
Newton, the apple and the moon 

By looking at the sizes of shadows, the Ancient Greeks had reasoned the Moon must be about sixty Earth radii distant. This is impressively close to the modern measurements, 

which take into account that the orbital distance varies from perigee to apogee over time due to a slight eccentricity (i.e. not perfect circularity) of the orbit. Note also that the Moon 

is currently receding from the Earth at a rate of about 2.91 cm/year due to the tidal gravitational interaction between the moving water on Earth and the Moon. 
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Galileo had shown experimentally that all falling bodies on Earth should accelerate 

a constant rate. In modern terms, we would say that if air resistance, lift, upthrust etc 

can be ignored, all objects fall at about g = 9.81 m/s2 

 

From Galilean kinematics, one can predict how far an apple would fall in 1 second. 

Galileo Galilei 

1564-1642 
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Newton then asked the question: “How far does the Moon fall in 1 second?” 

 

If one assumes a circular orbit, the diagram on the left (scale highly exaggerated) 

represents one second of movement. From Pythagoras’ Theorem, we can calculate 

the fall distance in terms of the Earth’s Radii and the distance travelled by the Moon 

in one second. We shall assume over such short timescales the Moon travels in a straight line. 
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Expect the square of the fall distance to 

be negligible compared to the other terms 

In one second, the Moon will travel 
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Hence in one 

second the Moon  

will fall 
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Newton reasoned that to keep the Moon in orbit, a central force 

must act. He postulated that an inverse-square law would be 

appropriate, perhaps based upon how light rays might diverge 

from a circular source. 

 

From a modern perspective, we might refer to how the radioactive 

power per unit area F received from the Sun follows an inverse 

square law, since the power per unit area times the area of a 

sphere surrounding the Sun must equal the total power output (or 

Luminosity L) 
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Based on the inverse 

square law 
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Hence: 

which matches the expected 

distance the Moon falls 

to maintain its orbit. 

i.e. constant acceleration motion 

means a quadratic dependence 

of displacement upon time 

Earth-Moon separation 

Newton therefore 

proposed a Universal 

Law of Gravitation for 

the force acting between 

two masses separated 

by distance r 

2

GMm
F

r


i.e. gravitational force or weight is  

mass x gravitational acceleration* 

*It is assumed here that ‘gravitational mass’ in mg is the same as inertia 

in force = mass x acceleration. This deep connection shall be discussed later! 

Note for the Sun 
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Measuring G via the Cavendish experiment The Schiehallion experiment 

Analysis adapted from https://en.wikipedia.org/wiki/Schiehallion_experiment 
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In the published report it was the 

density of the earth that was 

reported 
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To make use of Newton’s Law of Universal Gravitation requires us to calculate the 

constant G, unless we are content with ratios as in the ‘moon-fall’ example. 
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The Schiehallion experiment, conducted by 

the Royal Society in 1774, measured the 

defelection of a long pendulum by the 

gravitational attraction of a mountain. If the mass 

of the mountain could be calculated then this 

experiment could be used to calculate the mass of 

the Earth. From this one can readily find G. 

Centre of mass 

of mountain 

Pendulum 

Stars 

The deflection  was measured 

by comparing the line of the 

pendulum to the positions of 

several stars. These observation 

were performed by Nevil 

Maskelyne. 

Applying Newton’s Law of Gravitation 

Earth mass 

and radius 

Mountain 

mass 

Calculating the mass of Schiehallion 

required a detail survey of the 

mountain. Its density was taken as 

2500 kgm-3, so an accurate calculation 

of volume was required. Charles Hutton 

performed this arduous mapping task, 

and invented contour lines in the 

process! 

The Schiehallion experiment 

reported that the Earth average density 

was about 4500kgm-3. A modern (2007) 

repeat of the experiment using a digital elevation model 

yielded 5480kgm-3. The actual value is 5515kgm-3. 

This means the Earth is not hollow, and must 

contain denser material at depth, possibly metallic. 

Note g can readily 

be measured, and a reasonable 

estimate of the radius of the Earth 

has been known since the time of 

Eratosthenes (276-195BC) 

A more accurate value of G can be 

found by performing a sensitive 

experiment in the laboratory, using a 

torsion pendulum. 

2

2

GmM
L

r

r
G

LmM



 

 

 

Balance the torsion force (the twist) on  

the wire with the torque resulting from the 

gravitational attraction of masses M and m 
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The torsion constant  can be 

found by measuring the period P 

of small oscillations of the 

pendulum 

Moment of inertia I of the 

pendulum about the wire 

axis 

We can now combine the expressions to find G Contour lines 

In the original 

experiment 

(see diagram 

below) 
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Kepler’s Three Laws of Orbital Motion 

 

Inspired by the heliocentric model of Copernicus, and using the astronomical data obtained by Tycho Brahe, Kepler discovered three laws of planetary motion. 
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Kepler II: Equal areas swept out in equal times 

Applying Newton’s Law of Gravitation we can show the rate 

of change of area A swept is a constant. 

1. The orbit of every planet in the solar system is an ellipse with the Sun at one of the two foci. 

2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time 

3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. 

 

The wording of Kepler’s Laws implies a specific application to the solar system. However, the laws are more generally 

applicable to any system of two masses whose mutual attraction is an inverse-square law. 

Kepler I: Orbits of the planets are ellipses with the 

Sun at one focus 

i.e. a circle has zero 

eccentricity. As eccentricity 

tends to unity, the ellipse 

becomes more elongated. 

 

Assume a b
without loss of generality – since 

we can rotate the ellipse! 
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Using Newton’s Law of Universal Gravitation to characterize circular orbits 
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If a planet orbits a massive object such as a star, to a good approximation 

the orbit is a perfect circle centred on the centre of the star. (In general 

in a two-mass closed system where relativistic effects can be ignored, 

both objects will orbit in an elliptical fashion about their common centre of mass 

or barycenter*). 

The only force binding the planet to the star is gravity, which is a central 

force i.e. acts entirely radially. If we ignore any mass asymmetries for the 

planet and the star, we can conclude that there will no tangential forces 

which might speed up the orbital rotation rate. 

The orbital velocity is therefore a constant. If the period is P and  

the orbital radius r, the orbital velocity is 

2 r
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If the planet is executing circular motion its acceleration is 

radially towards the center of the star and has magnitude 
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Applying Newton’s Second Law, and using 

the Universal Law of Gravitation 

Which is Kepler’s Third Law. Indeed the form 

is quite general. For a two body system the M is 

the total mass and the r is the maximum 

separation (the ‘semi-major axis’). 
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Radii of planets not to scale! 

Mercury, 
Venus, 
Earth, Mars 

Jupiter 

Saturn 

Uranus 

Neptune Kepler’s Third Law in action 
for the planets in the Solar 
System 

Kepler’s Third Law 
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An Astronomical Unit (AU) 

is the average Earth-Sun 

separation. 

Planet T / years r / AU m / Earth 

masses 

Rotation 

period 

/days 

Orbital 

eccentricity 

Mercury 0.241 0.387 0.055 58.646 0.21 

Venus 0.615 0.723 0.815 243.018 0.01 

Earth 1.000 1.000 1.000 1.000 0.02 

Mars 1.881 1.523 0.107 1.026 0.09 

Jupiter 11.861 5.202 317.85 0.413 0.05 

Saturn 29.628 9.576 95.159 0.444 0.06 

Uranus 84.747 19.293 14.5 0.718 0.05 

Neptune 166.344 30.246 17.204 0.671 0.01 

Pluto 248.348 39.509 0.003 6.387 0.25 

Sun mass 

[Note Pluto orbits in a different plane to the other planets, and is officially a ‘dwarf planet’, not a planet] 

*Note the barycenter of the Pluto-Charon system is actually outside Pluto 

Earth 

mass 

These orbit in the “plane of the ecliptic” 
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Gravitational field strength and gravitational potential 
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Newton’s Law of Universal Gravitation tells us the 

force F on a mass m at distance r from the centre of a mass M 
acts radially inwards along the line joining the centres of the masses. 

The gravitational field strength g is defined to be 

mF g
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The Newtonian model of gravity 

is that of a force which 

permeates all space, and whose 

magnitude and direction is 

computable from the spatial 

distribution of mass. 

Gravity is therefore a field of vectors – at any point in 

space we can draw an arrow pointing the direction of 

gravitational force, and with a length proportional to the 

strength. 

For many calculations it is useful to compute the 

Gravitational Potential Energy, that is a measure of 

the work done against gravity to move a particle to  

a particular point. This is useful when combined 

with the Law of Conservation of Energy, as we can 

work out the speed of a gravitationally bound object 

based upon scalar parameters, rather than needing to  

worry about directions of the vector quantities involved 

like force, velocity and displacement. 

The work done in moving 

an object of mass m from 

distance a to b against 

gravity is 
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The maximum work 

done is when b is infinite: 
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If mass m is launched 

radially from distance a  

with kinetic energy 

E, we would expect gravity 

to slow it down. If at an 

infinite distance away the 

mass has zero speed, then 

by conservation of energy: 

max

GMm
E W

a
 

But the total energy ‘at infinity’ must be zero 

since the mass has no speed and will not be 

affected by gravity. 

 

Therefore in order to conserve energy 

everywhere, the total energy 

at any radius must be zero everywhere. 

 

We can therefore define a gravitational 

potential energy (GPE) mf such that 
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In general the mass may not have enough 

energy to escape to infinity, or indeed have 

more than enough. Let the total energy be U 

i.e. it makes 

sense for GPE to 

be negative 
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For Earth, the escape velocity is: 
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It is interesting to work out the radius of a star of mass M such that 

the escape velocity exceeds that of the speed of light. Since this is 

not possible, the star becomes a Black Hole. This inequality defines 

the maximum radius of a Black Hole, which  is called the 

Schwarzschild radius. Alternatively, this is the event horizon, or 

‘point of no return’ from  the centre of a Black Hole. 

  

For the Sun to become a Black Hole ( M = 2 x 1030 kg, 

R = 6.96 x 108 m ) its radius would have to shrink to 

less than 2.97 km. This is a mind-blowing density of  

1.8 x 1019 kgm-3  

 

As enormous as this sounds, it is not entirely 

outrageous given the density of the nucleus of  

a typical atom is approximately: 

 

The definition of GPE we have adopted allows us to make a very general connection between field 

strength and potential 
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This provides up with a powerful tool if we wish to generalize the problem 

to many masses. We can sum the gravitational potentials and then 

take the negative gradient to find the field strength.  

In 2D or 3D we need the vector operator “grad” as potential f might vary 

with all x,y,z coordinates 
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In order to escape, the total energy of 

the system must be positive at an 

infinite distance from the body. In other 

words, it will have some kinetic energy 

and will never be gravitationally 

attracted back towards the body. 

 

For a mass m blasting off with velocity 

v,  it will escape the gravitational 

influence of M  if: 
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Note if the black hole density cannot exceed 

a nucleus density, this means we can 

determine a lower bound for the mass of a 

Black Hole. 
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...which is about six solar masses. Note since the black hole 

mass lower bound varies inversely with the square root of density, 

a black hole of mass more than 135 million solar masses, will have 

a density of water!* 

 

*The Supermassive Black Hole in the centre of the Milky Way has a mass of 

about 4.1 million solar masses https://en.wikipedia.org/wiki/Supermassive_black_hole 

http://www.eclecticon.info/
https://en.wikipedia.org/wiki/Supermassive_black_hole


Gravitational field strength inside and outside a uniform sphere 
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Now m(r) is the mass enclosed 

within radius r, hence 

To construct a generic plot define: 
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We can generalize our definition of 

gravitational potential to be 

Gauss’ Law of Gravity 
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where m is the mass enclosed 

within closed surface S, whose 

surface normal area vector is dS 
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This means that if a tunnel could be drilled 

through a planet of uniform density, Newton’s 

Second Law means for a mass dropped into the  

tunnel at rest at the surface 
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This is the equation of Simple Harmonic Motion (SHM) 
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So a 42 minute trip 

to Australasia from Europe 

without any jet fuel required... 
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Two-body Kepler problem with circular orbits 

The essential features of the more general Kepler problem can 

be obtained by considering circular orbits of gravitationally bound 

masses about a common centre of mass. 
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Centre 

of mass 

m

M

r

R

2

P


 

Since mass M gravitationally attracts mass m with a force along the lines connecting 

the centres (and vice versa), there is no net torque on the system. Hence the 

angular acceleration is zero and therefore the angular speed  of (both masses) is a 

constant. Let P be the orbital period.  

By Newton’s second law: 
2 2

2 2
,

GMm GMm
MR mr

a a
  

a R r 

 

 
 

2 2

2 2

2 2

2

2

2

,
Gm GM

R r
a a

G m M
R r

a

G m M
R r

a

 

 



  


  


 

 

 

 

2

3

2

2 3

2

2 3

4

4

G m M

a

G m M

P a

P a
G m M








 




 


Kepler’s 

Third Law 

We can now work out the energy of the combined system: 

   
2 2

1 1
2 2

2 2 2 21 1
2 2

GMm
E M R m r

a

GMm
E MR mr

a

 

 

  

  

By Newton’s second law: 

 
2 2

2 2

2 2 2 21 1 1 1
2 2 2 22 2

,

,

GMm GMm
MR mr

a a

GMm GMm
MR R mr r

a a

 

 

 

  

Hence: 

 

1
2 2 2

1
2 2

1
2 2

2

GMm GMm GMm
E R r

a a a

GMm GMm
E R r

a a

GMm GMm
E a

a a

GMm
E

a

  

  

 

  Note the total negative energy 

is indicative of a bound orbit. 

Parabolic or hyperbolic 

trajectories will have a positive 

total energy 

The rate of area swept by the masses is 

21
2

21
2

M

m

dA
R

dt

dA
r

dt







 d

R
Rd

dt Rd 

e.g. 
21

2

2 21 1
2 2

M

M

dA R d

dA d
R R

dt dt








 

From above: 

2 2 2 2

2 2

4 4 4 4
,

G m G M
R r

a a 
 

Hence: 

 2

3

G m M

a





2 2 2 2

21 1 1
2 2 24 4 4 3

2 2 2 2

21 1 1
2 2 24 4 4 3

M

m

dA G m G m
R

dt a a

dA G M G M
r

dt a a

 
 

 
 

  

  

The rate of area swept is therefore 

a constant for each mass, i.e. 

Kepler’s Second Law 

Note: 

3
2

3
2

1 1 1
2 2 2

2 2

1
2 4 3

2 2 3

1
2 4

2 2 3

1
2 4

1 1
2 2

( )

m

m

m

m

dA G M

dt a

dA G M a

dt a G m M

m M

dA G M a

dt a GM

dA
G M a GMa

dt




 
  

 

 
   

 

 

This is consistent with  

the more general result  

for elliptical orbits: 
 21

2
( ) 1-

dA
G m M a

dt
 

Include expression for 

radial acceleration 

for circular motion An obvious result for 

circular orbits ... but it is 

also true for more general 

elliptical orbits 

http://www.eclecticon.info/


Two body Kepler problem 

 

2 1

12 2

2 12 1

12 2 13

2 1

12 21

GMm

GMm


 



 


 

r r
F

r rr r

F r r
r r

F F

x

y
2

r
1

r

m M12
F 21

F

Newton II 

 

 

1 12

1 2 13

2 1

2 21

2 2 13

2 1

m

GMm
m

M

GMm
M



 




  


r F

r r r
r r

r F

r r r
r r

Define centre of mass vector 

m M

m M






1 2
r r

R

and separation vector 

 
2 1

r r r

Hence: 

1

2

M

m M

m

m M

 


 


r R r

r R r

3 2

( ) ( )
ˆ

G M m G M m

r r

 

 
    

2 1
r r r

r r r

 

m M

m M

m M m M






   

1 2

1 2

r r
R

R r r

From above 

1 12

2 21 12

1 2

m

M

m M



  

  

r F

r F F

r r 0

Therefore constantR

which means the centre of 

mass of the system moves at 

a constant velocity. Without loss 

of generality we can define a reference 

frame co-moving with the centre of mass. 

So from now on we will set  

Using the previous 

Newton II expressions. 

 

This means the two body problem 

is basically a one body problem, 

with the separation vector r being 

the displacement from a total 

mass m + M 

Angular Momentum 

1 2 2
m M

M M m m
m M

m M m M m M m M

   

    
         

       

1
J r r r r

J R r r R r r

R 0

R 0Note 

 

 
3

mM mM

m M m M

G M mmM

m M r

       
 

 
      

  

J r r J r r r r

J r r r r 0 J  J

is a constant for 

the system both zero 



r
r

r̂θ̂

   2

ˆ

ˆˆ

ˆˆ 2

r

r r

r r r r



  



 

   

r r

r r θ

r r θ

We will now solve the Kepler problem using plane polar coordinates 

 

 

 

2

2 2
22 4 2

2

ˆˆ ˆ

ˆ

mM

m M

mM
r r r

m M

mM
r

m M

m M
J r

m M







 


  


 


  


J r r

J r r θ

J r θ

J

Since angular momentum is a 

constant 
 

2 2

2

2 2 4

m M J

m M r





   

 

2

2

2

2

2 2

2 2 4 2

( )
ˆ

ˆˆ 2

2

( )

( )

G M m

r

r r r r

r

r

G M m
r r

r

m M J G M m
r r

m M r r

  








 

   

  


   

 
  

r r

r r θ

To simplify let us define 
1

u
r



2

2 2 2

2

2 2 2

1 1

du du dt u

d dt d

du d du dt d dt
u u

d u d d dt d dt d

d

u u u u
d u

d

  

 
 

   
  


 

  
  

  

 

 

 

 

2

2 2 3

1 2
,

r r
u r u

r r r
     

 

 

2 2

2 2 3 2 2

3 2

2 22

3 2

3 2 2 2

2 22

5 4

2 2

2 2
, 2

2
( )

2
( )

r u u
r r u r ur r u ur

r u u

m M Ju u
u u G M m

u u m M

m M Ju
u u u G M m

u m M

       


    


    

2 2
, 2

r r u
ru ru

r r u

 

 
      From above: 

2

2

2 2 2

2u
u u u

d u u

d




  

 

  
 

2 2

2 4

2 2

m M J
u

m M





 
2 22 2

4

2 2 2

2 m M Ju d u
u u

u m M d


   

by the Chain Rule 

Hence: 
   

2 22 22

4 5 4

2 2 2 2 2

2 2 2

2 2

( )

( )

m M J m M Jd u
u u u G M m

m M d m M

d u Gm M
u

d M m J





 
   

  


x̂

ŷ

ˆ ˆ ˆcos sin

ˆ ˆ ˆsin cos

 

 

 

  

r x y

θ x y
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2 2 2

2 2( )

d u Gm M
u

d M m J
 



If the orbits are ellipses, the equation of 

an ellipse in polar coordinates is 

 21

1 cos

a
r



 






r



2a

2b

Semi-

minor 

axis 

Semi-major axis 

(1 )a 

    
 

21 1 1
(0) 1

1 1

a a
r a

  


 

  
   

 

(assume use left focus) 

 

 

 

2

2

2

2 2

1 cos

1

sin

1

cos

1

u
a

du

d a

d u

d a

 



 

 

 

 












   

 

 

2 2 2

2 2

2 2

22 2

2 2

22

2 2 2

2

( )

cos 1 cos

( )1 1

1

( )1

1

d u Gm M
u

d M m J

Gm M

M m Ja a

Gm M

M m Ja

Gm M a
J

M m



   

 





 



  

 









Which is certainly a constant i.e. 

independent of polar angle. 

 

Since ellipses are solutions of  

2 2 2

2 2( )

d u Gm M
u

d M m J
 



we have therefore proved Kepler’s First Law 

21-b a 

Area dA swept 

out by an orbit 

radial in time dt is 

21
2

21
2

dA r d

dA
r

dt







 

 

 

   

  

  

  

2 2

2

2 2 4

2 2 2

2

2 2 2 2

2

2 2 4

2

2

4

2 2

21
2

1

( )

1

( )

1

1

1

m M J

m M r

Gm M a
J

M m

Gm M am M

m M r M m

G m M a

r

r G m M a

dA
G m M a

dt











 












 



 
 

   

   

So equal areas are swept out in equal times 

Kepler’s Second Law 

  

 

2 2

21
2

2

2 3

1

1

4

ab a
P P

dA G m M a
dt

P a
G m M

  






  

 




Since equal areas are swept out in equal times, the orbital period is the area of the 

ellipse divided by the rate of area sweep 

 Kepler’s Third Law: The 

square of the orbital 

period of a planet is 

directly proportional to 

the cube of the semi-

major axis of its orbit. 

Summary of orbital dynamics 

 

 
 

 

 

  
 

1

2

2

2

2

2

2 2

2

2

2

1

1 cos

ˆ

ˆˆ

1 1 ˆˆsin
1 cos

1 sin 1 ˆˆ
1 cos

sinˆ ˆ
1 cos

1 cos sinˆ ˆ1
1 cos1

M

m M

m

m M

a
r

r

r r

a
r

r

r r
r r

r

r

G m M a
a



 




   

 

 
 

 

  

 

   


 

 


 









 


  



  


 
  

 

  
    

  

r R r

r R r

r r

r r θ

r r θ

r r θ

r θ r

r θ r

r  
 

 

 
 

 

2

2

sinˆ ˆ1 cos
1 cos1

ˆ( 0) 1
1

G m M

a

G m M

a

 
 

 

 


  
   

  


   



θ r

r θ

  2 21r G m M a   

2

( )
ˆ

G M m

r


 r r

  

  

 

    

 

    

 
   

0

0

0

0

2 2

2 2

2
2 2

2
2

2
2 2

2
2

3
3 2

2

1

1

1

1 cos1

1

1 cos1

1

1 cos

d
r G m M a

dt

r d t G m M a

a d
t

G m M a

a d
t

G m M a

a d
t

G m M




















 

 

 

 

 

 

 

  

   


 

 


 

 


 

 









Evaluate this numerically 

Displacement 

Velocity 

Acceleration 
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Example two-body simulation: Pluto and Charon 

Charon 
21

22

1.586 10 kg

606km

19,596km

1.303 10 kg

1187km

6.387days

0.00

C

P

m

R

a

M

R

P



 





 







https://en.wikipedia.org/wiki/Charon_(moon) https://en.wikipedia.org/wiki/Pluto 

http://nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html 

Pluto 

Alternative simulation 

22

22

1.0 10 kg

20,000km

3.0 10 kg

3.981

0.6

m

a

M

P



 



 





Planet Y 

Planet X 

It looks like the orbits might collide... 

But the ‘intersection points’ will occur at 

different times for each planet. Plotting 

the separation magnitude r vs time shows 

how far apart the planets get over each 

orbit. 

For orbits with zero eccentricity 

the separation will be constant 

i.e. the separation vector r races a 

circular orbit. 

The Spacecraft New Horizons 

made a 12,500km approach of Pluto 

on July 14 2015. 

Mathematics topic handout  - Mechanics – Kepler’s Laws and Universal Gravitation.  Dr Andrew French. www.eclecticon.info  PAGE 10 

https://en.wikipedia.org/wiki/Charon_(moon)
https://en.wikipedia.org/wiki/Pluto
http://nssdc.gsfc.nasa.gov/planetary/factsheet/plutofact.html
http://www.eclecticon.info/


Energy in the Kepler problem 

x

y
2

r
1

r

m M

 

 
 

 

 
 

   

1

2

2

2

2 2
22

22

1

1 cos

sinˆ ˆ1 cos
1 cos1

sin
1 cos 1

1 1 cos

M

m M

m

m M

a
r

G m M

a

G m M

a



 

 
 

 

 
 

  

 


 







  
   

  

 
   

   

r R r

r R r

r θ r

r

 
 

     

 

 
 

   

 

 

2 2
1 1
2 21 2

1

2

2
1
2

2 2
2

1
2 22 2

2 2
2 2

22 2 2

sin 1 cos
1 cos 1

1 11 cos

1 cos 1 cos 2 1 cossin

2 1 1 11 cos

GMm
E m M

r

M

m M

m

m M

mM GMm
E

m M r

G m MmM
E GMm

m M a a

GmM
E

a

   
 

  

      

   

  

 





  


  
    

    

    
     

    

r r

r r

r r

r

   

 

 

2 2 2

2

2 2 2 2

2

2 2 2 2

2

2 2 2

2

1 cos sin 2 1 cos

2 1

1 2 cos cos sin 2 2 cos

2 1

1 2 cos cos sin 2 2 cos

2 1

1 cos sin

2 1

2

GmM
E

a

GmM
E

a

GmM
E

a

GmM
E

a

GmM
E

     



       



       



  



      
   

  

       
   

  

      
   

 

   
   

  

 
a

Recap of previous results 

Total energy is the sum of 

the kinetic energy of the 

masses and the gravitational 

potential energy 

r

 



2 1
r r r

r

r
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Hence: 

 

  

2
1
2

2
1
2

2

2

1 1

2

2
2

2

2

GmM mM GMm

a m M r

mM
GMm

m M r a

a r
G m M

ar

G m M a r

ar

  


 
  

  

 
   

 

 


r

r

r

r

Extra:  Quick derivation of Kepler I and angular 

momentum without 1/u substitution 

   

 
   

 
 

 
 

 

 

 

2 2

2 2

2 2

2 2 2

2

2 2

2 2 2

2

2 2

2 2 2 2

1 1
cos 1

1 cos

1 sin sin

11 cos

2 sin sin cos

1

2 sin 2 sin cos

1

cos

1

a a
r

r

a r
r

a

rr r r
r

a

m M J
rr r r

m M r
r

a

m M J
r

m M a r

 
 

 

     


 

      



     



 



 
   



 
   



 
  



 
   

 
   




   



   

 

 

 

 
   

 

 

 

22 2

2 2 2 2

2 2

2 2 3 2

2 2 22 2 2

2 2 3 2 2 3 22 2 2 2

2 2

2 2 2

2 2 2

2

1
1

1

( )

( )

1

( )
1

1

a m M J

r m M a r

m M J G M m
r

m M r r

m M J m M J m M J G M m

m M r m M r rm M a r

m M J
G M m

m M a

Gm M a
J

M m











  
  

  
 

 
 

   
   




  




 



   

 

 

2

2 22 2
22 4 2 2 2

2 2 2 2

ˆ ˆˆ ˆ
mM mM mM

r r r r
m M m M m M

m M Jm M
J r r

m M rm M

 

 

      
  


    



J r r r r θ r θ

J

   

 

2

2

2

2

2 2

2 2 4 2

( ) ˆˆ ˆ, 2

( )
, 2

( )

G M m
r r r r

r

G M m
r r r r

r

m M J G M m
r r

m M r r

  

  


     


     

 
  

r r r r θ

i.e. r dependencies cancel! 

This means the polar equation 

of the ellipse is a solution of the 

Newton II expression 
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