is called the Schwarzschild radius. This is the event 
horizon, or ‘point of no return’ from  the centre of a Black 
Hole. 
 
For the Sun to become a Black Hole ( M = 2 x 1030 kg, R = 
6.96 x 108 m ) its radius would have to shrink to less than 
2.97 km. 
 
This is a mindblowing density of  1.8 x 1019 kgm-3 !  
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Two body Kepler problem summary 

2

1

1 2

1

2

1 2

m

m m

m

m m

 


 


r R r

r R r

 

 
 

2

1 2

2

2

2

2

1
ˆ

1 cos

( ) sin ˆˆ1 cos
1 cos1

1

1

a

G m m

a

b a

b

a



 

 
 

 










  
   

  

 

 

r r

v r θ

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

 

 

 

  

r x y

θ x y



 

 

 

 

21 2

3 2 3

3 2 3

20
1 2

2

2 3

1 2

21
1 22

2 2 2

1 22

1 2

1 2

2 2 1 21 1
1 1 1 12 2

( )
1 cos

(1 )

(1 )

( ) 1 cos

4

( )

G( ) 1

1

2

G m m

a

a d
t

G m m

P a
G m m

dA
m m a

dt

Gm m a
J

m m

Gm m
E

a

Gm m
E m v m v

r



  


 

 








 






 




  






 

  



Angular velocity 

Orbital time 

Period vs semi-major axis (Kepler III) 

Equal areas swept out in 
equal times (Kepler II) 

Angular momentum 
(which is a constant) 

Total energy (which is a 
constant).  

Note this equation is only true for bound 
elliptical orbits. Other possibilities (parabolae, 
hyperbolae) are possible, but they are not bound. 

If E > 0 this means an orbit is not bound 



Orbit initial condition for a two-body system 
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Assumes Pluto is in 
the same orbital 
plane as the other 
planets .... 
 
Also that semi-
major axis of all 
planets are aligned. 
 
This is not true in 
general! 
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Note the orbit of 
Pluto is not in the  
‘plane of the ecliptic’ 
-so it is actually possible 
that it can be closer to 
Earth than Neptune 





Numerical orbit solver (Verlet method) 
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i.e. constant acceleration motion between fixed time steps Dt 
Note velocity calculation incorporates updated acceleration, determined using 
the updated position vector. This increases the accuracy of the method. 

Newton’s Law of 
universal gravitation 

Newton’s Second Law 

Update position and velocity vectors 
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Mass of star (solar masses) 1 

Mass of planet (Earth masses) 1 

Semi-major axis of orbit /AU 1 

Orbital eccentricity 0.4 

Initial polar angle /degrees 180 

timestep /years 0.001 

period /years 1.0008977 

‘Numerical artefacts'  
due to timestep being too large result in  
an erroneous orbit 

This is a 
problem 
with numeric 
solutions! 

timestep = 
0.05 years.  



Using the Verlet method to ‘solve’ a three-body problem 
i.e. the motion of a planet within the mutual orbits 
of a binary star system 



This time the planet starts outside both the orbits of the 
binary star system 



Orbits don’t have to be bound .... This one is unstable. After 
a few orbits, the planet is ejected from the system! 



Complicated orbits can result if the planet is close 
to both stars! 


