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Standard form 
 

Very small and very large quantities are tedious 
(and error prone) to write out using full decimal 
notation.  
 
Standard form:  e.g.                           is an integer 
between 1 and 9 followed by  N - 1 digits, where N 
is the number of significant figures of the quantity.  
 
The power of 10 (the ‘exponent’) gives you an 
immediate sense of scale. 

116.67 10



Precision.  A precise measurement is performed 
to a high number of significant figures. This means 
the random error in the measurement (i.e. the 
standard deviation) is very small compared to the 
mean value. In calculations, one should quote a 
answer to the worst precision (i.e. lowest number 
of significant figures) of the input values.   
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i.e. 2 s.f. 



Accuracy relates to the degree of systematic 
error. A time of 12.345s may be very precise, but 
could easily be 2.000s out from a true value of 
10.345s if there is some form of accidental offset 
in the timing system. 



Mean and standard deviation 
 

If you have a sample of data, which you believe represents a quantity x 
subject to random error: 
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is an unbiased estimator of the mean value of the quantity x. 
N is the number of measurements, and xi is the ith measurement. 
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is an unbiased estimator of the error in this measurement. This is not 
quite the standard deviation, which involves an N factor rather than  
N - 1 in the fraction preceding the sum. 

The measurement x can therefore be quoted: 





Errors.  All measurable quantities will be subject to uncertainty. If quantities x,y....  

are within a known range, we can use upper and lower bounds to determine the 
range of combined quantities.  
 

e.g.     
 
 

Therefore: 
 
 

Note the mixing of upper and lower bounds in the last example. 
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Example: 1.23 4.56, 7.89 11.2

7.89 11.2

4.56 1.23

0.616 2.721
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Laws of Errors – but only if you think errors are normally distributed 
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Example: 


