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Kepler's three laws are:
1. The orbit of every planet in the solar system is an ellipse with the Sun at one of the two foci.
2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.

The wording of Kepler's laws implies a specific application to the solar system. However, the laws are more
generally applicable to any system of two masses whose mutual attraction is an inverse-square law.
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Albert Einstein (1879-1955) proposed a radical new theory of gravity,
General Relativity, in which both space & time (‘spacetime’) are curved
by the presence of mass. This helped to explain anomalies in the
Newtonian model such as the precession of the orbit Mercury and the
amount that light is bent by massive objects (Gravitational lensing).
Note General Relativity predicts the same planetary dynamics as
Newton’s model when gravity is fairly weak. i.e. Newton’s model can be
thought of as an approximation.

Sources of the precession of perihelion for Mercury

Amount (arcsec/Julian century) Cause

531.63 +0.69% Gravitational tugs of the other planets
0.0254 Oblateness of the Sun (quadrupole moment)
42.98 +0.040° General relativity

574.64+0.69 Total

574.10+0.65[“ Observed
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Escape velocity
To escape the gravity of a spherical astronomical body of mass M and radius R the total energy of the

system must be positive at an infinite distance from the body.
In other words, it will have some kinetic energy and will never be gravitationally attracted back towards

the body.

For a mass m blasting off with velocity v, it will escape the gravitational influence of M if:

For Earth, the escape velocity is: 2 G M m
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It is interesting to work out the radius of a star of mass M such that the escape velocity exceeds that of the speed of
light. Since this is not possible, the star becomes a Black Hole.

This inequality defines the maximum radius of a Black Hole, 2GM o > M
which is called the Schwarzschild radius. This is the event R >C lackhole , ( 2GM ]3
horizon, or ‘point of no return’ from the centre of a Black 37 2
Hole. 2GM 2 ¢
> C 3C6

R >
For the Sun to become a Black Hole (M =2 x 1030 kg, R = Pgiackhole ~ 32 7G3M 2
6.96 x 108 m ) its radius would have to shrink to less than 2GM 7
2.97 km. R< x

This is a mindblowing density of 1.8 x 10%° kgm3 !



Two body Kepler problem summary
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32 — 12 Angular momentum

— (which is a constant)
E Gmlmz Total energy (which is a

= constant).
2a \
5 5 Gm m Note this equation is only true for bound
E = % m1V1 + % m1V1 _— 1 2 elliptical orbits. Other possibilities (parabolae,
r hyperbolae) are possible, but they are not bound.

If E> 0 this means an orbit is not bound



Orbit initial condition for a two-body system
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Object Mass in |Distance|Radius in |Rotational |Orbital Orbital Initial polar
Earth from Earth radii |period /days|period eccentricity |angle
masses |Sunin [years fdegrees
AU
Mercury 0.055 0.387 0.383 58.646 0.241 0.21 0
Venus 0.815 0.723 0.949 243.018 0.615 0.01 0
Earth 1 1 1 1 1 0.02 0
Mars 0.107 1.523 0.533 1.026 1.881 0.09 0
Jupiter 317.85 |5.202 11.209 0.413 11.861 0.05 0
Saturn 95.159 |9.576 9.449 0.444 29.628 0.06 0
Uranus 14.5 19.293 |4.007 0.718 84.747 0.05 0
Neptune 17.204 |30.246 |3.883 0.671 166.344 0.01 0
Pluto 0.003 39.509 |0.187 6.387 248.348 0.25 0
Sun 332,837 109.123 - 0 0
24 6
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Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

Note the orbit of

Pluto is not in the
‘plane of the ecliptic’
-so it is actually possible
that it can be closer to
Earth than Neptune
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Numerical orbit solver (Verlet method)

Gmm. B M

Fi (t) — Z I J Newton’s Law of .

2 niversal gravitation
= ri(t)—rj(t)‘ inerselgrevta

F (t)

a (t) = Newton’s Second Law

Update position and velocity vectors

r(t+ At) =T, (t) + v, () At + &, () (At)’
v,(t+At) = v, (t) + ${a(t) + & (t + At)} At

i.e. constant acceleration motion between fixed time steps At
Note velocity calculation incorporates updated acceleration, determined using
the updated position vector. This increases the accuracy of the method.
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Orbital simulation
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Mass of star (solar masses)
Mass of planet (Earth masses)
Semi-major axis of orbit /AU
Orbital eccentricity

Initial polar angle /degrees

timestep /years

period /years

1.000897

‘Numerical artefacts'
due to timestep being too large result in
an erroneous orbit
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Using the Verlet method to ‘solve’ a three-body problem
i.e. the motion of a planet within the mutual orbits
of a binary star system

— Starl
—Star?

Planet

Mass of starl (solar masses)
Mass of star2 (solar masses)
Mass of planet (Earth masses)

Semi-major axis of initial star
orbit fAU

Semi-major axis of initial planet
orbit /AU about starl

Orbital eccentricity of initial star
orbit

Orbital eccentricity of initial
planet orbit about star 1

Initial polar angle /degrees of
initial star orbit

Initial polar angle /degrees of
initial planet orbit about star 1

timestep /years
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This time the planet starts outside both the orbits of the
binary star system
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Mass of starl (solar masses)
Mass of star2 (solar masses)
Mass of planet (Earth masses)

Semi-major axis of initial star
orbit faU

Semi-major axis of initial planet
orbit /AU about starl

Orbital eccentricity of initial star
orbit

Orbital eccentricity of initial
planet orbit about star 1

Initial polar angle fdegrees of
initial star orbit

Initial polar angle fdegrees of
initial planet orbit about star 1

timestep fyears
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Orbits don’t have to be bound .... This one is unstable. After

a few orbits, the planet is ejected from the system!

Mass of starl (solar masses)
Mass of star2 (solar masses)
Mass of planet (Earth masses)

Semi-major axis of initial star
orbit fAU

Semi-major axis of initial planet
orbit /AU about starl

Orbital eccentricity of initial star
orbit

Orbital eccentricity of initial
planet orbit about star 1

Initial polar angle /degrees of
initial star orbit

Initial polar angle fdegrees of
initial planet orbit about star 1

timestep fyears
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0.000072
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Complicated orbits can result if the planet is close
to both stars!

Mass of starl (solar masses)
Mass of star2 (solar masses)
Mass of planet (Earth masses)

Semi-major axis of initial star
orbit fAU

Semi-major axis of initial planet
orbit /AU about starl

Orbital eccentricity of initial star
orbit

Orbital eccentricity of initial
planet orbit about star 1

Initial polar angle /degrees of
initial star orbit

Initial polar angle /degrees of
initial planet orbit about star 1

timestep fyears
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2.12345
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