PHYSICS FORMULAE TO MEMORISE

AF. May 2015.

MECHANICS

Displacement is the *area* under a (time, velocity) graph, where a *negative area means a negative displacement*

Average speed = total distance travelled / total time taken

Velocity is the gradient of a (time, displacement) graph

Acceleration is the gradient of the (time, velocity) graph

Newton's First Law: A object will move at *constant velocity* if it is *not accelerating*, and therefore the vector sum of forces is zero. It is in *equilibrium*.

Newton's Second Law:	mass x acceleration = vector sum of forces		
Weight:	gravitational force = mass x acceleration due to gravity	W = mg	
Elastic force:	restoring force = spring constant x extension	F = kx	
Newton's Third Law:	If body A imposes a contact force $ F$ upon body B, body B will in turn impose a contact force $ -F$ upon body A		

Moment of a force is **force** x **perpendicular distance from a rotation axis**. In **equilibrium**, the sum of moments (clockwise or anticlockwise) is **zero**, regardless of the axis position chosen!

Equations of constant acceleration motion: u initial velocity, a acceleration, t time, v final velocity, x displacement, x_0 initial displacement

$$v = u + at$$

$$x = x_0 + \frac{1}{2}(u + v)t$$

$$x = x_0 + ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2ax$$

For projectile motion, in the y direction the acceleration is $g = 9.81 \text{ms}^{-2}$ downwards, and 0 ms⁻² in the x direction i.e. a constant velocity in the x direction.

Conservation of momentum: The **vector sum** of **mass x velocity** for every object in a collision is the **same** after the collision. (Although the momenta of individual objects might change in the event).

Impulse is a change in momentum, and the area under a (time, force) graph

Conservation of energy: Kinetic energy + gravitational potential energy + elastic potential energy + is a **constant** in a closed system.

Kinetic energy: $\frac{1}{2}mv^2$ Gravitational Potential Energy: mgh Elastic potential energy: $\frac{1}{2}kx^2$

Work done = area under a (displacement, force) graph

Power = rate of use of energy. For a moving vehicle, power = driving force x velocity

Displacement, velocity and acceleration are **vector** quantities. The definitions here refer to a particular direction (e.g horizontal, or vertical)

ELECTRICITY & MAGNETISM

Ohm's Law: V = IR

V Voltage or 'potential difference' across a resistive element. I current, R resistance.

Electrical Power	P = VI	P power, V voltage, I current
Resistive power loss:	$P = I^2 R$	P power, I current, R resistance
Resistance of a wire:	$R = \frac{\rho l}{A}$	

R resistance, *l* length, *A* cross sectional area, ρ resistivity. Assume uniform resistivity and cross sectional area along length of wire. Copper: $\rho = 1.68 \times 10^{-8}$, Aluminium : $\rho = 2.82 \times 10^{-8} \Omega m$

Addition of **resistors** wired in **series**: $R = R_1 + R_2 + ...$

Addition of **resistors** wired in **parallel**: $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$

Faraday's law of induction:Voltage induced is proportional to the rate of change of magneticfluxlinked

'Right hand thumbs up rule' for magnetic field (fingers) due to a current (thumb)

Fleming's Left hand rule: (Thumb: Motion, First finger: magnetic Field, Index finger: Current)

Transformers: $\frac{V_2}{V_1} = \frac{N_2}{N_1}$ $\frac{I_2}{I_1} = \frac{N_1}{N_2}$ V_1 , I_1 Voltage, current in primary coil,

 V_2 , I_2 voltage, current in secondary coil, N_1 , N_2 number of turns in primary, secondary coils

THERMAL PHYSICS

Ideal gas law: pV = nRT

p pressure, *V* volume, *n* number of moles of gas, molar gas constant $R = 8.314 \text{ Jmol}^{-1}\text{K}^{-1}$, *T* absolute temperature (in Kelvin)

 $V \propto T$ Charles' Law

 $p \propto \frac{1}{V}$ Boyle's Law

 $\Delta E = mc\Delta T$ Energy ΔE required to raise the temperature of a mass *m* by ΔT

where c is the specific heat capacity (i.e. heat capacity per kilogram of thermal mass)

Temperature conversions: Fahrenheit to Celsius to Kelvin: $T_{K} = T_{C} + 273.15$, $T_{F} = \frac{9}{5}T_{C} + 32$

Pressure of a column of fluid: $p = \rho g h$

p pressure, ρ fluid density, g gravitational acceleration, h height of fluid column

WAVES & OPTICS

Angle of incidence = angle of reflection $\theta_i = \theta_r$

Snell's law of refraction $n_1 \sin \theta_1 = n_2 \sin \theta_2$

n = refractive index (speed of light in a vacuum / speed of light in a medium). Angles θ are measured from the **normal** to the reflecting surface

Total internal reflection at glass : air interface i.e. no refraction if

$ \theta_i > \sin^{-1}\left(\frac{n_{air}}{n_{glass}}\right) \Rightarrow \theta_i > \sin^{-1}\left(\frac{1}{n_{glass}}\right) $	$\left(\frac{1}{1.52}\right) \Rightarrow \theta_i > 41.1^\circ$	This is the <i>critical angle</i>			
Wave speed:	$c = f \lambda$	c speed , f frequency, λ wavelength			
Frequency:	$f = \frac{1}{T}$	f frequency, T time period of oscillation			
Speed of light in a vacuum:	2.998 x 10 ⁸ ms ⁻¹	Speed of sound in air (20°C):	344 ms ⁻¹		
		Speed of sound in water:	1482 ms ⁻¹		
Lens Formula:	$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$	u object distance, v image distance,			
		f focal length of a lens			

NUCLEAR PHYSICS

The number of decays of a radioactive element per second ('activity') is proportional to the number of radioactive atoms that have not yet decayed

 T_{\perp} half life. The time taken for half of the number of radioactive elements in a sample to decay.

The graph of the activity vs time is an exponential decay.

Alpha decay: $\begin{array}{c}
\overset{Z+N}{z}X \rightarrow \overset{Z+N-4}{z-2}Y + \alpha \\
\overset{229}{_{90}}\text{Th} \rightarrow \overset{225}{_{88}}\text{Ra} + \alpha
\end{array}$

Atomic number (Z) reduces by 2. Mass number (A) reduces by 4

Kinetic energy of alpha particle (a Helium nucleus) is approximately 5MeV. (100,000 x ionization energy for an air molecule).

Beta decay: $\begin{array}{c} \overset{Z+N}{Z}X \rightarrow \overset{Z+N}{Z+1}Y + \beta \\ \overset{I4}{_{6}C} \rightarrow \overset{I4}{_{7}}N + \beta \end{array}$

Atomic number (Z) increases by 1. Mass number (A) stays the same

Kinetic energy of beta particles (high energy electrons) are 0.01 to 10MeV, i.e. a spectrum of energies.

$$[1 \text{MeV} = 1.60 \times 10^{-13} \text{ J}]$$

Gamma rays: Very high energy photos, i.e. electromagnetic waves of very high frequency.

Gamma radiation is more penetrating than beta, which is more penetrating than alpha.

	132.90545196(6) 87 Francium <223>	Cs 55	37 Rb Rubidium 85.4678(3)	19 K Potassium 39.0983(1)	11 Na Sodium 22.98976928(2)	1 Hydrogen [100724:1.00811] Lithium
Lanthanide Series Actinide Series	88 Radium 437.327(7)	Ba	з	20 Ca calcium 40.078(4)	12 Mg Magnesium 124.304,24.307	2 IIA 2A Beryllium 9.0121831(5)
(T)	89-103	57-71	39 Y Yttrium 88.90584(2)	21 Sc Scandium 44.955908(5)	3 3 3 3 B	Atomic mass Masses expre depending o
57 Lanthanum 138.80547(7) 140 159 90 90 90 90 90 140 140 140 140 140 140 140 140 140 14	178.49(2) 104 Rutherfordiun	72 Hafnium	40 Zr Zirconium 91.224(2)	22 Ti Titanium ^{47,887(1)}	orthe bagest Hired Isorope For elements with no stable nucleus. 3 4 5 11B IVB VB 3B 4B 5B 3B 4B 5B	Aronic mas values reflect the IUPAC accepted values as of 69/2013. Masses expressed in [cb]format show the lower and upper limit of atomic mass depending on the physical and chernical history of the element. Masses expressed in - Comma are the mass numbers
3 59 Cerium 7rase 140-1161) 144		73 Ta	41 Niobium 92.90637(2)	23 Vanadium ^{50.9415(1)}	5 5 5 5 8 5 8	accepted values as of we the lower and upper much lower of the element he mass numbers
59 60 Pr Praseodymium Nei 14.6070682 1 91 92 91 92 92 91 92 91 12 92 91 92 91 12 92 91 92 91 12 92 91 12 92 91 12 92 91 12 92 91 12 92 91 12 92 91 12 92 92 92 92 92 92 92 92 92 92 92 92 92	106 Seaborgium	74 M	42 Molybdenum 95.95(1)	24 Chromium 51.9961(6)	6 6 6 B	09/2013. Innit of atomic mass
Addymium 44 242(3) Rozentium		75 Re		Ma	7 VIIB 7B	Per
		76	4 8	26 Se Iron S5.845(2)	* ®	Periodic Table of the Ele
				27 58.00	8 9 ₂	Table Atomic Number Syl
A A A A A A A A A A A A A A	<u> </u>	78 Pt	<u> </u>	28 Nickel (4) 58.6834(4)		nmic nber Symbol Name
64 Gadolinium 157.25(3) 96 96 Currium Currium	Re 11 12		47 Ag Silver	29 8 0	L 18 18 11	
65 Tb Terbium 158.22535(2) 97 97 97 97 97 8K Berkelium 247 ²		^{Merrary} BH n		, , 30	12 118 218	ements
66 Dy Dysprosium 182.500(1) 182.500(1) 182.500(1) 182.500(1) 182.500(1)		8		<u>ω</u>	13 Aluminum 3 20.9815386(8)	ு ஏ
67 Holmium 14. soost2) 99 99 Einsteinium			5			
m Fermium Fermium 4257	7.2(1)	b	Sn ^{Tin}	Ge manium 2.630(8)	Silicon	14 AA Carbon 12 cover: 12 or 11
	Ununpentium	83 Bi	51 Sb Antimony 121.760(1)	33 As Arsenic 74.921595(6)	15 P Phosphorus 30.973761998(5)	15 SA 7 Nitrogen
	200≻ 116 Lvermorium	84 Polonium	52 Te Tellurium	34 Se selenium 78.971(8)	16 Sulfur 132.059.32.078	16 6A Oxygen 15.0007315.00077
	117 Ununseptium	Astatine	53 Iodine	35 Bromine [79.901,79.907]	17 Cl Chlorine [35.446:35.457]	9 7A Fluorine 18400403103(0)
/1 Lutetium ^{17,4608(1)} 103 Lawrencium	s – 1	Rn Rn	54 Xenon ^{Xenon} ^{131,283(6)}	36 Krypton 83.788(2)	18 Argon ^{Argon} 39.348(1)	18 8A Helium 4.002507212 Neon 20.1797(6)

© 2013 Todd Helmenstine chemistry.about.com sciencenotes.org