A recipe for finding lines of best fit
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Summary: Line of Best Fitfor: | Y = [TIX 4+ C N data point pairs (X,y)
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Summary: Line of Best Fitfor: | Y = [TIX N data point pairs (X,y)
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Correlation & Linear Regression
Perhaps the most important analytical tool in the physical sciences is the ability to
quantify the validity of a model relating a set of measurable parameters. The idea is as follows:

(1) Rearrange the model in such a way that it becomes a linear equation of the form y = mx + ¢
(2) Plot experimental (x,)) data on a graph and determine the line of best fit through the data.
(3) Determine gradient m and vertical intercept ¢ from the line of best fit.

(4) Determine the standard deviation of both gradient m and intercept ¢, and a quantitative measure
of how good the fit is (this is called the product moment correlation coefficient).

To determine the line of best fit*, let us sum the squared deviations of (x,)) from the line of best fit.
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To determine the line of best fit*, let us sum the squared deviations of (x,)) from the line of best fit.
(x.,)

y=mx+c

Line of best fity = -4.14x + 5,62
Am =0.0783, A¢ = 0.56, r = -0.983

Line of bast fit of the form:

Using the (negatively correlated) data on the right, we can plot a surface of S vs m and ¢ values _
We can see this has a minimum at a particular (m,c) coordinate. (Note for clarity the plots below . . "z
are of —logs$, so the (m,c) coordinate corresponds to the peak, i.e. maximum, instead). )
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The minimum of S can be found by differentiating .S with respect to m and ¢, and setting
these expressions equal to zero. Since S is a function of two variables we must use partial derivatives.
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cov[x, ]

If we repeat the analysis for the line: x =My +d = M =

If this was the same line but rearranged. Viy]

Hence define a product moment correlation coefficient:

_ cov[x, )] This will be +1 for a perfect positive correlation
VfV[x]V[y] and -1 for a perfect negative correlation (i.e. $ = 0 in both cases).
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It is possible to show™* that the standard deviations (i.e. ‘errors’) in m and ¢ are:
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This is very useful in the
physical sciences, as the
errors in m and ¢ will often be
the uncertainties in model
parameters (e.g. the strength
of gravity...)

s 1s the unbiased estimator of the standard deviation in the y values from

the line of best fit. The N-2 factor is due to two parameters (i and ¢) being
used in the calculation, which are of course derived from the sample data
themselves as shown above.

*http://mathworld.wolfram.com/LeastSquaresFitting.html



http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html

In many situations a direct proportion is asserted between y and x. The

computation of the line of best fit (which passes through (0,0) follows a
similar argument to the one above.
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Summary: Line of Best Fitfor: | Y = [TIX 4+ C N data point pairs (X,y)
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