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Ideal Gas Equation
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Boyles’s Law. At constant 

temperature, gas pressure is 

inversely proportional to volume.

constant

V T

V

T



 =

Charles’ Law. At constant 

pressure, gas volume is 

proportional to temperature.
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Molar gas constant 

8.314 Jmol-1K-1

Temperature /Kelvin

Ideal Gases and Heat Engines

The operation, and theoretical efficiency, of combustion driven piston engines (e.g. diesel or petrol fuelled) can 

be analysed by considering charges to pressure, temperature and volume of the gaseous components. This 

proceeds by accounting for the energy changes in the gas as a result of heat applied and work done

combined with the ideal gas equation, which relates the physical properties of the gas.

An ideal gas assumes a large number of point 

particles colliding elastically. It neglects any 

short-range intermolecular forces resulting from

repulsion or attraction due to molecular

charges, and the fact that molecules have a 

finite volume i.e. are not infinitely small! This 

means a real gas is not infinitely compressible 

whereas an ideal gas has no such limits.

Special cases of the ideal gas equation:

Jacques Charles

1746-1823

Robert Boyle

1627-1691

Temperature scales

Fahrenheit is a temperature scale, where 32o F is 

the freezing point of water and 212o F is the boiling 

point of water, defined at sea level at standard 

atmospheric pressure (101,325Pa). 

It was proposed in 1724 by Daniel Gabriel Fahrenheit. 

0o F corresponded to the lowest temperature he could 

cool brine (salt water) and 100o F was the average 

human body temperature (37oC).

A more popular scale 

is the Celsius scale, 

with 0o  C and 100o C 

representing the 

freezing and boiling 

points of water at 

standard atmospheric 

pressure.

The Kelvin temperature scale (or 

“absolute” scale) is proportional to the 

mean kinetic energy of molecules.
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2
U nRT=

Internal energy of n 

moles of gas

Number of degrees of freedom of 

molecular motion (e.g  = 3 for 

x,y,z translation)

Anders Celsius 

1701-1744

Daniel Fahrenheit

1686-1736 

1 mol = 6.02 x 1023 molecules. So energy of a molecule is   

At 1atm = 101,325Pa, one mole of gas at 

200C = 293K has volume 

V = 2.40 x10-2 m3 = 24 litres
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Ideal Gas Equation in practical units

William Thompson 
(Lord Kelvin)

1824-1907
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-40o F = -40o C

100o C is 

equivalent to 

212o F.
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Heat, work and internal energy 

of an ideal gas
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Constant volume process

(isochoric)
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Consider a cylinder of gas

being compressed by a force F.

The work done on the gas by the force is: 

x

dW Fdx=

The pressure acting upon the gas is:

F
p

A
=

and the volume change is:

dV Adx= −

dV
dW pA

A

dW pdV

 = −
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If heat dQ is supplied to the gas

then the First Law of 

Thermodynamics (that Energy in a 

closed system is conserved) means 

the internal energy change is

dU dQ pdV

dQ dU pdV

= −

 = +

The internal energy for n moles of

an ideal gas is

The Ideal Gas Equation is

First Law

First Law

i.e. no work done on gas

Constant volume heat capacity for n moles

So for a constant volume

change, the heat capacity

is a constant for an ideal gas.
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Constant volume specific heat capacity.

M is the molar volume /kg

Gas M /gmol-1

Acetylene 26.04

Air 28.966

Ammonia 17.02

Argon 39.948

Benzene 78.11

Butane 58.12

Carbon dioxide 44.01

Carbon 

Monoxide

28.011

Chlorine 70.906

Ethyl Alcohol 46.07

Fluorine 37.996

Helium 4.003

Hydrogen 

Chloride

36.461

Hydrogen 

Sulphide

34.076

Krypton 83.80

Methane 16.044

Natural Gas 19.00

Nitrogen 28.0134

Neon 20.179

Oxygen 31.9988

Ozone 47.998

Propane 44.097

Sulphur dioxide 64.06

Toluene 92.13

Xenon 131.30

Water vapour 18.02

http://www.engineeringtoolbox.com/molecular-weight-gas-vapor-d_1156.html

V
Q mc T= 

Total amount of heat supplied to m kg of 

gas is therefore:

Constant pressure process

(isobaric) 

P

P

dQ
C

dT

dQ C dT

=

 =

1
2

1
2

U nRT

dU nRdT





=

 =

pV nRT

pdV nRdT

=

 =

Since constantp =

1
2

1
2

P

P

dQ dU pdV

C dT nRdT nRdT

C nR nR





= +

 = +

 = +

1
2V

P V

C nR

C C nR

=

 = +

Experimentally it is very hard to maintain a 

constant volume as heat is added, so 

constant volume heat capacity is difficult to 

measure directly. 

However, constant pressure heat capacity 

is much easier to measure, as one can 

allow volumes to change in order to 

maintain equilibrium with the ambient 

pressure.

The Mayer relationship is therefore very 

useful in working out the constant volume 

heat capacity from the constant pressure 

heat capacity.

Constant pressure heat capacity for n 

moles of ideal gas

First Law

Ideal Gas Equation

Mayer Relationship
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Constant temperature

(isothermal) process

Adiabatic (or isentropic) process

i.e. no heat added. Work done

is the sole cause of changes in 

internal energy
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Work done on gas
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Work done on gas for an adiabatic change
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First Law

Using the Ideal Gas Equation

Heat supplied to gas

The Mayer Relationship and 
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This defines an adiabatic change

Heat supplied and work done for an 

isobaric process
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Since p is constant
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So work done by gas on the 

surroundings is:
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Heat Engines

Carnot Cycle

Positions 1 to 2

Isothermal expansion of an ideal gas at 

the hot reservoir temperature. Since gas 

temperature, and therefore internal 

energy is constant, the work done by the 

gas on the surroundings must exactly 

equate to the heat absorbed by the gas.

Positions 2 to 3

Isentropic (i.e. adiabatic or ‘no heat 

added or lost’) expansion of the gas. The 

work done by the gas on the 

surroundings is powered by the loss of 

internal energy of the gas as it cools 

from the temperature of the hot reservoir 

to the temperature of the cold reservoir.

Positions 3 to 4

Isothermal compression of the gas. In 

order for the temperature, and hence the 

internal energy, to remain constant, the 

heat lost by the gas to the cold reservoir 

must equate to the work done on it by 

the surroundings.

Positions 4 to 1

Isentropic compression of the gas, 

heating it from the temperature of the 

cold reservoir to the temperature of the 

cold reservoir.
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Assume we have n moles of ideal gas, none of which 

are lost in the process. Input parameters are:
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Volume of gas at position 1 in the cycle

Volume of gas at position 2 in the cycle

Volume of gas at position 3 in the cycle
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Ideal gas equation Mayer relation

Nicolas Léonard 

Sadi Carnot 

(1796-1832)

Work done by the gas on the 

surroundings is the area 

enclosed by the cycle
W pdV= 

1
( ,1)p

4

4

1

,
V

p
V

 
 
 

3

3

1

,
V

p
V

 
 
 

2

2

1

,
V

p
V

 
 
 

in
Q

out
Q

Work done by the ideal 

gas on the surroundings

These two volumes are derived from the other inputs:

1

2

3

4

%Molar mass of gas /gmol^-1

M = 28.966;

 

%Mass of gas /kg and d. of freedom

m = 1; alpha = 3;
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Carnot engine cont....

Total work done is:

1,2 2,3 3,4 4,1
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Define heat engine efficiency as the ratio

of Work done by the gas to the heat input

The Carnot Engine efficiency

depends only on the reservoir 

temperatures.

The efficiency of a Carnot heat engine can be more simply derived by 

consideration of Entropy S. This is a measure of disorder in a substance.

The Second Law of Thermodynamics states for any change, the total 

amount of Entropy in the Universe must increase.

If heat is added in a reversible process:
dQ

dS
T

=

For the Carnot cycle, the isentropic stages have no heat change hence they are at constant 

Entropy. (Note this applies to the ideal gas, the surroundings will change in entropy due to the 

exchange of work with the ideal gas). We cannot create entropy in the cycle for the gas, as the 

cycle returns to the original state (p1,V1, TH), and Entropy is a scalar function of state (i.e. like 

potential energy – the path does not matter). The (S,T) curve for the cycle is therefore a rectangle.

In the isothermal stages, temperature is a constant, so in both cases outin 2

1

ln
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From the First Law of Thermodynamics

dU dQ pdV dU TdS pdV= −  = −

Over the whole cycle the internal energy doesn’t 

change, so the work done by the gas is:
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Since the temperature 

range cannot go beyond 

the range of reservoir 

temperatures, the Carnot 

cycle represents the 

most efficient way of 

extracting work given an 

amount of heat input.* 

Any other process would 

occupy less area in the 

S,T diagram.

1 2

34

*There is a better justification on the next page!
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General notes regarding the Second Law of Thermodynamics, and the maximum possible efficiency of heat engines

It is possible to bound the efficiency of any heat engine using (i) the law of conservation of energy and (ii) the Second Law of Thermodynamics. That the upper bound of 

efficiency equates with the efficiency of the Carnot engine is perhaps an even stronger justification of the statement that a Carnot engine is the most efficient scheme 

possible, if indeed it could be practically realized.

Any heat engine is essentially flow of heat from a hot reservoir to a colder one. By a reservoir we mean a thermal mass that is so large that it will not change 

temperature when the heat we associate with our engine is taken from or added to it. The difference in heat taken from the hot reservoir, and the heat transferred to the 

cold reservoir, is the maximum possible work W done by the engine. This must be true to satisfy the law of energy conservation, or the First Law of Thermodynamics.

Cold reservoir

Heat Engine

Hot reservoir

in out
Q Q W= +

in
Q

out
Q

W

H
T

C
T

First Law:

The Second Law of Thermodynamics states that for every change there can never be an overall decrease

in Entropy. For our idealized system, this means the loss of entropy of the hot reservoir must at least be

compensated for by the gain in entropy of the cold reservoir.

0

0

in

H

H

out

C

C

in out

total H C

H C

total

in out

H C

Q
S

T

Q
S

T

Q Q
S S S

T T

S

Q Q

T T

 = −

 =

 =  +  = − +

 

− + 

Second Law:

Entropy changes of

hot and cold reservoirs

Combining with the 

First Law expression:

0

0

1
1

0

1 0

in out

H C

out in

in in

H C

in

H C

C

H in

Q Q

T T

Q Q W

Q Q W

T T

W

Q

T T

T W

T Q

− + 

= −

−
− + 

−

− + 

− + − 

Define engine efficiency:

in

1 0

1

C

H

C

H

W

Q

T

T

T

T







=

− + − 

  −

So since the Carnot engine has 

efficiency

1 C

H

T

T
 = −

this is as efficient as 

thermodynamics allows, so the 

Carnot cycle is (one example*) of 

the most efficient heat engine 

possible.

*A Brayton Engine (adiabatic compression, isobaric heating, adiabatic expansion, isobaric cooling) has a 

similar theoretical efficiency as a Carnot Cycle.

Notes on reversibility

A reversible heat engine is one which is assumed to operate at thermodynamic

equilibrium at all times. The ideal gas equations, and associated relationships, hold

and there are no losses due to friction etc. In other words, the differential form of the

First Law holds at all times; i.e. where changes dU in internal energy are fully accounted 

for by heat change dQ and work done dW = -pdV. This means that there is no net 

internal energy and indeed entropy change over the complete cycle. This means the 

‘ideal’ cycle could be run in reverse without breaking the Second Law, since a zero net 

entropy change is permitted.
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Heat Engines - Rectangular p,V cycle

Assume we have n moles of ideal gas, none of which 

are lost in the process. Input parameters are:

1
p Pressure at position 1 in the cycle

Pressure at position 3 in the cycle

Volume of gas at position 1,4 in the cycle

Volume of gas at position 2,3 in the cycle

Between positions 1 and 2

Between positions 2 and 3

1

2

V V

V V

=

=

( )

2

1

1

1 1

1 1 1

1

1,2 2 1

1,2 1 2 1

2

1,2

1

( )

ln

p

T

p p
T

p p

p V
p V nRT n

RT

Q nMc T T

W p V V

TdT
S nMc nMc

T T

=

=  =

= −

= −

 
 = =  

 


( )

3

2

2

1 2

1 2 2 2

2,3 2 3

2,3

3

2,3

2

0

ln

V

T

V V
T

V V

p V
p V nRT T

nR

Q nMc T T

W

TdT
S nMc nMc

T T

=

=  =

= −

=

 
 = =  

 


Between positions 4 and 1

( )

4

3

3

3 2

3 2 3 3

3,4 3 4

3,4 3 2 1

4

3,4

3

( )

ln

p

T

p p
T

p p

p V
p V nRT T

nR

Q nMc T T

W p V V

TdT
S nMc nMc

T T

=

=  =

= −

= − −

 
 = =  

 


( )

1

4

1

3 1

3 1 4 4

4,1 1 4

4,1

1

4,1

4

0

ln

V

T

V V
T

V V

p V
p V nRT T

nR

Q nMc T T

W

TdT
S nMc nMc

T T

=

=  =

= −

=

 
 = =  

 


Between positions 3 and 4

Heat input to gas

Work done by gas

Heat output from gas

Work done by gas

Heat input to gas

Work done by gas

Heat output from gas

Work done by gas

Net heat input

 

in 1,2 4,1

in 2 1 1 4

in 1 2 1 1 1 1 3 1

in 1 2 1 1 1 3

1

in 1 2 1 1 3

( ) ( )

( ) ( )

( ) ( )

( ) ( )
1 1

p V

p V

p V

Q Q Q

Q nMc T T nMc T T

nM nM
Q c p V p V c p V p V

nR nR

M
Q p c V V V c p p

R

V
Q p V V p p



 

= +

= − + −

= − + −

= − + −

= − + −
− −

Net work done by gas

2 2

1 1

T V

T V
=

3 3

2 1

T p

T p
=

4 1

3 2

T V

T V
=

1 1

4 3

T p

T p
=

( )( )

1,2 2,3 3,4 4,1

1 2 1 3 2 1

1 3 2 1

( - ) - ( - )

- -

W W W W W

W p V V p V V

W p p V V

= + + +

=

=

21
p

V

c

c


 = = +

Engine efficiency

( )( )

( )

1 3 2 1

1in
1 2 1 1 3

1

1 1

1 3 2 1

- -

( ) ( )
1 1

1

1 - -

p p V VW

VQ
p V V p p

p V

p p V V




 






−

= =

− + −
− −

   
= +  

−     

1
2V

R
c

M


=

1
T Gas temperature at position 1 in the cycle

3
p

( )1 1
,p V

( )1 2
,p V

( )3 2
,p V( )3 1

,p V

Note Carnot efficiency 

for this heat engine 

would be

13.5 273
1 75%

873 273


+
= − =

+

1 1
( , )p V

1 2
( , )p V

3 2
( , )p V

3 1
( , )p V

1 2

34

1

2

3

4

1

1

1

V

P

R
c

M

R
c

M







=
−

=
−
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Heat Engines – The Otto cycle

The Otto Cycle is the basis of spark-ignition 

piston engine, which is essentially how a typical 

petrol driven engine operates.

Positions 0-1:

Air is drawn into piston/cylinder arrangement at 

constant pressure.

Process 1–2 

Adiabatic (isentropic) compression of the air via a 

piston.

Process 2–3 

Constant-volume heat transfer to the working gas from 

an external source while the piston is at maximum 

compression. This process is intended to represent the 

ignition of the fuel-air mixture and the subsequent rapid 

burning.

Process 3–4

Adiabatic (isentropic) expansion (power stroke).

Process 4–1 

Constant-volume process in which heat is rejected from 

the air while the piston is at maximum expansion.

Process 1–0

Air is released to the atmosphere at constant pressure.

Assume we have n moles of ideal gas, none of which 

are lost in the process. Input parameters are:

1
p Pressure of gas at position 1 in the cycle

Volume of gas at position 1 in the cycle

Volume of gas at position 2 in the cycle

Between positions 1 and 2 Between positions 4 and 1

Between positions 3 and 4

Between positions 2 and 3

1

2

V

V

To complete the cycle

Nikolaus Otto 

(1832-1891)

Work done by 

the gas on the 

surroundings is 

the area enclosed 

by the cycle
W pdV= 

1 1
( , )p V

in
Q

out
Q

1 1

1 1 1

1

1

1 1 1

1

1 1 1

1,2

2

1,2 1,2

1
1

0, 0

p V
p V nRT n

RT

V
pV p V p p

V

p V V
W

V

Q S



 





−

=  =

 
=  =  

 

  
 = −  
 −   

=  =

( )

3

2

2

2 2

2 2 2 2

3 2

3 2 3 3

2,3 3 2

2,3

3

2,3

2

0

ln

V

T

V V
T

V V

p V
p V nRT T

nR

p V
p V nRT T

nR

Q nMc T T

W

TdT
S nMc nMc

T T

=

=  =

=  =

= −

=

 
 = =  

 


4 1

4 1 4 4

2

3 2 3

1

3 2 2

3,4

1

3,4 3,4

1
1

0, 0

p V
p V nRT T

nR

V
pV p V p p

V

p V V
W

V

Q S



 





−

=  =

 
=  =  

 

  
 = −  
 −   

=  =

( )

1

4

1

4,1 4 1

4,1

1

4,1

4

0

ln

V

T

V V
T

V V

Q nMc T T

W

TdT
S nMc nMc

T T

=

= −

=

 
 = =  

 


2 2 1 1

1

2 1

2

p V p V

V
p p

V

 



=

 
 =  

 

3 2 4 1

2

4 3

1

p V p V

V
p p

V

 



=

 
 =  

 

3
p Pressure of gas at position 3 in the cycle

1
T Temperature of gas at position 1 

in the cycle

-ve since work 

is being done 

on the gas

2 2
( , )p V

3 2
( , )p V

4 1
( , )p V

1

2

3

4

Heat input to gas

via spark ignition

Work done 

by gas

Heat output 

via exhaust

( )

( )

in 1,2 3 2

out 4,1 4 1

V

V

Q Q nMc T T

Q Q nMc T T

= = −

= = −

21
p

V

c

c


 = = + 1
2V

R
c

M


=

1

1

1

V

P

R
c

M

R
c

M







=
−

=
−
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Otto engine cont....

Total work done is:

 

( )

in

2

3 11

2 3 1

1

1
1

1

1

1
1

W

Q

V
p p r

r

V p p r

r


















−

−

=

 
− − 

−  
=

−

−

= −

Define heat engine efficiency as the ratio

of Work done by the gas to the heat input

So the Otto Engine efficiency

depends only on the compression 

ratio, and the ratio of specific heats

( )

( )

1,2 3,4

1 1

3 21 1 1 2

2 1

12

1 3 1

1

12

1 31 1

2

31

1 1
1 1

1
1 1

1

1
1 1

1 1

1
1

1

W pdV

W W W

p Vp V V V
W

V V

V
W p r r p

r

V r
W p r r p

r r

V
W p

r

 








 



 







− −

−

−

−

−

− −

−

=

= +

      
   = − + −   
   − −      

  
= − + −  

−   

    
= − − +   

− −    

 
= − − 

−  



 1
p r

Define the 

compression ratio

1

2

V
r

V
=

( )

( )

in 3 2

1

in 3 2 1 2

2

2 3 1

in

1

1

1

1

1

V

V

V

V

Q nMc T T

nMc V
Q p V p V

nR V

R
c

M

Mc

R

V p p r
Q











= −

  
 = −  
   

=
−

 =
−

−
 =

−

3 2

3

p V
T

nR
=2 2

2

p V
T

nR
=

1

2 1

2

V
p p

V



 
=  

 

From the previous page:

1

2

3

4

21
p

V

c

c


 = = + 1
2V

R
c

M


=

1

1

1

V

P

R
c

M

R
c

M







=
−

=
−

Work done by 

the gas on the 

surroundings is 

the area enclosed 

by the cycle
W pdV= 

1 1
( , )p V

in
Q

out
Q2 2

( , )p V

3 2
( , )p V

4 1
( , )p V

1

2

3

4
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Heat Engines – The Diesel cycle

The Diesel Cycle is the basis of a diesel engine, which is 

ubiquitous in transport applications. Unlike petrol-driven 

engines, diesel variants are more suited to heavy machinery. 

They can be found powering most ships as well as trucks, 

buses and cars.

Positions 0-1:

Air is drawn into piston/cylinder arrangement at constant 

pressure.

Process 1–2 

Adiabatic (isentropic) compression of the air via a piston.

Process 2–3

Constant-pressure (isobaric) heat transfer to the working gas 

from an external source while the piston is at maximum 

compression. This process is intended to represent the 

ignition of the fuel-air mixture and the subsequent rapid 

burning. This is different from the Otto cycle, which is constant 

volume (isochoric) heating during this stage. In the Diesel 

cycle, the heat generated from air compression is sufficient to 

ignite introduced fuel vapours. In the Otto cycle a spark plug is 

used instead to ignite the fuel.

Process 3–4

Adiabatic (isentropic) expansion (power stroke).

Process 4–1 

Constant-volume process in which heat is rejected from the air 

while the piston is at maximum expansion.

Process 1–0

Air is released to the atmosphere at constant pressure.

Assume we have n moles of ideal gas, none of which 

are lost in the process. Input parameters are:

1
p Pressure of gas at position 1 in the cycle

Volume of gas at position 1 in the cycle

Volume of gas at position 2 in the cycle

Between positions 1 and 2 Between positions 4 and 1

Between positions 3 and 4

Between positions 2 and 3

1

2

V

V

To complete the cycle

Work done by the gas 

on the surroundings is 

the area enclosed by 

the cycle.

W pdV= 

1 1
( , )p V

in
Q

out
Q

1 1

1 1 1

1

1

1 1 1

1

1 1 1

1,2

2

1,2 1,2

1
1

0, 0

p V
p V nRT n

RT

V
pV p V p p

V

p V V
W

V

Q S



 





−

=  =

 
=  =  

 

  
 = −  
 −   

=  =

( )

( )

3

2

2

2 2

2 2 2 2

2 3

2 3 3 3

2,3 3 2

2,3 2 3 2

3

2,3

2

ln

P

T

P P
T

p p

p V
p V nRT T

nR

p V
p V nRT T

nR

Q nMc T T

W p V V

TdT
S nMc nMc

T T

=

=  =

=  =

= −

= −

 
 = =  

 


4 1

4 1 4 4

3

2 3 2

1

2 3 3

3,4

1

3,4 3,4

1
1

0, 0

p V
p V nRT T

nR

V
pV p V p p

V

p V V
W

V

Q S



 





−

=  =

 
=  =  

 

  
 = −  
 −   

=  =

( )

1

4

1

4,1 4 1

4,1

1

4,1

4

0

ln

V

T

V V
T

V V

Q nMc T T

W

TdT
S nMc nMc

T T

=

= −

=

 
 = =  

 


2 2 1 1

1

2 1

2

p V p V

V
p p

V

 



=

 
 =  

 

2 3 4 1

3

4 2

1

p V p V

V
p p

V

 



=

 
 =  

 

1
T Temperature of gas at position 1 

in the cycle

-ve since work 

is being done 

on the gas

2 2
( , )p V

2 3
( , )p V

4 1
( , )p V

1

2 3

4

Heat input to 

gas during 

combustion

Work done 

by gas

Heat output 

via exhaust

( )

( )

in 1,2 3 2

out 4,1 4 1

P

V

Q Q nMc T T

Q Q nMc T T

= = −

= = −

Rudolf Diesel

(1858-1913)

3
V Volume of gas at position 3 in the cycle

21
p

V

c

c


 = = + 1
2V

R
c

M


=

1

1

1

V

P

R
c

M

R
c

M







=
−

=
−
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Diesel engine cont....

Total work done is:

Define heat engine 

efficiency as the ratio of 

Work done by the gas to 

the heat input

( )

( ) ( )

( ) ( )( )

1,2 2,3 3,4

1 1

2 3 31 1 1

2 3 2

2 1

1

11 2 1 2

1 2

1

11 2

1 1
1 1

1 1 1
1 1

1 1 1 1
1

W pdV

W W W W

p V Vp V V
W p V V

V V

p V p r V s
W r r p r V s s

r

p V s
W r r r s r s

r

 


 



  

 

 




− −

−

−

−

−

=

= + +

      
   = − + − + −   
   − −      

  
= − + − + −   − −   

  
= − + − − + −  −   



( )( ) 

( )( ) 

( ) 

1 2

1 2

1 2

1 1
1

(1 ) 1 1 ( 1)
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The Diesel engine is typically

more efficient than a petrol 

(Otto) engine since the former

works on the basis of self 

ignition due to high 

compression. This ‘knocking’ is 

undesirable for petrol engines, 

so a lower r value is required.
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on the surroundings is 

the area enclosed by 

the cycle.
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Comparing Otto and Diesel heat engines
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