DRasa

METEX M-

<u>Pentensit</u>

teo

ensor

Dr Andrew French. October 2020.

TEACHER NOTES

Light Dependent Resistor (LDR)

'Blue-top resistors' (100Ω,330Ω,1kΩ....)

Lux meter (to calibrate the LDR)

Equipment setup

LDR mounted in a terminal block

'Blue-top' resistors

Light meter

Light meter sensor, colocated with LDR during calibration & testing

Task1: Calibrate the LDR i.e. determine resistance vs lux level

- Co-locate LDR and light sensor.
- Connect a multimeter across the LDR and turn it into OHM (i.e. resistance mode).
- Vary the light level and carefully record *simultaneous* measurements of resistance and lux level.
- Vary the light intensity by moving the lamp, and then covering the LDR with your hand.

Be still when peering at the instruments – your presence will probably affect the light level.

Memorize a pair of measurements and then write them down/type into a spreadsheet.

Once you move, the measurements will probably change!

Empirical formula (power law curve fit in Excel)

 $(R/\Omega) = k(\phi/\ln x)^a$ k = 18,564 a = -0.572

Task2: Set up LDR in a potential divider circuit, and use it to measure lux level from voltage

 $R = k\phi^a$

$$\frac{V}{V_0} = \frac{R}{R + R_0}$$
$$\left(R + R_0\right) \frac{V}{V_0} = R$$
$$R_0 \frac{V}{V_0} = R\left(1 - \frac{V}{V_0}\right)$$
$$\therefore R = \frac{R_0 V / V_0}{1 - V / V_0}$$
$$R = \frac{R_0 V}{V_0 - V}$$

$$k\phi^{a} = \frac{R_{0}V}{V_{0} - V}$$
$$\phi = \left(\frac{R_{0}V}{k(V_{0} - V)}\right)^{\frac{1}{a}}$$

a = -0.572k = 18,564

Blue top resistor resistances /ohms

Reading	Actual		
100	102.4		
330	334		
1000	998		
2200	2190		
4700	4740		
1000	1002		
22000	2255		
47000	4650		
100000	10030		
330000	344000		
1000000	991000		

Precise measurement of 'blue top' resistors using a multimeter in OHM mode.

What fixed resistance should I pick?

If it is too high, most of the cell voltage will be across the fixed resistor, meaning only a small change in LDR voltage (from near zero) over a range of light levels. If it is too small, most of the voltage will be across the LDR, resulting in a small change from near V_0 over a range of light levels. There is clearly a 'happy medium' of a maximum variation of V which will correspond to the resistance of the LDR for 'typical' light levels. *There probably is no absolute optimum however*, particularly since the LDR resistance increases with a steep gradient as light levels drop.

Nº × 5.01

٤.

Ą

VR

Task 3: Try out the sensor circuit: i.e. measure voltage for a known V_0 and R_0 , and calculate lux level from this. Compare to direct measurement using the light meter.

V0 /volts	2.1	2.1	2.1	2.1
V /volts	0.677	1.225	1.82	1.03
R0 /ohms	334	334	334	334
phi /lux	4117	624	43	1201
actual /lux	4050	440	120	1536

Lux calculator from potential divider

Use a voltmeter to find the cell voltage V_0

In this case, the model appears to work best at more intense light levels

a = -0.572 k = 18,564