
KINETIC THEORY & THE BOLTZMANN FACTOR                                      AF Oct 2020 

The physical model of heat, thermodynamics, is in essence a theory of the statistical average motion of a large number of 

microscopic particles which constitute the macroscopic entity (e.g. a litre of liquid water) being studied. 

 

The basic idea is that temperature is proportional to the mean kinetic energy of molecules, and heat is the total amount 

of energy transferred  (e.g. to your hand when you insert it into a warm bath). Temperature is therefore a microscopic 

concept (e.g. an average quantity of molecules) whereas heat is a macroscopic quantity.  

 

Kinetic Theory is essentially a statistical theory of the motion of molecules. It can be used to explain bulk properties of 

matter since the sizes of molecules (or atoms) are very small compared to human-sized macroscopic objects like vials of 

liquid or bottles of gas. In other words, the number of molecules and interactions in most practical scenarios is a huge 

number. In Kinetic Theory, we consider average physical quantities such as speed, pressure, heat flux etc, since the huge 

number of molecules makes a mechanical calculation impractical. Inspired by the observation of Brownian motion, we 

shall assume molecular motion is a random process. This assumption of randomness will enable us to calculate average 

physical quantities based upon knowledge of their probability distributions. 

Note a cubic metre of densely packed atoms will have about  
3

10 301/ 10 10  atoms, since the size of an atom is about  

10
-10 

m. Indeed a mole of a chemical substance (e.g. about 18 grams of water) is defined to have Avogadro’s number of 

molecules 
236.02 10

A
N   . 

 

Random walk and mean free path.  If the average molecular speed is v , which might be the RMS speed 
2v , the 

RMS distance travelled in t  seconds is: 
2x l N l v t   where N  is the number of collisions between 

molecules, and the mean free path l  is the average distance between collisions. 
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d n
  where d  is the molecular 

diameter and n  is the number of molecules per unit volume. For an ideal gas: 
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  since the number of moles is 
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nV
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 and hence: 
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N k T
   .  Knudsen’s number (Kn) is the ratio Kn l d . i.e. the mean free path in 

terms of molecular diameters. If Kn is large this implies statistical mechanics is the most appropriate model of molecular 

motion. If Kn is much closer to unity, then continuum fluid mechanics is required. i.e. distinct particles making random 

collisions where we can ignore molecular sizes is not appropriate. 

 

By considering elastic collisions of molecules with the walls of a container, the pressure p  of a gas of density   is 

21
3

p v  where 
2v is the mean-squared molecular speed. 

 

Boltzmann factor.  If a large number of particles are exchanging energy in a random manner, the probability that a particle 

will have energy between   and d   is proportional to Bk Te




 where T  is the absolute temperature (in K) and 
B

k  is 

Boltzmann’s constant 
23 2 -2 -11.381 10 m kgs K

B
k   . 

 

This leads to the Maxwell-Boltzmann distribution of 

energies, and molecular speeds, if all energy is kinetic 
21

2
mv  . m  is the molecular mass.  Motion is assumed 

to be x,y,z (3D) translation only. 
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The mean energy is: 
2 31

2 2 BE mv k T      i.e. 1
2 Bk T  for 

every degree of freedom of molecular motion. This is the                  

‘theory of equi-partition’.  Note also: 
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k T
v v

m
  .                                                           NOTE:   
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Entropy 

In Classical Thermodynamics, Rudolf Clausius proposed the Second Law, which is most simply stated as “for any physical 

process, the total entropy of the Universe must increase.” The change in entropy S is defined as the ratio of the reversible 

heat change to the absolute temperature. 
dQ

dS
T

 . 

 

Ludwig Boltzmann and Josiah Gibbs proposed a statistical basis for entropy. The most general form is the Gibbs definition: 

lnB i i

i

S k p p    where 
i

p  is the probability of each microstate of a given system. 

If all microstates (i.e. the energy configuration of all the constituent molecules) are equally probable, ln
B

S k W  where 

W  is the number of distinct microstates, or “the number of ways of arranging energy in a system.” 

 

 

Question 1 

(i) Calculate the mean free path of a ideal gas molecule of diameter 0.3nm at sea-level, where pressure is 1atm = 

 101,325Pa and temperature is 20
o
C. Calculate the Knudsen number. Is a statistical approach to analyzing the 

 motion of the gas molecule valid? 

(ii) Use the equipartition result 
2 31

2 2 B
mv k T  to work out the RMS speed (in m/s) of an oxygen (O2) molecule, 

 which comprises about 21% of the air we breathe (by volume). As in (i), let the temperature be 20
o
C. The mass of 

 an oxygen molecule is: 
2715.999 1.661 10 kgm    .  

(iii) If the RMS distance travelled by a molecule in time t   is 
2x l N l v t  , combine the results in (i) and 

 (ii) and sketch a graph of how far an oxygen molecule may travel between 0 and 60s. 

(iv) Two colourless gases X and Y, whose molar masses are in the ratio 17 : 36.5 are released from opposite ends of a 

 1.00m tube. They diffuse along the tube until they meet. At this point they react and produce an opaque cloud. If 

 the temperature of the system is constant, calculate the distance from the X end of the tube where this cloud occurs. 

 What would happen to the position of the cloud of molecule Y was 3M   times more massive? Suggest 

 molecules for the gases X,Y. 

(v) A gas consisting of molecules of diameter 0.4nm is contained in a sealed syringe. The initial pressure is 1atm = 

 101,325Pa and the temperature is 18
o
C. If the gas is compressed slowly such that temperature does not change, at 

 what pressure (in atm) does the mean free path equal the molecular diameter? Comment on the state of matter of 

 the molecules at this point. 

(vi) By considering elastic collisions in x,y,z directions of N  gas molecules of mass m  trapped in a cubical box of 

 side length a , show that if motion is random, the average pressure exerted on the walls of the cube is  
21

3
p v

 where 
2v is the mean-squared molecular speed and  is the density of the gas. If the density of air is 1.23kg/m

3
, 

 calculate the RMS speed of air molecules if air pressure is 101,325Pa. 

 

(vii) The time t  for a chemical reaction to complete varies with temperature according to a Boltzmann factor. 
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RTAe
t




  where   is the ‘Activation energy’, T  is the absolute temperature, 
-1 18.314Jmol KR   and A  is a 

 constant. If 30.0st   at 300KT   and 7.0st   at 340KT  , calculate   and A . 

 

(viii)  Prove the following results using the Maxwell-Boltzmann molecular speed distribution: 
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Question 2 

The boiling point of water 
boil

T  varies with atmospheric pressure p  using an 

equation that contains a Boltzmann factor: 0
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boil

L

R T T
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 
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    where 

0
101,325Pap   and 

0
373KT  , i.e. the boiling point of water at a pressure 

of one atmosphere. The molar gas constant is 
1 -18.314Jmol K .R    

By potting a suitably linearized graph, use the following data to calculate the 

latent heat of vaporization of water in kJ/mol. Compare your answer to the 

official value of 
-143.8kJmol .

vap
L    

 

Question 3 

(i)  Skunk spray is composed of three thiol compounds, one of which is (E)-2-butene-1-thiol 

which has a molecular weight of 88.2g/mol. A skunk releases this chemical 10.0mx    

from a tourist. Assume the molecular weight of air is 29g/mol 

 The temperature is 28
 o
C, and pressure is 

510 Pap   

 The skunk musk and air are in thermal equilibrium, and the thiol molecule reaches the 

tourist's nose via diffusion 

 The internal energy of one mol of gas is 3
2

RT  where 
-18.314Jmol KR    

 

Calculate the RMS speed v  of air molecules, then find the RMS speed of the thiol molecule. How long will it take /s for the 

spray to reach the nose of the tourist? Does it seem a bit quick? 

(ii) The diffusion distance of the thiol molecules is x lvt  where the mean free path 
22

B
k T

l
d p

  . What is the 

emission-to-sniff time  t now? Take a sensible molecular size 0.5nmd  .  

 

Note if you use these equations you will get a very strange result! Do all the skunk musk molecules have to undergo a 

random walk from the skunk to the tourist, for the tourist to smell the skunk? 

 

Question 4 

(i) Show that the pressure change in a column of ideal gas of density   as one gains dh  in altitude is: 

dP gdh    

(ii) If the atmosphere is isothermal, i.e. at constant temperature T , and comprised of ideal gas, show that: 
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 where m  is the mass of a gas molecule and 
0

P  is the atmospheric pressure at 0.h    

 Sketch the variation with pressure with height, and calculate the altitude in m which corresponds to a 50% 

 reduction in atmospheric pressure. Assume 
o10 CT  .   



Question 5 

Boltzmann’s definition of Entropy states: ln
B

S k W  where W  is the number of ways or ways of arranging energy in a 

system. Consider a simple system of N  containers and M  quanta of energy (each of energy  ). Using lines | to represent 

the boundaries of the containers and x to represent the energy quanta, a 3, 2N M   system could have the following 

states: 

#1  | xx  |    |    |  ,       #2 |    |  xx |     |,        #3  |    |    |  xx  |  ,        #4  | x  |  x  |     | ,       #5  |    |  x  |  x  |  ,       #6  | x  |    | x   |  

i.e.  six ways. Since N  containers mean 1N   vertical lines |, and two | must always represent the boundaries, the number 

of ways of arranging M   in N  containers is: 
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So when 3, 2N M  , 
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A system of ten energy quanta shared among five atoms is mixed with a system of five quanta shared among ten atoms. If 

all atoms are identical, calculate the entropy change S  in units of 
B

k following the mixing of the systems. 

 

Question 6 

The probability of a beam of molecules travelling through an identical molecular medium surviving distance between x and 

x dx  is given by: ( )

x

le
p x dx dx

l



 , where l  is the mean free path. This is called the Beer-Lambert Law.  

(i) Sketch ( )p x  vs x .  

(ii) Show that 
0

( ) 1p x dx


  and 
0

[ ] ( )E x xp x dx l


  .  

(iii) Calculate the probability that x l .  

 

 

  



Question 7 

A system consists of randomly interacting particles that can either be of zero energy, or energy  . 

The Boltzmann Factor concept states that the probability of a particle in the system having energy E is: 

/( ) BE k Tp E Ae  

(i) Show that 
/

1

1 Bk T
A

e 



  

(ii) Show that the mean energy per particle is:     
/ 1Bk T

E
e





  

(iii) Sketch E vs T and comment on the result. Hint: What happens when T is very large, or very small? 

(iv) In Einstein's model of a solid, the solid is assumed to vibrate at a fixed frequency f .  Borrowing an idea from 

 Black Body radiation (see the QM course!) 

/ 1Bhf k T

hf
E

e



 

 Planck's constant 
346.63 10 Jsh     

 (a) Sketch E vs T.  You will probably want to first evaluate 
dE

dT
 and work out what this tends to as 0T   

  and  T  .  

 (b) The molar heat capacity is given by 3
A

dE
C N

dT
  . If not already done so, evaluate this using calculus 

  and sketch C vs T. Show that as T becomes large, the molar heat capacity tends to a fixed value of 3R . 

 

 Hints: 

 You need to prove that: 
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