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Kinetic Theory and molecular transport 

Kinetic Theory is essentially a statistical theory of the motion of molecules. It can be used to explain bulk properties of matter since the sizes of molecules (or 

atoms) are very small compared to human-sized macroscopic objects like vials of liquid or bottles of gas. In other words, the number of molecules and interactions 

in most practical scenarios is a huge number. In Kinetic Theory, we consider average physical quantities such as speed, pressure, heat flux etc, since the huge 

number of molecules makes a mechanical calculation impractical. Inspired by the observation of Brownian motion, we shall assume molecular motion is a 

random process. This assumption of randomness will enable us to calculate average physical quantities based upon knowledge of their probability distributions. 

 

Note a cubic metre of densely packed atoms will have about                                atoms, since the size of an atom is about 10-10 m. 

 

Indeed a mole of a chemical substance (e.g. about 18 grams of water) is defined to have Avogadro’s number of molecules 

 

 

Notes inspired by The Feynmann Lectures on Physics (vol 1 43-3), http://hyperphysics.phy-astr.gsu.edu/hbase/kinetic/menfre.html#c1  

and the Sixth Form Physics course taught at Winchester College by Dr John Cullerne 
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Brownian motion – a random walk 

Brownian motion, initially observed as the random jittering of pollen grains in a microscope slide, 

is due to the random jostling of molecular motion. In the base of the pollen grains, it is the smaller 

(invisible) air molecules which are colliding at random. How far will a given particle move in a specified 

time, given its motion is random? To analyse this in the simplest situation, let us consider motion 

in one direction in N steps of fixed length l. The caveat is that each step is either forward or backwards, 

and the direction is ‘chosen’ randomly. 

 

The total displacement is                       where   
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A sensible measure of the distance travelled is the root-mean-square (RMS) displacement 
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Note in this MATLAB simulation both the angle of movement  

and the step length are both uniformly distributed. The 

angle between 0 and 360o, and the step from zero 

to the maximum of unity. 

If the average molecular speed is      , the number of steps in t seconds is  v
v t

N
l



Hence the random walk distance in t seconds is predicted to be: 

2x l N l v t 

The step size l can be associated with the mean free path between molecular 

collisions. We can define the mean free path to be the average distance travelled by 

a molecule in time t divided by by the number of molecules it will likely collide  

with in that time. 
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The interaction volume is root 2 larger because all molecules 

are in relative motion. Hence the length of the ‘interaction tube’ 

is proportional to the average relative speed 
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We can determine the mean free path for an ideal gas 

by using the Ideal Gas Equation 
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If we divide this by the particle diameter d we 

arrive at Knudsen’s number (Kn). This dimensionless 

constant determines whether our statistical mechanics 

argument is valid, or whether a ‘continuum’ concept is 

needed. 

 

The latter model is what is used to describe much of 

fluid mechanics i.e. where we consider the fluid as a 

continuously varying entity rather than a series of 

discrete, and randomly moving, molecules colliding. 
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So a statistical argument is justified 

Mean free path and the Beer-Lambert Law 

An alternative interpretation of the mean free path 

is to consider the attenuation of a molecular beam 

which passes through a volume randomly filled 

with n absorbing molecules per unit volume. 
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The mean free path l can be thought of as the mean distance 

before a absorption: 
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This is very similar to the result derived 

on the previous page 
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If we consider a beam moving through 

stationary molecules then we can omit 

the square root of two factor as we don’t 

need to consider relative velocity. 

In summary: /
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Attenuation of a molecular beam passing 

through a molecular medium, where l is  

the mean free path 
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Diffusion and Fick’s Law 

A molecular concentration gradient can drive diffusion of molecules. 

This is particularly important across cell membranes in biology. 

The molecular flux of diffusing molecules J (molecules per second 

per unit cross sectional area) is, in the x direction: 
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This allows the diffusion constant in the usual expression 

of Fick’s Law to be expressed in terms of RMS molecular  

velocity and mean free path 
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i.e. molecular flux 

is proportional to 

concentration gradient 

change in molecules 

per unit volume 

between collisions 

‘one second of 

molecules’, per 

unit area cross 

section, in the x 
direction 
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Particle flux in a ‘Boltzmann gas’ is the number of 

collisions expected per unit area upon a surface 

in contact with the gas. 

 

Assume a gas has n particles per unit volume. 

 

Consider a surface centred at the origin of the 

x,y plane, whole normal is the z axis. The number of 

particles that impact the surface (of unit area) in one 

second  (i.e. the particle flux) is:  
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I   Fraction of particles that are arriving from polar angle 

      from the z axis and  anticlockwise from the x axis. 

    This is the ratio of an area element of a unit sphere divided 

    by the area of the unit sphere. This is essentially a  

    ‘solid angle’ 

 

II  Projection of (incoming) velocity in the z direction. Note 

     we don’t include outgoing particles, hence the range of   

     is 0 to /2 radians, not . 
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Fick’s Law can also be applied to the transport of heat based on a temperature gradient (Fourier’s Law of conduction) 

and transport of momentum in a fluid with a velocity gradient (we call this viscosity) 
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Molecular flux is now rate of change of 

momentum per unit area i.e. force per 

unit area. 

 

n becomes momentum per unit volume 
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Note in this case viscosity results 

from a velocity gradient 

perpendicular to the fluid flow 

Molecular flux is now heat flux. cV is the 

specific heat capacity and T the 

temperature. 
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i.e. stress (fore per unit area) 

is proportional to the shear velocity 

The constant of proportionality is 

the viscosity 

Newtonian stress-strain rate equation 

in fluid flow 
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Fick’s Law: 

Molecular flux 

is proportional 

to concentration 

gradient 
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Fourier’s law of conduction 

i.e. heat flux is proportional 

to temperature gradient 
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Pressure from kinetic theory – a simplified derivation that gives the  

correct more general result! 

Assume particles collide elastically with the walls of a container. 

Since in an elastic collision the speed of wall approach = speed of recession  

the impulse exerted on the walls in each x,y,z direction per collision is: 

, , , ,2x y z x y zp mv 

If we assume particles are contained within a cube of side a, the time 

between collisions with a given wall is: 
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The factor of two is there because in any or the x,y,z directions, a particle 

must collide with the opposite wall before rebounding to make a second 

collision with a given wall. 

The total average force exerted on a given wall of area a2 is the average 

rate of change of momentum times the number of particles N in the cube 
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Now particle speed is given by 
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Hence since all velocities are deemed to be random, the mean squared speed is 
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Therefore average pressure on each wall is: 
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Hence: 

Pressure from kinetic theory – using Boltzmann statistics 
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I    Fraction of particles that are arriving from polar angle 

       from the z axis and  anticlockwise from the x axis. 

     This is the ratio of an area element of a unit sphere divided 

     by the area of the unit sphere. This is essentially a  

     ‘solid angle’ 

  

II   Projection of (incoming) velocity in the z direction. Note 

      we don’t include outgoing particles, hence the range of   

      is 0 to /2 radians, not . 

 

III  Projection of impulse applied to the x,y plane unit surface in the z direction .  

      Purely elastic collisions are assumed . 

 

IV  Number of particles with velocity between v and v + dv 
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Ammonia gas 

molecules 

mass air filled test tube 

of length L 

HCl gas molecules 

mass 

v u

Diffusion of 

ammonia and 

hydrogen chloride 

Ammonia and hydrogen chloride gas 

are at the same temperature as the 

air molecules in the tube. This means their 

average kinetic energy is the same 

white precipitate formed when 

ammonia and hydrogen chloride 

gases meet 
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The precipitate is formed after t seconds at a distance 

x from the ammonia end of the tube 

Molecular masses 

NH3     17 

HCl      36.5 

Therefore expect: 

36.5
1.47

17

x

L x
 



i.e.  about 3:2 

Graham’s law of molecular diffusion 

Kinetic theory shows us the diffusion distance of molecules in thermal equilibrium varies inversely to the square root of their molecular weight. 

 

To explain, consider an air filled tube with Ammonia gas introduced at one and, and Hydrogen Chloride gas introduced at the other. 

Thomas Graham 

1805-1869 
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