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Abstract

The injection of a fluid containing a dissolved reactive species into a porous formation

consisting of an inert matrix, a precipitate of reactive species and a saturated solution

of the reactive species is investigated. A fluid front will initially propagate through the

medium marking a sharp interface between the injected and formation fluids. If the

injectate is undersaturated a dissolution reaction will occur upstream of the fluid front

leading to a growing region depleted of precipitate. The interface between this and the

newly saturated fluid shall be defined as the depletion front. If injectate and formation

initially differ in temperature a third thermal front shall propagate through the porous

medium at a rate necessarily slower than the fluid front since heat must flow through

both solid and fluid volumetric fractions. If the kinetics of reaction are sufficiently fast

a ‘sharp front’ model can be used to desribe the concentration and precipitation fields.

Mass and mass flux balances shall be used to derive analytic expressions for the fluid,

thermal and depletion front lengths in axisymmetric and linear media. A condition

will be derived to select whether the depletion front will lead or lag the thermal front.

In the latter case a double front structure is predicted since two different saturations

are possible either side of the thermal front. An initial experimental study with a

linear porous medium consisting of 0.5 mm glass beads and sodium chloride salt is

presented and compared with the predictions of the sharp front model.

A more extensive theoretical analysis involving the solution of the appropriate

continuity equations is presented for constant flowrate injection into an axisymmetric

medium. Analytic solutions are derived for the concentration and precipitation fields

when all diffusive processes are ignored and a long time asymptotic series is presented

when heat diffusion is included. In addition to these elements a novel (discrete) nu-

merical metaphor of the system is described and encoded with the MATLAB language.

The results of these computer simulations seem to compare well with the theoretical

predictions of the sharp front model.



Chapter 1

List of variables and definitions

1.1 Fixed physical and geometrical quantities

l Length of linear porous medium 24 cm

w Width of porous medium 4.2 cm

H Depth of porous medium 11 cm

wins Width of insulating material 5 cm

wglass Thickness of glass tank walls 0.5 cm

ls Length of fluid region 36 cm

wbead Mean diameter of glass beads 510 µm

R Radius of axisymmetric porous medium 20 cm

ρw Density of water 0.998 gcm−3

ρglass Density of glass 2.6 gcm−3

ρins Density of insulating material 0.032 gcm−3

Cw Specific heat capacity of water 4.182 JK−1g−1

Cglass Specific heat capacity of glass 0.84 JK−1g−1

Cins Specific heat capacity of insulating material 1.38 JK−1g−1

κw Thermal diffusivity of water 1.44 x10−3 cm2s−1

κins Thermal diffusivity of insulating material 6.25 x10−3 cm2s−1

κglass Thermal diffusivity of glass 4.12 x10−3 cm2s−1

1



1. List of variables and definitions 2

1.1.1 Physical data specific to sodium chloride

ρsalt Density of pure solid salt 2.170 gcm−3

ρfluid Average density of fluid region in formation 1.23 gcm−3

ρsolid Average density of solid region in formation 2.46 gcm−3

Csalt Specific heat capacity of solid salt 0.86 JK−1g−1

Cfluid Average fluid region specific heat capacity 1.74 JK−1g−1

Csolid Average solid region specific heat capacity 0.85 JK−1g−1

κsalt Thermal diffusivity of solid salt 9.70 x10−3 cm2s−1

κsolid Average thermal diffusivity of solid region 5.7 x10−3 cm2s−1

κfluid Average thermal diffusivity of fluid region 7.5 x10−3 cm2s−1

D Salt bulk diffusion constant (in water) 1.611 x10−5 cm2s−1

Msalt Molar mass of salt 58.443 gmol−1

ν Stoichiometric ratio of precipitate to solute 1

1.1.2 Physical data specific to sodium sulphate

ρsalt Density of pure solid salt 1.46 gcm−3

ρfluid Average density of fluid region in formation 1.74 gcm−3

ρsolid Average density of solid region in formation 2.12 gcm−3

Csalt Specific heat capacity of solid salt 1.82 JK−1g−1

Cfluid Average fluid region specific heat capacity 2.95 JK−1g−1

Csolid Average solid region specific heat capacity 1.12 JK−1g−1

κsalt Thermal diffusivity of solid salt 3.01 x10−3 cm2s−1

κsolid Average thermal diffusivity of solid region 3.8 x10−3 cm2s−1

κfluid Average thermal diffusivity of fluid region 2.3 x10−3 cm2s−1

D Salt bulk diffusion constant (in water) 1.230 x10−5 cm2s−1

Msalt Molar mass of salt 142.04 gmol−1

ν Stoichiometric ratio of precipitate to solute 1



1. List of variables and definitions 3

1.2 Input parameters with typical values (Sodium Chlo-
ride)

ci Injectate ‘salinity’ (dissolved mass density) 0 gcm−3

cf Porous medium or ‘formation’ initial salinity 0.325 gcm−3

sf Formation solid salt density or ‘precipitation’ 0.54 gcm−3

cei Saturation salinity of injectate 0.323 gcm−3

Ti Injectate temperature 5 oC

Tf Formation temperature 24 oC

Q Volumetric flowrate (variable) ∼0.3 cm3s−1

φ Porosity of porous medium ∼0.5
k Permeability of porous medium ∼6 x10−10 m2

tr Salt reaction time constant 0.06 s

h Head driving flow 2 cm

msalt Mass of salt initially in porous medium ∼420 g

<V
Saturated salt solution volume

Solvent (Water) volume 1.1

<GS Mass ratio of glass beads to solid salt 2.5

1.3 Variables with dimensions

r Radial coordinate cm

t Time s

tcool Cooling timescale s

tflush Fluid flush timescale s

ttherm Heat flush timescale s

tsd Salt diffusion timescale s

thd Heat diffusion timescale s

c Formation salinity gcm−3

ce Formation saturation salinity gcm−3

s Formation precipitation gcm−3

s0 Formation precipitation upstream of thermal front gcm−3

LF Length of fluid front cm

LT Length of thermal front cm

LD Length of depletion front cm

T Temperature field oC

Text Fixed external temperature oC

u Darcy velocity field cms−1



1. List of variables and definitions 4

1.4 Dimensionless variables

λ Radial coordinate r
R

τ Temporal coordinate t
tr

χ Salinity variable c−ci
cf−ci

χe Saturation salinity variable ce−ci
cf−ci

ψ Precipitation variable s
sf

α Extent that reactive species are advected Qtr
2πwR2

βT Extent of thermal diffusion κtr
R2

βc Extent of salt diffusion Dtr
R2

θ Ratio of reaction induced to initial precipitation φ(cf−ci)
ν(1−φ)sf

ω Saturation salinity variable at injector cei−ci
cf−ci

Θ Thermal parameter ‘Big theta’
ρfluidCfluid

ρfluidCfluidφ+ρsolidCsolid(1−φ)

κ Thermal diffusivity parameter
κfluidρfluidCfluidφ+κsolidρsolidCsolid(1−φ)

ρfluidCfluidφ+ρsolidCsolid(1−φ)

F Ratio of thermal to fluid front distances1 φΘ

Ω ‘Big omega’ if φΘ <
¡
1 + 1

θ

¢−1
2αΘ

n
1− 1

φΘ

¡
1 + 1

θ

¢−1o
Ω ‘Big omega’ if φΘ >

¡
1 + 1

θ

¢−1
2αΘ

n
1− θω

φΘ+θ(ω+φΘ−1)
o

Υ ‘Upsilon’ if φΘ <
¡
1 + 1

θ

¢−1 φ(θ+1)
2α

Υ ‘Upsilon’ if φΘ >
¡
1 + 1

θ

¢−1 φ
2α

n
1 + θ(ω+φΘ−1)

φΘ

o
Φ Advection to thermal diffusivity ratio Θα

2βT

f Extent of precipitation sf−s0
sf

1For axisymmetric media, F =
³
LT
LF

´2
. For linear media F = LT

LF
.



Chapter 2

Introduction

This study is motivated by the industrial problem of scale deposition in oil reservoirs.

In many hydrocarbon bearing formations, barium and calcium ions are found to be

dissolved in the mobile pore fluid. Seawater is often pumped into such systems with the

aim of displacing oil towards a well. Sulphate ions within the seawater react with the

barium or calcium species to form a precipitate. The barium sulphate variety is highly

insoluble in water and thus injection of seawater can induce solid deposition in the

formation. This will reduce the porosity (the connected volume fraction occupied by

mobile fluid) and can significantly effect the flow field within the reservoir, ultimately

impacting on overall well performance. Qualitatively, a reduction in porosity can

have a significant effect on the permeability1, the ratio of the volumetric flux per unit

area multiplied by fluid viscosity to the applied pressure gradient. Hence for a given

pressure applied to a reservoir, formation precipitation can noticeably reduce flowrate

and thus reduce the rate of oil recovery. The transfer of heat from formation to cooler

injectate with also modify this process as the saturation solubility of prograde salts like

Barium Sulphate increases with temperature. To combat the effects of scale deposition

may oil companies cease production at regular intervals and inject chemical inhibitors.

The cost of such a strategy is high and hence there is much desire to understand the

fundamental controls and dynamics of precipitation induced by injected fluid.

To contribute to the current understanding of these and other physically similar

systems such as geothermal reservoirs and limestone Dolomites2, a simple generic

model is described here in addition to a preliminary experimental study. The model
1Permeability k is known to vary strongly with porosity φ. A well known empirical relationship

for structures consisting of packed spheres of diameter D is the Karman Cozeny equation k(φ,D) =
D2φ3

180(1−φ)2 ⇒ ∆k
k
∼ 3−φ

φ(1−φ)∆φ. For a change in porosity of 10% from 0.5, the resultant change in
permeability is ∼ 100%.

2Limestone can transform to Dolomite when magnesium rich seawater percolates through a forma-
tion previously flooded with fresh water.

5



2. Introduction 6

considers injection of a fluid of known temperature Ti into a homogeneous porous

formation of, in general, a different temperature Tf . The formation shall initially

contain volume fraction φ of mobile fluid saturated with a dissolved reactive salt. The

remainder will be composed of a defined proportion of inert porous solid and solid salt.

Thermodynamic equilibrium is assumed prior to injection. The injected fluid shall in

general be undersaturated with dissolved reactive salt. In the first instance the injected

fluid will simply displace the saturated formation liquid and the interface between

them shall be defined as the Fluid Front. Upstream of this a dissolution reaction will

occur between the injected fluid and the solid salt with the goal of saturating the

injectate, eventually leaving a region depleted of solid salt growing from the source.

The boundary of this region shall be defined as the Depletion Front. The degree of

saturation (and hence the amount of dissolution) will depend on the local temperature.

If injectate and formation are isothermal this will be fixed3. In the more general case

a Thermal Front will propagate through the medium marking the interface between

downstream formation temperature Tf and injectate temperature Ti. The effect of

this will be to dynamically change the dissolution reaction endpoint and in some cases

induce precipitation instead.

The system has been investigated in four ways. Firstly, salt mass and salt mass flux

balance calculations have been used to predict the extent of the two (or three) reaction

fronts, the resultant changes in salinity and precipitation and selection criteria to

predict the ordering of thermal and depletion fronts4 in linear and axisymmetric media.

This will be referred to as the Sharp Front Model. In addition an asymptotic/similarity

solution method has been employed to solve the set of partial differential equations

which govern the flow. (Heat advection diffusion, salt advection plus reactions, an

equation of state for salt saturation vs temperature and fluid continuity). Analytic

solutions for constant flowrate injection into an axisymmetric medium are derived

for flowrate regimes such that heat and salt diffusion can be ignored and a long time

asymptotic series is presented for the intermediate regime where although salt diffusion

can still be ignored, heat diffusion cannot. The effect of the latter is to broaden the

thermal front.

To balance this theoretical approach a novel percolation-type MATLAB code has

been developed to visualize the problem via a numerical analogy (which seems to

match the mass balance predictions) and a series of experiments with a linear porous

media (consisting of glass beads and sodium chloride salt) has been conducted to test

the fluid and depletion front predictions of the Sharp Front Model.

3Note we ignore changes of saturation solubility with pressure. If large pressure gradients are also
present in addition to changes in temperature one will have to modify the models desribed here.

4 If the latter leads, one does not see the former.
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This thesis is primarily based on current research at the BP Institute in Cambridge,

UK by Woods and Jupp [4] (thermal and depletion fronts in linear media) and the

published work of Phillips [7] . The experimental results presented form part of an

ongoing laboratory based study at the BP Institute. The results of Bell and Shaw-

Champion [10] are referred to in the text and possible future experiments to highlight

thermally driven reactions are described in the conclusion of this report.

Figure 2.1: Injection of undersaturated (fresh in this example) fluid into an axisym-
metric porous medium containing solid reactive species, inert matrix and saturated
fluid.



Chapter 3

Physical analysis of system: The
Sharp Front Model

Before the salinity, precipitation and temperature fields are solved via detailed math-

ematical analysis it will be informative to predict, using simple physical arguments,

the range of possible solutions and the selection criteria for such.

If conditions are such for Saffman Taylor type instabilities to be suppressed1, in-

jection of fluid into a cylindrical formation should result in the propagation of reaction

fronts radially through the medium. i.e. the salinity, precipitation and temperature

field should follow ‘s shaped’ curves between the unreacted formation downstream to

the injectate upstream. Let us simplify this situation further by ignoring diffusive

processes and reaction kinetics and thus consider stepwise jumps in our field solutions.

In this case a simple transformation relates the axisymmetric solutions to those for a

linear geometry. [4]

Consider a stepwise jump in salinity as illustrated in Figure 3.1. The amount of

salt contained within our porous medium over the length scale range [a, b] is:

• Axisymmetric geometry (c1 − c2)π(b
2 − a2)w 2

• Linear geometry (c1 − c2)(b− a)lw 3

When comparing ‘shaded regions’ one matches the absolute areas in the linear case.

To convert to axisymmetric solutions, where annuli are equated, transform all linear

length scales to radii by squaring.

1See appendix.
2w is the height of the cylindrical bead pack.
3 lw is the cross sectional area of a rectangular bead pack used for linear geometry.

8



3. Physical analysis of system: The Sharp Front Model 9

Figure 3.1: Stepwise jump in salinity from c2 to c1 over the range of length scale [a, b].

i.e. For a single reaction front, one can show that for linear geometry the depletion

front LD is related to the fluid front LF by the equation4:

LD =

µ
1 +

1

θ

¶−1
LF (3.1)

For axisymmetric geometry the corresponding result is found using L −→ L2

i.e.

LD =

µ
1 +

1

θ

¶− 1
2

LF (3.2)

In the analysis below we will discuss a linear medium because of its geometrical

simplicity. The above transformation will then be used to derive corresponding results

for axisymmetric geometry. All figures will refer to the axisymmetric geometry.

3.1 Depletion, Thermal and Fluid reaction fronts (for lin-
ear porous media)

If one ignores the reaction of the injected fluid with solid reactant amongst the porous

medium, injected fluid will simply displace fluid already present. If diffusion is also

ignored then a sharp front will mark the boundary between injected and downstream

regions. We will define this to be the fluid front. In addition, heat transfer from

injected to downstream fluid will, in a similar manner, result in a thermal front. Unlike

4These equations are given merely to illustrate the lengthscale transformation between linear and
axisymmetric geometries. All equations will be properly derived below.
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the fluid, heat will flow through the entire medium rather than simply through fraction

φ occupied by mobile fluid. This extra ‘inertia’ prevents the thermal front from ever

travelling faster than the fluid front.

A thermal front implies a boundary across which is a jump in saturation salinity.

Ahead of this boundary a disequilibrium of dissolved salt drives reactions which may

result in dissolution or precipitation5. If undersaturated fluid is injected the finite

amount of solid salt initially mixed with the porous medium will cause an additional

depletion front to propagate. At the inlet, undersaturated injected fluid will dissolve a

portion of solid salt already present in the medium before being advected downstream.

This process will occur continuously until, at the inlet, no solid salt remains. From

this point in time onwards injected fluid will remain at the injection salinity as there is

no solid salt to dissolve. From the injected fluid’s perspective the inlet (the separation

point between injected fluid and potentially reactive species) has now moved slightly

downstream and thus the process repeats as this depleted region propagates through

the entire medium.

Unlike the fluid front, which must travel fastest, the ordering of thermal and de-

pletion front velocities is dependant on the initial properties of the medium and the

injected fluid. Two regimes are apparent.

1. Depletion front leads thermal front. In this case no reactions can occur since no

solid salt is available downstream of the thermal front.

2. Depletion front lags thermal front. In this case precipitation or dissolution will

occur in the intermediate region between the thermal and depletion fronts, lead-

ing to a double front structure.

Let us consider cases (1) and (2) separately. Define fluid front, thermal front and

depletion fronts to be marked by lengths LF , LT and LD. Define the ratio between

thermal and fluid fronts to be

F =
LT

LF
; F < 1

3.1.1 Depletion front leads thermal front

LD can be determined as a fraction of LF by considering the balance of salt mass

dissolved into solution to salt mass removed from medium. We shall include a param-

eter ν to take into account more general stoichiometries of dissolution, precipitation

reactions. (1 mole solute ←→ ν moles of solid). For sodium chloride this is unity.

5Note the fluid front travels faster than the thermal signal so thermally driven reactions occur when
saturated fluid crosses the thermal front and then becomes either undersaturated or oversaturated.
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Referring to Figure 3.2 one can balance salt by equating the shaded areas scaled by φ

or ν(1− φ) for salinity and precipitation respectively.

ν(1− φ)LDsf = φ(LF − LD)(cf − ci) (3.3)

⇒ φ(cf − ci)

ν(1− φ)sf
(LF − LD) = LD (3.4)

Define

θ =
φ(cf − ci)

ν(1− φ)sf
(3.5)

Hence

LD(1 + θ) = θLF (3.6)

⇒
LD =

µ
1 +

1

θ

¶−1
LF (3.7)

Now for the depletion front to lead the thermal front LD > FLF . Using (3.7) this

criterion becomes:

Depletion front leads thermal front

F <
1

1 +
1

θ

(3.8)

3.1.2 Depletion front lags thermal front

In this case salt mass balance is insufficient to fully solve the problem as one does not

know the change in precipitation s (from sf to s0) in the thermally reactive region.
The missing equation is the conservation of salt mass flux across the thermal front.

Referring to Figure 3.4 we can write down these conservation laws simultaneously and

solve for LD and s0.

Salt mass conservation (match shaded areas)

ν(1− φ)LDsf + ν(1− φ)(FLF − LD)
¡
sf − s0

¢
= φ(LF − FLF )(cf − ci) + φ(FLF − LD)(cei − ci) (3.9)

Define

f =
sf − s0

sf
(3.10)
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Figure 3.2: Snapshot of axisymmetric salinity and precipitation fields in the sharp
front approximation. The shaded areas indicate salt lost or gained. If one scales the
axes by φ and (1− φ)ν respectively, the volume of revolution of the shaded areas will
be equivalent since salt is conserved. In this particular case cf > cei and the depletion
front leads the thermal front.
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Figure 3.3: Snapshot of salinity and precipitation fields in sharp front model. In this
case cf < cei and the depletion front leads the thermal front.
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and

ω =
cei − ci
cf − ci

(3.11)

⇒
LD + (FLF − LD)f = θ(1− F )LF + θω(FLF − LD) (3.12)

⇒
LD =

µ
θ(1− F ) + θωF − fF

1− f + θω

¶
LF (3.13)

Now for the depletion front to lag the thermal front LD < FLF . Using (3.13) this

criterion becomes:

Depletion front lags thermal front

F >
1

1 +
1

θ

(3.14)

Conserving salt mass flux at the thermal front we find6: (using shorthand
.
L ≡ dL

dt

and assuming F is a constant)

φ(cf − ci)(
.
LF −

.
LT )| {z }

salt flux if no reactions

= φ(cei − ci)(
.
LF −

.
LT )| {z }

dissolved salt flux

+ ν(1− φ)(sf − s0)
.
LT| {z }

precipitative flux

(3.15)

⇒
f =

θ(1− F )(1− ω)

F
(3.16)

Hence

s0 =
µ
1− θ(1− F )(1− ω)

F

¶
sf (3.17)

Substitution of this result into (3.13) yields an expression for the depletion front

length in terms of known parameters.

LD =

µ
Fθω

F + θ(ω + F − 1)
¶
LF (3.18)

Note precipitation will occur between the thermal and depletion fronts if s0 > sf .

Using the formula above and noting 0 < F < 1, one finds that for precipitation to

occur θ(1− ω) < 0

6Note that the dissolved salt, and hence the salinity field moves at velocity
.

LF relative to the
porous medium, whereas the precipitation is static. Hence the

.

LF −
.

LT terms.
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⇒
cei > cf (3.19)

This result may at first glance appear counter intuitive. Assuming a prograde

salt solution, (where saturation solubility increases with temperature) injection of hot

solution into a cold formation will result in precipitation, despite a zone of greater

salinity between the thermal and depletion fronts. To explain this let us track a fluid

parcel as it enters the medium. Initially the parcel has salinity ci and desires to

dissolve enough solid salt to reach saturation cei. The parcel initially travels through

a depleted zone and remains at salinity ci until it reaches the depletion front. From

this point onwards it rapidly dissolves salt and reaches saturation. (Infinitely rapidly

in the sharp front approximation). The effect of this is to increase the length of the

depleted region. The fluid parcel will eventually overtake the thermal front. Beyond

this the saturation decreases from cei to cf and hence the fluid parcel now at salinity

cei will have to precipitate salt.

A critical value of cei, c∗ei will reduce s
0 to zero. This occurs when θ(1−F )(1−ω)

F =

1⇒ ω = 1− F
(1−F )θ . Hence

c∗ei = cf − (1− φ)vsfF

φ(1− F )
(3.20)

cei must be greater than zero and hence this definition is only valid if cf >
(1−φ)vsfF
φ(1−F ) . A problem now arises if cei < c∗ei since it is unphysical to have a nega-
tive precipitation. The only possible solution is a transformation to a single front

system, i.e. with the depletion front now leading the thermal front. This transforma-

tion is justified theoretically by applying the condition that the fluid front must always

lead the depletion front. Using (3.18) this criterion becomes

1 >
Fθω

F + θ(ω + F − 1) (3.21)

⇒

F + θ(ω + F − 1) > Fθω

ωθ(1− F ) > θ(1− F )− F

ω > 1− F

(1− F )θ

Hence a negative s0 for cei < c∗ei cannot occur without contradicting the fact that
the fluid front must exceed the depletion front. We can deduce from this that the
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double front assumption (which allowed us to derive the above expression for the

depletion front) is invalid and hence only the single front model is appropriate for

cei < c∗ei.

3.2 Derivation of fluid and thermal front lengths for lin-
ear and axisymmetric media

3.2.1 Linear porous media

If fluid is injected at volumetric flowrate Q into a rectangular medium of porosity φ,

cross sectional area wl and has migrated a distance LF in time t

Qt = φLFwl (3.22)

⇒
LF =

Qt

φwl
(3.23)

A similar balance can be written down for the heat injected into the medium up

to distance LT .

ρfluidCfluidQt =
©
ρfluidCfluidφ+ ρsolidCsolid(1− φ)

ª
LFwl (3.24)

⇒
LT =

ΘQt

wl
(3.25)

where

Θ =
ρfluidCfluid

ρfluidCfluidφ+ ρsolidCsolid(1− φ)
(3.26)

Hence for linear media

F =
LT

LF
= Θφ (3.27)

Note Θφ can be written as

Θφ =
1

1 + ρsolidCsolid(1−φ)
ρfluidCfluidφ

(3.28)

Since ρsolidCsolid(1−φ)
ρfluidCfluidφ

cannot be negative (0 < φ < 1) this demonstrates that

0 < F < 1 (3.29)
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Figure 3.4: Snapshot of salinity and precipitation fields in sharp front model. In this
case cf > cei and the depletion front lags the thermal front.
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Figure 3.5: Snapshot of salinity and precipitation fields in sharp front model. In this
case cf < cei and the depletion front leads the thermal front. In addition ci > cf .
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Figure 3.6: Snapshot of salinity and precipitation fields in sharp front model. In this
case cf > cei and the depletion front leads the thermal front.
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3.2.2 Axisymmetric porous media

If fluid is injected at volumetric flowrate Q into a cylindrical medium of porosity φ

and depth w and this fluid has migrated a radial distance LF in time t

Qt = φπwL2F (3.30)

⇒
LF =

µ
Qt

φπw

¶1
2

(3.31)

Repeating the same argument for the injection of heat we find

LT =

µ
ΘQt

πw

¶1
2

(3.32)

Hence for axisymmetric media

F =

µ
LT

LF

¶2
= Θφ (3.33)

(Note our definition of F incorporates the L → L2 transform converting between

linear and axisymmetric coordinates).

Using F = Θφ we can express the criterion for the thermal front to lead the

depletion front (valid in both geometries) as

F >
1

1 +
1

θ

(3.34)

⇒
vsf

cf − ci
>

ρsolidCsolid

ρfluidCfluid
(3.35)
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3.3 Summary of formulae for reaction front lengths

3.3.1 Linear porous media

LF =
Qt

φwl
(3.36)

LT =
ΘQt

wl
(3.37)

F = Θφ (3.38)

depletion front leads thermal front, F < 1
1+ 1

θ

LD =

µ
1 +

1

θ

¶−1
LF (3.39)

depletion front lags thermal front, F > 1
1+ 1

θ

LD =

µ
Fθω

F + θ(ω + F − 1)
¶
LF (3.40)

3.3.2 Axisymmetric porous media

LF =

µ
Qt

φπw

¶ 1
2

(3.41)

LT =

µ
ΘQt

πw

¶ 1
2

(3.42)

F = Θφ (3.43)

depletion front leads thermal front, F < 1
1+ 1

θ

LD =

µ
1 +

1

θ

¶− 1
2

LF (3.44)

depletion front lags thermal front, F > 1
1+ 1

θ

LD =

µ
Fθω

F + θ(ω + F − 1)
¶ 1

2

LF (3.45)



Chapter 4

Apples and baskets: A numerical
analogy

A quasi-discrete model of precipitation/dissolution reactions caused by injection of

undersaturated saline into a initially saturated linear porous medium.

Model is as follows. Consider an infinite line of baskets, each containing B apples.

(c.f. precipitation sf of saturated medium). Each basket has beside it a person whose

sole aim in life is to eat apples. Every person has a maximum apple capacity of

ce apples and initially each person along the line has this number contained within

their ample stomachs. A whistle is blown every ∆t seconds and the line of people

shifts along one basket. Between then and the next whistle they are allowed to eat

up to N apples until they have reached their limit of ce. N is proportional to the

difference between the current person apple content and their maximum capacity and

the number of apples in the basket. The first basket is presented with a hungry

person, initially with ci < ce apples in his or her stomach. Hence between the first

and second whistle he/she consumes apples from the first basket. After the second

whistle another hungry person is introduced to the first basket (now containing less

than B apples) while the previously hungry person eats more apples from the second

basket, if he/she is not already full. In addition to this a ‘chinese whisper of hunger

change’ travels along the line at fraction F of the speed of line movement. (F < 1).

Upstream of this shock the apple capacity ce is changed from cf to cei. Persons may

discover that their apple content exceeds their maximum apple capacity. In this case

they ‘put back’ apples into their local basket according to the same law as for apple

eating. A MATLAB program creates a basket and person array representing the

firstM baskets and a simulation is run according to the rules above. A graph of apple

number is plotted as a function of basket number for both arrays each time the whistle

22
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Figure 4.1: Illustration of Apples model. A simplified version of the apple eating law
is used - only one apple can be consumed between whistles. (i.e. in time interval ∆t).
Persons have a red hue when saturated with (five) apples. After twelve time intervals
one can see the development of a depletion front as the first few baskets become empty.

is blown. Sequentially numbered BMP files of these graphs are created for animated

GIF creation. The model is described as quasi-discrete because although time step

between motions of the person line is fixed and non zero, the number of apples that

can be eaten/regurgitated between whistles need not be integer.

Persons are the analogue of fluid moving through a (linear) porous medium whereas

apples in baskets model the solid salt deposits. The front of line progression is anal-

ogous to the fluid front and the ‘hunger change chinese whisper’ analogous to the

thermal signal. A depletion front is common to both systems.

One should expect the linear sharp front analysis above to predict the basket

number of line, hunger change and depletion fronts. Since the apples model has no
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analogue of porosity and apples eaten have the same numerical currency as apples in

baskets, stoichiometry υ and porosity φ will be set to 1 and 0.5 respectively. Equations

for the basket number positions of line, hunger change and depletion fronts in the

apples model after n blows of the whistle are thus:

LF = n∆t (4.1)

LT = Fn∆t (4.2)

θ =
cf − ci
B

(4.3)

ω =
cei − ci
cf − ci

(4.4)

depletion front leads hunger change front, F < 1
1+ 1

θ

LD =

µ
1 +

1

θ

¶−1
LF (4.5)

depletion front lags hunger change front, F > 1
1+ 1

θ

LD =

µ
Fθω

F + θ(ω + F − 1)
¶
LF (4.6)

The final images of five different scenarios are illustrated below. The curves of

person and basket apple content (plotted against basket number) are generated by the

MATLAB code and are shown with indicators predicted by the theory above.

Black asterisk F Line (‘fluid’) front

Green asterisk F Hunger change (‘thermal’) front

Red asterisk F Depletion front

Green line – Basket content downstream of depletion front (c.f. s0)

Theory seems to match the numerical results rather well, though some additional

observations are worth recording.

• In the region between hunger change and depletion fronts, the apples in baskets
curve is somewhat noisy.

• The fronts themselves have a continuous structure. Note diffusive processes are
not modelled.
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Figure 4.2: B = 12 ci = 0 cei = 5 cf = 10 F = 0.2. Single depletion front.
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Figure 4.3: B = 12 ci = 0 cei = 5 cf = 10 F = 0.7. Double front structure.
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Figure 4.4: B = 12 ci = 0 cei = 10 cf = 5 F = 0.2
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Figure 4.5: B = 12 ci = 0 cei = 10 cf = 5 F = 0.7
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Figure 4.6: B = 12 ci = 7 cei = 10 cf = 5 F = 0.7



Chapter 5

Experimental analysis

The theory (for linear porous media) derived above will be tested in the laboratory.

Only a preliminary study will be described here. It is hoped that future work in this

area can expand upon the experiments described below and employ a cylindrical rather

than rectangular tank.

The experimental setup will be described below and its known physical properties

used to predict the whereabouts of fluid, thermal and depletion fronts, plus the degree

of precipitation if the injected fluid is of a different temperature to the formation. The

timescale for the reaction fronts to propagate through the formation will be compared

to those for diffusion and temperature equilibration with the surroundings. For the

theory to be applicable the latter two must far exceed the former.

At the time of writing a substantial series of isothermal1 experiments using sodium

chloride salt has been performed, culminating in three repeated runs. The processed

results are described below and compared with the sharp front model. An initial

investigation using sodium sulphate and differing injectate and formation temperatures

has also been conducted.2 The methodology and observed problems of the current

iteration of this experiment will be discussed.3 The practical knowledge acquired in

the running of both sodium chloride and sodium sulphate tests is planned to be used

in the design of new experiments in a radial geometry to hopefully compare directly

to the axisymmetric theory that forms the bulk of this thesis. Preliminary details of

these plans will be discussed in the Conclusion.

1 i.e. the injected fluid is the same temperature as the formation - hence no thermal fronts.
2The significant change (> 10%) in saturation solubility of sodium sulphate over a 10-20 degree

temperature deviation from laboratory conditions allows for changes in salinity or precipitation up-
stream of the thermal front to be observed. The changes for sodium chloride are some two orders of
magnitude less. See Appendix for the temperature variation of saturation solubility for solutions of
both salts.

3With the current system the medium appears to coalese into impermeable aggregates of salt and
beads soon after the injection of cold fresh water. These arrest the propagation of the fluid front.

30
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5.1 Schematic of laboratory setup

• The porous medium consists of a 11 cm deep homogenous cuboid of 425-600

µm glass beads and solid salt with rectangular cross section 24 x 4.2 cm2. This

sits on a 2.5 cm deep layer of 1.5 mm beads and this in turn on a 2 cm layer of 3

mm beads. The entire bead pack rests on a plastic drain raised 4 cm above the

base of the tank. Fluid can pass through the bead pack and through the drain

whereas the solid salt is prevented from falling through the drain’s holes by the

additional layers of glass beads.

• Horizontal lines every 1 cm are marked on the exterior of the tank. Images of the
bead pack are recorded via a digital camera at regular intervals. The guidelines

allow front lengths to be discerned from the images.

• Fluid will pass from the drain into a large purely fluid filled region of length

ls = 36 cm. This is connected to a beaker atop a mass balance via a siphon and

a constant head is maintained between this and the porous region to drive a flow

through the system. The porous region is topped up from a large reservoir of

unsalty injectate (coloured red with food dye) forming a perpetual layer 4.5 cm

deep above the glass beads. The reservoir (a large tank with a tap at the base)

is raised on a jack above the injectate fluid layer and fluid flow is controlled via

a screw clamp. The author found this method of inflow preferable to a second

siphon based ‘constant head machine’ controlled by the raising of the reservoir

(to compensate for the reduction of fluid height due to outflow) via a jack.

• A serial port connection between the mass balance and a computer automatically
records the mass of fluid displaced from the system. If the salt content of this

fluid is also recorded (and thus the total density deducible), the time derivative

of mass/density will yield a continuous log of the volumetric flowrate through

the system.

• An array of thermocouples embedded vertically in the bead pack are also con-
nected via serial link to a computer. If uniformity in cross section is assumed,

these should give an indication of the extent of the thermal front.

• Single or arrays of needles can be inserted into the medium and used to record the
fluid salt content by extracting small samples and recording a Brix measurement

with a digital refractometer.

• The experiment is contained within a 5 mm thick glass tank surrounded by Dow
Floormate 200X insulating material to reduce heat transfer with the surround-
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Figure 5.1: Experimental setup

ings. The reservoir is enclosed in a sarcophagus of such material and the tank

enclosed by several removable panels to allow photographs to be taken at regu-

lar intervals. The inlet pipe is surrounded by foam padding to achieve a similar

effect.

5.2 Calculation of input parameters from easily measur-
able quantities and physical data

Let porous medium contain mass msalt salt and mass msalt<GS of glass beads of

diameter wbead. If salt and glass specific heat capacities are Csalt and Cglass respectively

then the average formation solid region specific heat capacity is

Csolid =
Csalt +<GSCglass

1 +<GS
(5.1)

A similar average can be defined for the solid region thermal diffusivity.

κsolid =
κsalt +<GSκglass

1 +<GS
(5.2)
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If the tank interior has volume lwH and solid region occupies volumetric fraction

1− φ, the average solid density is

ρsolid =
msalt(1 +<GS)

(1− φ)lwH
(5.3)

whereas the formation solid salt density, or ‘precipitation’ is

sf =
msalt

(1− φ)lwH
(5.4)

Initially, the porous medium contains volumetric fraction φ of saturated salt solu-

tion at temperature Tf . The ratio of salt mass to water mass <SW in this solution

can be found from the solubility S, the fraction of salt mass to total solution mass.

<SW =
S

1− S
(5.5)

The solubilities of sodium chloride and sodium sulphate are known empirical func-

tions of temperature. (Variation with pressure is neglected). These are given in the

Appendix. If the ratio <V of saturated salt solution volume to volume of water used is

known in addition to the density of water, one can calculate the density ρfluid of the

saturated solution and salinity cf , the initial mass per unit volume of salt dissolved

in fluid region4.

ρfluid =
ρw(1 + <SW )

<V
(5.6)

cf =
ρw<SW

<V
(5.7)

In an analogous manner to above one can compute averages for the specific heat

capacity and thermal diffusivity of the fluid region of the porous medium.

Cfluid =
Csalt +<SWCw

1 +<SW
(5.8)

κfluid =
κsalt +<SWκw
1 +<SW

(5.9)

4ρfluid =
sa lt mass + water mass

fluid volum e . Now <V = fluid volum e
water volume and <SW = sa lt mass

water mass . Hence

ρfluid =
(1+<SW )

<V
water mass
water volume =

ρw(1+<SW )
<V
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Lastly, the medium porosity φ can be estimated from known parameters.

(1− φ)wlH| {z }
solid volume

=
msalt

ρsalt| {z }
salt volume

+
msalt<GS

ρglass| {z }
glass volume

(5.10)

⇒
φ = 1−

µ
1

ρsalt
+
<GS

ρglass

¶
msalt

wlH
(5.11)

Note this very likely to be an overestimate since φ corresponds to the connected

porosity rather than simply than 1 - solid volume fraction.

5.3 Calculation of important experimental timescales

For practical purposes it is important to know the approximate running time of an

experiment and how this compares to the timescales associated with neglected effects

such as heat loss though the walls of the tank and diffusion of salt and heat.

If fluid is injected at volumetric flowrate Q into the porous medium with volume

wlH and porosity φ, the time for injected fluid to flush though the medium is

tflush =
φwlH

Q
(5.12)

If the injected fluid is of a different temperature to the formation, heat will prop-

agate through the entire medium after a time ttherm.

ρfluidCfluidQttherm =
©
ρfluidCfluidφ+ ρsolidCsolid(1− φ)

ª
wlH (5.13)

⇒
ttherm =

1

Θ

wlH

Q
(5.14)

where

Θ =
ρfluidCfluid

ρfluidCfluidφ+ ρsolidCsolid(1− φ)
(5.15)

One can show that the typical timescale for a diffusive processes is proportional

to the square of the diffused distance. (For example, a random walk mechanism in

discrete systems). Hence we can define timescales for thermal and salt diffusion along

the depth H of our experiment. D and κ are the respective bulk diffusion constants5.

5The bulk thermal diffusivity is given by
κ =

κfluidρfluidCfluidφ+κsolidρsolidCsolid(1−φ)
ρfluidCfluidφ+ρsolidCsolid(1−φ) . A derivation of this is given on page (52)
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tsd =
H2

D
(5.16)

ttd =
H2

κ
(5.17)

Finally, one must consider a heating or cooling timescale if injected fluid is of a

different temperature to that of the formation initially.

If heat is transported only by conduction (diffusion) from a volume V of density ρ,

heat capacity C and thermal diffusivity κ at temperature T (t) to ambient surroundings

at temperature Text through bounding surface S; conservation of heat yields (if one

assumed Fourier’s law for heat conduction)

− ∂

∂t

Z
V
ρCTdV =

Z
S
κρC(−∇T ) · dS (5.18)

If the volume is a slab of homogenous material of thickness δ and cross sectional

area A (where
√
AÀ δ) we can approximate the above by a simple ordinary differential

equation for T (t). (Only considering conduction through one surface).

ρCAδ
dT

dt
=

κρCA(Text − T )

δ
(5.19)

⇒ Z T

T0

dT 0

Text − T 0
=

κ

δ2
t (5.20)

⇒
T (t) = Text − (Text − T0)e

− κt
δ2 (5.21)

Hence we can define a cooling timescale

tcool =
δ2

κ
(5.22)

We can calculate this by averaging over the entire volume of our experimental

apparatus, including tank walls and insulation.

tcool =

Ã
w2glass
κglass

!µ
Vglass
Vtotal

¶
+

µ
w2

κfluid

¶µ
φwlH

Vtotal

¶
+ (5.23)µ

w2

κsolid

¶µ
(1− φ)wlH

Vtotal

¶
+

µ
w2ins
κins

¶µ
Vins
Vtotal

¶
(5.24)
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Assuming glass and insulation are uniform in thickness, the experiment has a lid

consisting purely of insulating material and ignoring losses through the base of the

tank (it sits on a three-ply layer of insulation) the glass and insulation volumes are

Vglass = 2(l + ls + 2wglass)Hwglass| {z }
long walls

+ 2wHwglass| {z }
side walls

(5.25)

Vins = 2(l + ls + 2wglass + 2wins)Hwins| {z }
long walls

+ 2(w + 2wglass)Hwins| {z }
side walls

(5.26)

+(l + ls + 2wglass + 2wins)(w + 2wins + 2wglass)wins| {z }
lid

(5.27)

The total volume is given by

Vtotal = wlH + Vglass + Vins (5.28)

5.4 Experimental methodology and observations

5.4.1 Sodium Chloride experiments

• Preparation of a homogenous salt plus bead pack required the mixing of two
different sized grains. To minimize inevitable stratification the smallest size of

ballotini was chosen (0.5 mm). The medium was laid down in approximately

1 cm thick layers, each containing 40 g of salt and 100 g of ballotini mixed

dry in a beaker and then poured into the tank already filled with saturated

solution. Each layer was carefully mixed with the previous in an attempt to

homogenize the boundaries. This was only partially successful as interfacial

regions with slightly different salt to bead ratios were often observed to form

as the experiment was set up and run.6 These interfaces were observed to act

as higher permeability channels as the dyed injected fluid propagated sideways

rather that purely downwards. This, in conjunction with the disrupting effect

of the thermocouple array, could have played a part in the perturbation of the

fluid and depletion fronts. (See illustration below).

• The siphon at the outlet was connected to a shallow bath hollowed out of plastic
with a ‘plughole’ positioned over a large beaker placed on a mass balance. The

6The entire process took several hours. An entire run took a full day to complete and clean up.
The tank was emptied using a siphon with a rigid nossel that could be used to suck up ballotini. The
latter were collected in a fine sive and dried in an oven overnight. The three grades (3 mm 1.5 mm
and 0.5 mm) were separated dry the following day using three grades of sieve.
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Figure 5.2: Photograph of a depletion front in a sodium chloride plus 0.5 mm ballotini
bead pack. The depleted region is artificially coloured for clarity. Note non linearity
of front.
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Figure 5.3: Photograph of a fluid front in a sodium chloride plus 0.5 mm ballotini
bead pack. The front marks the interface between fresh water (coloured with red food
dye) and saturated sodium chloride solution.
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siphon, bath and fastenings connected to a retort stand were placed on a platform

that could be raised or lowered to fix the system fluid head. The separation

of mass balance and reception beaker to the siphon meant any leakages could

be kept clear and the reception beaker could be changed when full without

disrupting the system.

• Pre injection, the level of saturated solution in both regions of the tank was left
to equilibrate at the height of the fluid bath. The 4.5 cm fluid layer above the

bead pack was then topped up with injectate by this amount minus the desired

head . On reflection I think a better procedure would have been to lower the

height of the fluid bath (from an initial height that gives a 4.5 cm layer above

the bead pack) to create the desired head and top up loss of fluid on the bead

pack side of the experiment with injectate. This removes the need for an initially

high injectate flowrate to perform the ∼ 2.5 cm top up. On a few occasions this

jet of fluid (compared to a drip) disrupted the upper surface of the bead pack

and behaved initially as a point rather than distributed source.

• As salt was depleted from the bead pack the medium was observed to compact

by an amount commensurate with the volume fraction of salt dissolved. If the

ballotini : solid salt ratio <GS is high enough for depletion of salt to not result

in a structural collapse one would expect a linear decay of volumetric flowrate

through the system as the pressure loss across the bead pack is diminished7.

Unfortunately this scenario gives rise to such a small contrast change between

the depleted and undepleted regions that a tracking of the depletion front from

time lapse photographs becomes impossible. (This was discovered experimentally

with <GS = 10, hence the reduction to 2.5). With continuous compaction one

might expect an exponential decay of flowrate. The gradient of mass balance

readings with time yields a recording of mass flowrate against time. It was

observed that the density of outflow fluid changed little over the experimental

timescale (from saturation) and thus by dividing by the fluid density one can

arrive at a graph of instantaneous flowrate during the experiment. The results

(as illustrated below) we clearly non-linear and plots of lnQ, t and lnQ, lnQ were

compared to assess whether an exponential or power law was more appropriate.

In all cases the former gave a better χ2 fit to the data.

7We are qualitatively invoking Darcy’s Law which states a proportionality between the volumetric
flowrate per unit area and the imposed pressure gradient.
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Figure 5.4: Outflow mass flowrate plotted against experimental running time.

Figure 5.5: Test for exponential time dependance of flowrate.
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Figure 5.6: Test for power law time dependance of flowrate.

5.4.2 Sodium sulphate experiments

• The methodology for these preliminary tests was identical in concept to those
for Sodium Chloride except for the encasing of the experiment in insulation ma-

terial and a change in injectate temperature. The latter was achieved by placing

the reservoir tank in a fridge overnight. Although the injectate and formation

temperatures deviated little over the ∼ seventy minutes running time (indicat-
ing satisfactory performance of the insulation strategy) it was observed that the

actual injection temperature was 14oC compared to a steady reservoir temper-

ature of 7oC. More surprising was the subtle positive deviation in temperature,

(∼ 2oC) between the formation and tank fluid and the laboratory, despite the
saturated solution being left to equilibrate overnight before being poured into

the medium. Assuming the sodium sulphate solution to be super-saturated, a

possible explanation of this effect could be a growth of crystals via an ‘Otswold

Ripening’ mechanism8. This would produce heat due to the reduction in surface

energy of crystals present in solution as they coalecse. This would also offer an

explanation for the solidification of much of the bead pack which arrested the

propagation of the fluid front.

8Where larger crystals nucleate and feed on smaller ones present in a super-saturated solution.
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5.5 Experimental results and comparison to ‘sharp front’
predictions

For each data set, an analytical form of the volumetric flowrate is defined to be

Q

cm3s−1
=

1

ρfluid
eq0 exp

µ
q1

t

60 s

¶
(5.29)

with the parameters q0 and q1 obtained from a linear fit y = q0 + q1x to a graph

of y = ln(mass flowrate/gs−1) against x = time/minutes.

In the derivation of the sharp front model above a constant flowrate Q is assumed

which gives rise to a fluid front length LF =
Qt
φwl . However, unlike in the solution of the

conservation equations for salinity and precipitation fields9, there is no restriction on

the time variance of Q in the sharp front model since all mass and mass flux balance

computations refer to an arbitary time snapshot. Hence if we redefine the thermal and

fluid front lengths to be

LF =
1

φwl

Z t

Q(t0)dt0 (5.30)

LT =
Θ

wl

Z t

Q(t0)dt0 (5.31)

we can use the empirical form of Q above in our predictions for the reaction front

lengths and changes in salinity and precipitation upstream of the fluid front.

For sodium chloride experiments, observed reaction front lengths are compared

with theory in figure 5.7. Predicted reaction front lengths for axisymmetric media are

also presented for an otherwise identical system plus a parallel series of graphs for

sodium sulphate. In addition, two snapshots of predicted salinity and precipitation

fields assuming an initial formation temperature of 24.5oC and injectate temperature

of 5oC are shown, comparing sodium chloride and sodium sulphate. In these latter

figures the differences between the properties of both salts is most apparent.

Good agreement is seen between observed and predicted lengths of the fluid front

in figure 5.7. A less than impressive correlation is seen for the depletion front. The

difficulty in recording an accurate position of the front could perhaps contribute to this

discrepancy. A moving average was taken of this quite perturbed interface. Although

9See next chapter.
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Figure 5.7: Plot of experimentally determined reaction front lengths against theoret-
ical predictions. A medium with 10:4 mass ratio of 0.5 mm glass ballotini and solid
sodium chloride was used. The entire system was held at 24oC and thus data for the
thermal reaction front was not collected. There is good agreement between fluid front
measurements and theoretical predictions though less so for the depletion front.

not really justified by only three sets of data, one might expect a large set of repeated

measurements to form a triangle of data about the theoretical curve. i.e. one expects

the predicted trend to be the mean of data that becomes increasingly more inaccurate

as one approaches the end of the bead pack. Here it becomes difficult to discern

where the depletion front ends as the most downstream of the depleted areas will have

reached the drain at the base of the bead pack.
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Figure 5.8: Reaction front length predictions for a linear porous medium containing
sodium sulphate solids and saturated solution.
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Figure 5.9: Plot of reaction front lengths for an axisymmetric variant of the experi-
mental (sodium chloride) system.
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Figure 5.10: Plot of reaction front lengths for an axisymmetric variant of the experi-
mental (sodium sulphate) system.



5. Experimental analysis 47

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Salinity snapshot fot L F=H-offset, linear porous media

Length of reaction front /cm

Fo
rm

at
io

n 
sa

lin
ity

 /g
cm

- 3

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8
Precipitation snapshot fot L F=H-offset, linear porous media

Length of reaction front /cm

Fo
rm

at
io

n 
pr

ec
ip

ita
tio

n 
/g

cm
- 3

Figure 5.11: Snapshot of salinity and precipitation fields precicted by the linear
(sodium chloride) sharp front model. Offset refers to the difference between the actual
bead pack height and H = 11 cm. All previous graphs have been corrected for this
systematic error.
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Figure 5.12: Snapshot of salinity and precipitation fields predicted by the linear
(sodium sulphate) sharp front model. Note a much more obvious double front structure
compared to sodium chloride.
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Figure 5.13: Snapshot of salinity and precipitation fields predicted by the axisymmetric
(sodium chloride) sharp front model.
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Figure 5.14: Snapshot of salinity and precipitation fields predicted by the axisymmetric
(sodium sulphate) sharp front model.



Chapter 6

Salinity and Precipitation Field
Equations

6.1 Derivation of field equations from conservation laws

6.1.1 Temperature equation

Consider a volume element V of a porous medium containing average fraction φ (con-

nected porosity) of mobile fluid. Define u to be a field of the volumetric flowrate per

unit vector area (the Darcy velocity) and consider averages of parameters that char-

acterize the thermal properties of V . (Specific heat capacity C, thermal diffusivity

κ, density ρ). Let us only consider the variation with temperature of these parame-

ters and thus compute their average over the temperature range of interest - in our

case s.t. Ti, Tf ∈ T. One can balance the rate of change of heat contained within V

with advective and diffusive transport processes to form a differential equation for the

Temperature field T . Fourier’s law shall be used to model thermal diffusion. i.e. the

diffusive heat flux is proportional to the temperature gradient.

∂

∂t

Z
V

©
ρfluidCfluidφ+ ρsolidCsolid(1− φ)

ª
TdV = (6.1)

−
Z
S
ρfluidCfluidTu · dS

−
Z
V
−©κfluidρfluidCfluidφ+ κsolidρsolidCsolid(1− φ)

ª∇T · dS
Applying the divergence theorem

R
S f · dS =

R
V ∇ · fdV and equating integrands

we can write (6.1) in differential form.

51
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Figure 6.1: Volume element V of medium containing Tempertaure field T (r, t) and
Darcy velocity field u(r, t).

∂T

∂t
+Θ∇ · (uT ) = κ∇2T (6.2)

where

Θ =
ρfluidCfluid

ρfluidCfluidφ+ ρsolidCsolid(1− φ)
(6.3)

and

κ =
κfluidρfluidCfluidφ+ κsolidρsolidCsolid(1− φ)

ρfluidCfluidφ+ ρsolidCsolid(1− φ)
(6.4)

Now continuity of fluid implies

∂

∂t

Z
V
ρfluiddV = −

Z
S
ρfluidu · dS = −

Z
V
∇ · (ρfluidu)dV (6.5)

Since we have asserted ρfluid is an average quantity and therefore constant, conti-

nuity of fluid implies

∇ · u = 0 (6.6)

We can use this result to simplify (6.2) since we can now write ∇ · (uT ) = u ·∇T +
T (∇ · u) = u ·∇T.

∂T

∂t
+Θu ·∇T = κ∇2T (6.7)

Our medium of interest, of which volume element V is a subset, is deemed to be

two dimensional and axisymmetric. If we use a plane polar coordinate system centred
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on the line of axisymmetry, all fields are spatially only dependant on the absolute

distance r from the coordinate origin. They will in general also have a dependence on

time variable t. Since we are injecting fluid at 90o to the plane of our medium at the

origin, we can assume it to spread in a purely radial manner. Hence if br is the unit
displacement vector from the origin we can write u(r, t) = u(r, t)br. This assumption
will break down if some mechanism causes the Darcy velocity field to acquire angular

components. Medium anisotropy could cause such an effect, (this could be glossed

over in our definition of thermal parameters as temperature averages) as could an

instability such as the Saffman Taylor variety. The latter of these is described in the

Appendix and both this and other possible effects shall be ignored in the following

discussion.

If we define the Temperature field T = T (r, t) and therefore can write ∇T =br∂T∂r and ∇2T = 1
r
∂
∂r

¡
r ∂T∂r

¢
, we can reduce (6.7) to a partial differential equation in

variables r and t.

∂T

∂t
+Θu

∂T

∂r
= κ

1

r

∂

∂r

µ
r
∂T

∂r

¶
(6.8)

Since fluid continuity implies ∇ · u = 0 and u(r, t) = u(r, t)br we find u(r, t) obeys

the equation

1

r

∂

∂r
(ru) = 0 (6.9)

By inspection we see that the solution to this equation is u(r, t) = const(t)
r . Since

we assert the fluid to be incompressible, for all radii and times

Q = 2πrwu(r, t) (6.10)

where w is the width of the spreading fluid,1 i.e. the depth of the porous cylinder

confining the flow in the case of our experimental system.

⇒

ru(r, t) =
Q

2πw
⇒ const =

Q

2πw
(6.11)

Hence the Darcy velocity field for our system is

1Note this implicitly assumes a steady state, i.e. significantly upstream of the fluid front. Since Q
is time invariant this steady state should asymptotically be approached.
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Figure 6.2: Volume element V of medium containing Salinity field c(r, t) and Darcy
velocity field u(r, t).

u(r, t) =
Q

2πw

1

r
(6.12)

and the equation for Temperature field T (r, t) is

∂T

∂t
+Θ

Q

2πw

1

r

∂T

∂r
− κ

1

r

∂

∂r

µ
r
∂T

∂r

¶
= 0 (6.13)

6.1.2 Salt conservation equation

A similar approach utilized in the previous section will be employed to derive the

equation of (aqueous) salt conservation, i.e. a partial differential equation for salinity

field c(r, t).

Again considering a volume V of the porous medium (with mobile fluid fraction

φ) we find to conserve salt:

∂

∂t

Z
V
φcdV = −

Z
S
cu · dS−D

Z
V
−∇c · dS+φ

Z
V
QcdV (6.14)

D is the diffusion constant and Qc is the rate of salt dissolution per unit volume.

We shall adopt a reaction law as described by Phillips in [7].

Qc =
1

tr
(ce − c)

s

sf
(6.15)
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tr is the reaction time constant, sf is the initial ‘formation’ (bead pack in our

case) precipitation and ce is the equilibrium salinity, assumed to be a function of

Temperature only. Let us assume a linear variation.

ce(T ) = c∗e

µ
a0 + a1

T

T ∗

¶
(6.16)

T ∗is some reference temperature, c∗e = ce(T
∗) and a0, a1 are dimensionless con-

stants. Applying the divergence theorem to (6.14), using ∇ ·u = 0 to write ∇ · (uc) =
u ·∇c+ c(∇ ·u) = u ·∇c, equating integrands and substituting equation (6.12) for the
Darcy velocity; we arrive at a partial differential equation for salinity c(r, t).

∂c

∂t
+
1

φ

Q

2πw

1

r

∂c

∂r
− D

r

∂

∂r

µ
r
∂c

∂r

¶
=
1

tr
(ce − c)

s

sf
(6.17)

A change δc in fluid salinity leads, by mass balance, to a change in precipitation

of δs = − φ
(1−φ)v δc where v is the stoichiometric ratio of dissolved reactive species to

solid reactant. For the dissolution of salt v will be unity, though since these results are

designed to cover generalized dissolution/precipitation reactions, (where the reactant

may change in chemical species) it shall be included for the rest of this document and

only be set to unity in the specific discussion of sodium chloride and sodium sulphate.

Now δc/δt = Qc. Hence:

∂s

∂t
= − φ

(1− φ)v

1

tr
(ce − c)

s

sf
(6.18)

6.2 Solution of the temperature equation

Writing as a differential operator on field T , the temperature equation is:µ
∂

∂t
+Θ

Q

2πw

1

r

∂

∂r
− κ

1

r

∂

∂r
r
∂

∂r

¶
T = 0 (6.19)

with thermal constants Θ and κ defined on page 52. In equation (6.16) we asserted

the equilibrium salinity to vary linearly with temperature. Since the operator of (6.19)

is also linear, the linearity of equilibrium salinity temperature variation implies:

∂ce
∂t

+Θ
Q

πr0

1

r

∂ce
∂r
− κ

1

r

∂

∂r

µ
r
∂ce
∂r

¶
= 0 (6.20)
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Let us remove dimensional quantities from (6.20) by defining the following variable

scalings.

τ =
t

tr
λ =

r

R
χe =

ce − ci
cf − ci

Recall ci is the salinity of injected fluid (either saturated - i.e. at equilibrium, or

undersaturated) and cf is the initial (equilibrium) salinity of the formation. (In our

case a cylindrical bead pack). Substituting for t, r, and ce in (6.20) we find:

∂χe
∂τ

+Θα
1

λ

∂χe
∂λ
− βT

1

λ

∂

∂λ

µ
λ
∂χe
∂λ

¶
= 0 (6.21)

where

α =
Qtr
2πwR2

(6.22)

and

βT =
κtr
R2

(6.23)

We now have a dimensionless equation for χe(λ, τ) controlled by pure numbers Θα

and βT which parameterize transport mechanisms advection and diffusion respectively.

The relative magnitudes of these numbers lead us naturally to two solution regimes

governed by flowrate Q.

• Ignore heat diffusion βT ¿ Θα⇒ QÀ 2κπw
Θ

• Don’t ignore heat diffusion βT ∼ Θα⇒ Q ∼ 2κπw
Θ

6.2.1 Case 1: neglect heat diffusion QÀ 2κπw
Θ

Our aim is to find a special variable η(λ, τ) that transforms (6.21) into an ordinary

differential equation in η. This should greatly ease the solution method. A crude

model of a radially spreading injected fluid of constant depth w and radius r equates

the cylindrical volume πr2w to the fluid volume injected Qt. i.e. r2(t) = Qt
πw . This tells

us the natural relationship between the powers of variables r and t. Hence we should

intuitively chose a variable of the form

η = λ2 + στ (6.24)
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where σ is a constant. Since we have a two variable system let define another

variable µ = τ to complete a functional equivalence

χ0e(η, µ) = χe(λ, τ) (6.25)

Using the chain rule

∂χ0e
∂τ

=
∂χ0e
∂η

∂η

∂τ
+

∂χ0e
∂µ

∂µ

∂τ
= σ

∂χ0e
∂η

+
∂χ0e
∂µ

(6.26)

∂χ0e
∂λ

=
∂χ0e
∂η

∂η

∂λ
+

∂χ0e
∂µ

∂µ

∂λ
= 2λ

∂χ0e
∂η

(6.27)

Hence if the diffusion term is ignored (6.21) becomes:

(σ + 2Θα)
∂χ0e
∂η

+
∂χ0e
∂µ

= 0 (6.28)

If we set σ = −2Θα then ∂χ0e
∂µ = 0 ⇒ χ0e = χ0e(η). Since χ0e = χe this implies any

function of the form χe(λ, τ) = χe(λ
2 − 2Θατ) will be a solution of (6.21) where heat

diffusion is ignored. Let us make the choice of a step function that satisfies the initial

(IC) and boundary (BC) conditions on χe.

• IC ce(r, t = 0) = cf , r ≥ 0⇒ χe(λ, τ = 0) = 1, λ ≥ 0

• BC ce(r = 0, t) = cei, t > 0⇒ χe(λ = 0, τ) = ω, τ > 0

where cei = c∗e
³
a0 + a1

Ti
T∗

´
and ω = cei−ci

cf−ci .

Hence set χe(λ, τ) to be:

χe(λ, τ) =

(
1 η ≥ 0
ω η < 0

(6.29)

where

η = λ2 − 2Θατ (6.30)

The temperature field for flowrates such that heat diffusion can be ignored therefore

takes the form:

T (r, t) =


µ
cf
c∗e
− a0

¶
T ∗

a1

r2

R2
− 2Θαt

tr
≥ 0µ

ω(cf − ci) + ci
c∗e

− a0

¶
T ∗

a1

r2

R2
− 2Θαt

tr
< 0

(6.31)
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Note that when η = 0, r =
³
ΘQt
πw

´ 1
2
. Note this describes the radius of the thermal

front in the sharp front model described previously. We can therefore interpret the

η > 0 region as being ‘downstream of the thermal signal.’ This has a literal significance

in the absence of heat diffusion since we have asserted a sharp front formalism for the

solution to the heat conservation equation.

6.2.2 Case 2: include heat diffusion Q ∼ 2κπw
Θ

When the diffusion term is included the variable η = λ2−2Θατ is insufficient to trans-
form the equation for the equilibrium salinity field (6.21) into an ordinary differential

equation in η. This is clear from the presence of λ(η AND τ) amongst the ∂
∂λ

¡
λ ∂
∂λ

¢
operator. Let us instead consider the modification:

η =
λ2 − 2Θατ

�τn
(6.32)

where � and n are constants. Note for positive n, η becomes singular as τ → 0. If

we consider only τ À 0 asymptotic solutions then we can be unconcerned about this

fact.

Let us assert a functional equivalence

χ0e(η) = χ(λ, τ) (6.33)

We can use the chain rule to express λ and τ partial derivatives in terms of total

derivatives by η.

∂χ0e
∂τ

=
∂η

∂τ

dχ0e
dη

= −
µ
2Θα

�
τ−n + ηnτ−1

¶
dχ0e
dη

(6.34)

∂χ0e
∂λ

=
∂η

∂λ

dχ0e
dη

=
2λ

�
τ−n

dχ0e
dη

(6.35)

∂2χ0e
∂λ2

=
∂

∂λ

µ
2λ

�
τ−n

dχ0e
dη

¶
=
2

�
τ−n

dχ0e
dη

+
2λ

�
τ−n

∂η

∂λ

d2χ0e
dη2

=
2

�
τ−n

dχ0e
dη

+
4λ2

�2
τ−2n

d2χ0e
dη2

(6.36)

Substitution of these results into (6.21) yields, (dropping primes for brevity and

noting 1
λ

∂
∂λ

³
λ∂χe

∂λ

´
= ∂2χe

∂λ2
+ 1

λ
∂χe
∂λ ) yields:
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−
µ
2Θα

�
τ−n + ηnτ−1

¶
dχe
dη
+
2Θα

�
τ−n

dχe
dη
−βT

µ
2

�
τ−n

dχe
dη

+
4λ2

�2
τ−2n

d2χe
dη2

+
2

�
τ−n

dχe
dη

¶
= 0

(6.37)

⇒
µ
−2Θα

�
τ−n − ηnτ−1 +

2Θα

�
τ−n − 4βT

�
τ−n

¶
dχe
dη
−4βT (�τ

nη + 2Θατ)

�2
τ−2n

d2χe
dη2

= 0

(6.38)

⇒ −
µ
ηnτ2n−1 +

4βT
�

τn
¶
dχe
dη
− 4βT (�τ

nη + 2Θατ)

�2
d2χe
dη2

= 0 (6.39)

Letting: � = 4βT :

⇒ d2χe
dη2

+
4βT

¡
ηnτn−1 + 1

¢
(4βTη + 2Θατ

1−n)
dχe
dη

= 0 (6.40)

We can eliminate τ , and thus create an ordinary differential equation for χe(η) if

n = 1. Setting n to unity and defining

Φ =
Θα

2βT
(6.41)

we arrive at

d2χe
dη2

+
η + 1

η +Φ

dχe
dη

= 0 (6.42)

where

η =
λ2 − 2Θατ
4τβT

(6.43)

To solve (6.42) define

z(η) =
dχe
dη

(6.44)

(6.42) then becomes a separable first order ordinary differential equation.

dz

dη
+

η + 1

η +Φ
z = 0 (6.45)
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⇒ dz

z
= − η + 1

η +Φ
dη (6.46)

Noting the standard integral
R η+1

η+Φdη = η + (1− Φ) ln(η +Φ) + const

⇒ ln z = −η − (1− Φ) ln(η +Φ) + const (6.47)

⇒ z(η) = Be−η(η +Φ)Φ−1 (6.48)

where B is a constant.

Hence

χe(η) = B

Z η

e−ε(ε+Φ)Φ−1dε (6.49)

In terms of η, the boundary condition for χe (see page 57 ) can be written as

• BC1 χe(η → ∞) = 1 (This replaces the Initial Condition, invalid if one

considers τ À 0 solutions)

• BC2 χe(η = −Φ) = ω

We can write (6.49) as a definite integral to incorporate BC2 and then apply BC1

to determine the constant B.

χe(η)− ω = B

Z η

−Φ
e−ε(ε+Φ)Φ−1dε (6.50)

Define ζ = ε+Φ

⇒ χe(η)− ω = BeΦ
Z η+Φ

0
e−ζζΦ−1dζ (6.51)

Special functions Γ(a) (gamma function) and γ(x, a) (lower-incomplete gamma

function) are defined

Γ(a) =

Z ∞

0
e−ζζa−1dζ (6.52)

γ(x, a) =
1

Γ(a)

Z x

0
e−ζζa−1dζ (6.53)

Hence

χe(η)− ω = BeΦΓ(Φ)γ(η +Φ,Φ) (6.54)
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Applying the BC χe(η →∞) = 1 and noting limx→∞γ(x, a) = 1 we can rearrange
the above to find B.

B =
1− ω

eΦΓ(Φ)
(6.55)

We now have an analytical solution to the unapproximated equation for χe(λ, τ),

i.e. inclusive of advection and diffusion of heat.

χe(λ, τ) = ω + (1− ω)γ(η +Φ,Φ) (6.56)

where

η =
λ2 − 2Θατ
4τβT

(6.57)

The equilibrium salinity field can be found from the scaling relation ce = (cf −
ci)χe + ci and the temperature field from the (rearranged) equation of state T =
T∗
a1

³
ce
c∗e
− a0

´
.

6.3 Solution of the salt conservation equation

As shown above, conservation of salt yields the following coupled partial differential

equations for salinity field c(r, t) and precipitation field s(r, t).

∂c

∂t
+
1

φ

Q

2πw

1

r

∂c

∂r
− D

r

∂

∂r

µ
r
∂c

∂r

¶
=
1

tr
(ce − c)

s

sf
(6.58)

∂s

∂t
= − φ

(1− φ)v

1

tr
(ce − c)

s

sf
(6.59)

Let us remove dimensional quantities from (6.21) and (6.59) by defining the fol-

lowing variable scalings.

τ =
t

tr
λ =

r

R
χe =

ce − ci
cf − ci

χ =
c− ci
cf − ci

ψ =
s

sf

Substitution of these relations yields:
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∂χ

∂τ
+

α

φ

1

λ

∂χ

∂λ
− βc

1

λ

∂

∂λ

µ
λ
∂χ

∂λ

¶
= (χe − χ)ψ (6.60)

∂ψ

∂τ
= −θ(χe − χ)ψ (6.61)

where

βc =
Dtr
R2

(6.62)

θ =
φ(cf − ci)

v(1− φ)sf
(6.63)

and (as defined previously)

α =
Qtr
2πwR2

(6.64)

To ignore diffusion of salt βc ¿ α
φ . ⇒ Q À 2Dπwφ. Flowrates of order 2Dπwφ

are typically much less than the critical values below which heat diffusion cannot be

ignored. (Q ∼ 2κπw
Θ ). Hence to incorporate diffusion of heat and salt, one requires

extremely low flowrates, for NaCl solutions, . 3 x10−5 cm3s−1. We shall ignore

this lower limit and therefore ignore the diffusion of salt for the remainder of of our

discussion. Hence the salt conservation equations reduce to:

∂χ

∂τ
+

α

φ

1

λ

∂χ

∂λ
= (χe − χ)ψ (6.65)

∂ψ

∂τ
= −θ(χe − χ)ψ (6.66)

We shall now consider the two solution regimes of the Temperature equation. i.e.

where flowrates are such that heat diffusion must be incorporated or can be ignored

as a negligible effect.

6.3.1 Case 1: neglect heat diffusion QÀ 2κπw
Θ

Equation (6.29) gives the scaled equilibrium salinity χe as:

χe(λ, τ) =

(
1 η ≥ 0
ω η < 0

(6.67)
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with variable η defined as

η = λ2 − 2Θατ (6.68)

Let us define an additional variable µ = τ to allow us to make the following

functional equivalences:

χ0(η, µ) = χ(λ, τ) (6.69)

ψ0(η, µ) = ψ(λ, τ) (6.70)

Using the chain rule

∂χ0

∂τ
=

∂χ0

∂η

∂η

∂τ
+

∂χ0

∂µ

∂µ

∂τ
= −2Θα∂χ

0

∂η
+

∂χ0

∂µ
(6.71)

∂χ0

∂λ
=

∂χ0

∂η

∂η

∂λ
+

∂χ0

∂µ

∂µ

∂λ
= 2λ

∂χ0

∂η
(6.72)

∂ψ0

∂τ
=

∂ψ0

∂η

∂η

∂τ
+

∂ψ0

∂µ

∂µ

∂τ
= −2Θα∂ψ

0

∂η
+

∂ψ0

∂µ
(6.73)

(6.65) and (6.66) now become:

2α

µ
1

φ
−Θ

¶
∂χ0

∂η
+

∂χ0

∂µ
= (χe − χ)ψ (6.74)

2Θα

θ

∂ψ0

∂η
− 1

θ

∂ψ0

∂µ
= (χe − χ)ψ (6.75)

Let us now define a special variable η∗ = η∗(η, µ) and functions χ∗(η∗) and ψ∗(η∗)
such that

χ∗(η∗) = χ0(η, µ) (6.76)

ψ∗(η∗) = ψ0(η, µ) (6.77)

Define

η∗(η, µ) = η +Ωµ (6.78)

The chain rule then yields
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∂χ∗

∂η
=

dχ∗

dη∗
∂η∗

∂η
=

dχ∗

dη∗
(6.79)

∂χ∗

∂µ
=

dχ∗

dη∗
∂η∗

∂µ
= Ω

dχ∗

dη∗
(6.80)

∂ψ∗

∂η
=

dψ∗

dη∗
∂η∗

∂η
=

dψ∗

dη∗
(6.81)

∂ψ∗

∂µ
=

dψ∗

dη∗
∂η∗

∂µ
= Ω

dψ∗

dη∗
(6.82)

Hence (6.74) and (6.75) becomeµ
2α

φ
− 2αΘ+Ω

¶
dχ∗

dη∗
= (χe − χ∗)ψ∗ (6.83)

µ
2Θα

θ
− Ω

θ

¶
dψ∗

dη∗
= (χe − χ∗)ψ∗ (6.84)

Motivated by the results of the sharp front model, one expects two classes of

solutions to emerge from the equations above. We expect a single sharp transition

from χ = 0 to χ = 1 in the case where the ‘depletion front leads the thermal front’ and

a double front structure for the converse in which one expects an intermediate region

where χ ∼ ω and ψ ∼ 1− θ(1−φΘ)(1−ω)
φΘ . The mathematical encoding of these scenarios

is related to the sign of parameter Ω. If one regards the variable η as a ‘space-like’

coordinate (and µ as a time coordinate) then our solutions are waveforms moving along

the one dimensional space of η at velocity Ω. (In the direction of decreasing η). In the

case of a purely depletive front, the waveform propagates in the positive η direction

from the source at η = −2αΘ. i.e. Ω < 0. In the case of a double front system the

waveform propagates in the opposite direction from the ‘thermal front’ at η = 0. i.e.

Ω > 0.

Motivated by the above discussion plus the analysis of Phillips [7] and Hinch and

Bhatt [2] we will postulate the following solution set:

ψ0(η, µ) =
ψ0(η)

1 + e−Υ(η+Ωµ)
(6.85)

χ0(η, µ) =
χe(η)

1 + e−Υ(η+Ωµ)
(6.86)

where

ψ0(η) =

(
1 η ≥ 0
1− θ(1−φΘ)(1−ω)

φΘ η < 0
(6.87)
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In the ‘far away from the source’ limit η → ∞, one expects χ, ψ → 1.Both

postulated solutions have this property.

One would expect in the limit τ À 0 the depletion front to maintain its structure

as it propagates along the λ2 coordinate. (This behavior was observed in the Apples

numerical experiment). Hence at the depletion front λ = λD we expect the value of ψ

and χ to remain constant ∀ τ . This can only occur if η∗D = ηD +Ωµ = 0 ∀ τ .

For a single front system, the sharp front model gives the dimensionless depletion

front radius as

λD =

µ
1 +

1

θ

¶− 1
2
r
2ατ

φ
(6.88)

Hence ‘stationary front’ condition η∗D = 0 impliesµ
1 +

1

θ

¶−1 2ατ
φ
− 2αΘτ +Ωτ = 0 (6.89)

This is true ∀ τ if
Ω = 2αΘ

(
1− 1

φΘ

µ
1 +

1

θ

¶−1)
(6.90)

For the double front system

λD =

µ
φΘθω

φΘ+ θ(ω + φΘ− 1)
¶ 1

2
r
2ατ

φ
(6.91)

Using the same argument as above an equivalent equation for Ω can be derived

Ω = 2αΘ

½
1− θω

φΘ+ θ(ω + φΘ− 1)
¾

(6.92)

Substitution of these results into the single, double front criteria yield the following:

Single front system Ω < 0

φΘ <

µ
1 +

1

θ

¶−1
(6.93)

Double front system Ω > 0
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φΘ >

µ
1 +

1

θ

¶−1
(6.94)

These results exactly match the conclusions of the sharp front model.

To complete the analysis let us substitute our postulated solutions into (6.84) to

compute Υ. Let us evaluate these separately at η∗ = 0 for single and double front

cases as one might expect them to differ.

Case (I): single front. At η∗ = 0, ψ0 = 1, χe = 1

µ
2Θα

θ
− Ω

θ

¶
d

dη∗

µ
1

1 + e−Υη∗

¶
= (1− 1

1 + e−Υη∗
)

1

1 + e−Υη∗
(6.95)

⇒ µ
2Θα

θ
− Ω

θ

¶
Υe−Υη∗

(1 + e−Υη∗)2
= (1− 1

1 + e−Υη∗
)

1

1 + e−Υη∗
(6.96)

At η∗ = 0

Υ

µ
2Θα

θ
− Ω

θ

¶
= 1 (6.97)

⇒
Υ =

µ
2Θα

θ
− Ω

θ

¶−1
(6.98)

Using the expression for (sing front) Ω derived above

Υ =
φ(θ + 1)

2α
(6.99)

Case (II): double front. At η∗ = 0, ψ0 = 1− θ(1−φΘ)(1−ω)
φΘ , χe = ω

µ
2Θα

θ
− Ω

θ

¶
d

dη∗

1− θ(1−φΘ)(1−ω)
φΘ

1 + e−Υη∗

 = (ω − ω

1 + e−Υη∗
)
1− θ(1−φΘ)(1−ω)

φΘ

1 + e−Υη∗
(6.100)

⇒ µ
2Θα

θ
− Ω

θ

¶ Υ³1− θ(1−φΘ)(1−ω)
φΘ

´
e−Υη∗

(1 + e−Υη∗)2

= ω

µ
1− θ(1− φΘ)(1− ω)

φΘ

¶
(1− 1

1 + e−Υη∗
)

1

1 + e−Υη∗
(6.101)

At η∗ = 0
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Υ

µ
2Θα

θ
− Ω

θ

¶µ
1− θ(1− φΘ)(1− ω)

φΘ

¶
= ω

µ
1− θ(1− φΘ)(1− ω)

φΘ

¶
(6.102)

⇒
Υ = ω

µ
2Θα

θ
− Ω

θ

¶−1
(6.103)

Using the expression for (double front) Ω derived above

Υ =
φ

2α

½
1 +

θ(ω + φΘ− 1)
φΘ

¾
(6.104)

We can use the formulae for Υ to estimate the salt reaction time constant tr.

Preliminary experiments conducted by Bell and Shaw-Champion [10] showed depletion

fronts in Sodium Chloride plus glass ballotini bead packs to have widths2 δR ∼ 10
mm. The width of a sigmoid function of the form y(x) = 1

1+exp(−Υx) is ∼ 3
Υ . (Setting

x = 3
Υ yields y ≈ 0.95). Since ψ, χ both have this form (with x ∝ r2

R2
) we can relate Υ

to the experimental width above. 3

3

Υ
∼
µ
δR

R

¶2
(6.105)

From above Υ ∼ φ
2α and α = Qtr

2πwR2
. Hence

tr ∼ πwφ

3Q
(δR)2 (6.106)

Using Q ∼ 0.3 cm3s−1, φ ∼ 0.4 and w = 4.2 cm ⇒ tr ∼ 0.06 s.

6.3.2 Case 2: include heat diffusion Q ∼ 2κπw
Θ

Equation (6.56) gives the scaled equilibrium salinity χe as:

χe(η) = ω + (1− ω)γ(η +Φ,Φ) (6.107)

with variable η defined as

2 ‘Width’ is defined as the distance beween the centre of the depletion front and where the curve is
within 95% of its downstream value.

3This is all very approximate - the experiments performed by Bell and Shaw-Champion were with
linear not axisymmetric media.



6. Salinity and Precipitation Field Equations 68

η =
λ2 − 2Θατ
4τβT

(6.108)

This definition allows us to write partial derivatives ∂
∂λ and

∂
∂τ in terms of total

derivatives d
dη , recalling definition Φ =

Θα
2βT

.

∂

∂τ
=

∂η

∂τ

d

dη
= −(Φ+ η)

τ

d

dη
(6.109)

∂

∂λ
=

∂η

∂λ

d

dη
=
Φλ

Θατ

d

dη
(6.110)

(6.65) and (6.66) now become:

µ
−Φ− η +

Φ

φΘ

¶
1

τ

dχ

dη
= (χe − χ)ψ (6.111)

(Φ+ η)

θ

1

τ

dψ

dη
= (χe − χ)ψ (6.112)

Define A = 1
φΘ − 1 to simplify the χ equation slightly

(AΦ− η)
1

τ

dχ

dη
= (χe − χ)ψ (6.113)

The presence of τ in these equations means they cannot be solved in the same

manner as for the ‘ignore heat diffusion’ case. We shall instead investigate the τ À
0 asymptotic limit and postulate a series solution for χ,ψ of the form

χ(η, τ) =
∞X
n=0

fn(η)

τn
(6.114)

ψ(η, τ) =
∞X
n=0

gn(η)

τn
(6.115)

with the definition

f0(η) = χe(η) (6.116)

Substitution of these series expansions into (6.113) and (6.112) yields:
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−AΦ− η

τ

µ
f 00 +

f 01
τ
+

f 02
τ2

. . .

¶
=
³
g0 +

g1
τ
+

g2
τ2

. . .
´µf1

τ
+

f2
τ2

. . .

¶
(6.117)

−Φ+ η

θτ

µ
g00 +

g01
τ
+

g02
τ2

. . .

¶
=
³
g0 +

g1
τ
+

g2
τ2

. . .
´µf1

τ
+

f2
τ2

. . .

¶
(6.118)

We can match coefficients of {τ−n} to generate the following series of ordinary
differential equations for the sets of functions {fn(η)}, {gn(η)}.

Up to n = 2:

τ−1 : − Φ+ η

θ
g00 = g0f1 (6.119)

τ−1 : − (AΦ− η)f 00 = g0f1 (6.120)

τ−2 : −Φ+ η

θ
g01 = g1f1 + g0f2 (6.121)

τ−2 : −(AΦ− η)f 01 = g1f1 + g0f2 (6.122)

Since f0(η) is known we can divide the first two equations and integrate to find

g0(η). Note from the boundary conditions ψ(η = 0) = 1 so we can write g0(η) as a

definite integral.

g0(η) = 1 +

Z η

0

θ(AΦ− ξ)

Φ+ ξ
f 00(ξ)dξ (6.123)

This result can then be used to find f1 courtesy of the second equation.

f1(η) =
−(AΦ− η)f 00(η)

g0(η)
(6.124)

This solution method is simple to extend to general n. Comparing coefficients of

τ−(n+1) :

τ−(n+1) : − Φ+ η

θ
g0n =

nX
i=0

gifn−i+1 (6.125)

τ−(n+1) : − (AΦ− η)f 0n =
nX
i=0

gifn−i+1 (6.126)



6. Salinity and Precipitation Field Equations 70

Assuming one knows the set of solutions up to fn and gn−1; one can find the next
solutions in the series, fn+1, gn, by the formulae

gn(η) = 1 +

Z η

0

θ(AΦ− ξ)

Φ+ ξ
f 0n(ξ)dξ (6.127)

fn+1(η) =
−(AΦ− η)f 0n(η)−

Pn
i=1 gi(η)fn−i+1(η)

g0(η)
(6.128)

Let us use these results to compute the terms g0(η) and f1(η).

f0(η) = χe(η) = ω + (1− ω)γ(η +Φ,Φ) (6.129)

⇒
f 00(η) =

1− ω

Γ(Φ)
e−(η+Φ)(η +Φ)Φ−1 (6.130)

⇒
g0(η) = 1 +

θ(1− ω)

Γ(Φ)

Z η

0

(AΦ− ξ)

Φ+ ξ
e−(ξ+Φ)(ξ +Φ)Φ−1dξ (6.131)

⇒

g0(η) = 1+
θ(1− ω)

Γ(Φ)

½
(AΦ− η)

Z η

0
e−(ξ+Φ)(ξ +Φ)Φ−2dξ +

Z η

0

Z ζ

0
e−(ξ+Φ)(ξ +Φ)Φ−2dξdζ

¾
(6.132)

Define the ‘second order lower incomplete gamma function’

γ(2)(x, a) =
1

Γ(a)

Z x

0

Z ζ

0
e−ξξa−1dξdζ (6.133)

⇒

g0(η) = 1 +
θ(1− ω)Γ(Φ− 1)

Γ(Φ)

n
(AΦ− η)γ(η +Φ,Φ− 1) + γ(2)(η +Φ,Φ− 1)

o
(6.134)

Now f1(η) =
−(AΦ−η)f 00(η)

g0(η)

⇒

f1(η) =
(η −AΦ)e−(η+Φ)(η +Φ)Φ−1

Γ(Φ)
1−ω + θΓ(Φ− 1)©(AΦ− ξ)γ(η +Φ,Φ− 1) + γ(2)(η +Φ,Φ− 1)ª (6.135)
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6.4 Summary of solutions to conservation equations

6.4.1 Case 1: ignore heat diffusion QÀ 2κπw
Θ

η = λ2 − 2Θατ (6.136)

χe(λ, τ) =

(
1 η ≥ 0
ω η < 0

(6.137)

ψ0(η) =

(
1 η ≥ 0
1− θ(1−φΘ)(1−ω)

φΘ η < 0
(6.138)

ψ(λ, τ) =
ψ0(η)

1 + e−Υ(η+Ωτ)
(6.139)

χ(λ, τ) =
χe(η)

1 + e−Υ(η+Ωτ)
(6.140)

Depletion front leads thermal front Ω < 0⇒ φΘ <
¡
1 + 1

θ

¢−1

Ω = 2αΘ

(
1− 1

φΘ

µ
1 +

1

θ

¶−1)
(6.141)

Υ =
φ(θ + 1)

2α
(6.142)

Depletion front lags thermal front Ω > 0⇒ φΘ >
¡
1 + 1

θ

¢−1
Ω = 2αΘ

½
1− θω

φΘ+ θ(ω + φΘ− 1)
¾

(6.143)

Υ =
φ

2α

½
1 +

θ(ω + φΘ− 1)
φΘ

¾
(6.144)
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6.4.2 Case 2: include heat diffusion Q ∼ 2κπw
Θ

η =
λ2 − 2Θατ
4τβT

(6.145)

χe(η) = ω + (1− ω)γ(η +Φ,Φ) (6.146)

χ(η, τ) =
∞X
n=0

fn(η)

τn
(6.147)

ψ(η, τ) =
∞X
n=0

gn(η)

τn
(6.148)

f0(η) = χe(η) (6.149)

A =
1

φΘ
− 1 Φ =

Θα

2βT
(6.150)

gn(η) = 1 +

Z η

0

θ(AΦ− ξ)

Φ+ ξ
f 0n(ξ)dξ (6.151)

fn+1(η) =
−(AΦ− η)f 0n(η)−

Pn
i=1 gi(η)fn−i+1(η)

g0(η)
(6.152)

g0(η) = 1 +
θ(1− ω)Γ(Φ− 1)

Γ(Φ)

n
(AΦ− η)γ(η +Φ,Φ− 1) + γ(2)(η +Φ,Φ− 1)

o
(6.153)

f1(η) =
(η −AΦ)e−(η+Φ)(η +Φ)Φ−1

Γ(Φ)
1−ω + θΓ(Φ− 1)©(AΦ− ξ)γ(η +Φ,Φ− 1) + γ(2)(η +Φ,Φ− 1)ª (6.154)

6.5 Field equation solutions (neglecting heat diffusion)
computed for a real experimental system

The salinity, precipitation and equilibrium salinity fields for an axisymmetric porous

medium have been computed using the MATLAB code SRIPM. (Salt Reactions In

Porous Media). The medium has identical physical characteristics to the linear case
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described above in the Experimental Analysis section, except that a cylindrical geom-

etry is used (Radius R = 20 cm, width w = 4.2 cm). Graphical solutions are presented

for sodium chloride and sodium sulphate salts.

In both cases φΘ >
¡
1 + 1

θ

¢−1 ⇒ the thermal front leads the depletion front.

However, because the saturation solubility of sodium chloride varies ∼ 0.2% compared
to ∼ 10% for sodium sulphate, the double front structure is only clearly observed for

the latter. On page 67 the salt reaction time constant tr was estimated to be ∼ 0.06
s. For both species of salt this yields sharp fronts and the predictions of the sharp

front model (as illustrated above via coloured asterisks) fit to very good accuracy. To

demonstrate the effect of increasing tr (from 0.06 to 100 s) an additional series of plots

have been computed for sodium sulphate salt. Qualitatively, the result is a broadening

of the depletion front about a mid point given by the sharp front model depletion front

length. The thermal front remains sharp because the equation for the temperature

field contains no salt reaction term (with an associated tr). If heat diffusion were to

be included one would expect this front to broaden also4.

Below is a summary of input and output parameters of the SRIPM code.

6.5.1 Sodium sulphate salt, tr = 100 s

Length l of linear porous medium 24 cm

Width w of linear porous medium 4.2 cm

Depth H of linear porous medium 11 cm

Width wins of insulating material 5 cm

Thickness wglass of glass tank walls 0.5 cm

Length ls of fluid region in tank 36 cm

Mean diameter wbead of glass beads 0.051 cm

Radius R of axisymmetric porous medium 20 cm

Stoichiometric ratio v of precipitate to solute 1

Mean density ρw of water 0.998 gcm−3

Density ρglass of glass 2.6 gcm−3

Density ρins of insulating material 0.032 gcm−3

Density ρsalt of pure solid salt 1.46 gcm−3

4The asymptotic solutions for the salinity and precipitation fields when heat diffusion is included
are not plotted because of a lack of numerical code to plot succesive integrals of the gamma function.
However, the saturation salinity fields are plotted, recalling the assumption of a linear relation between
saturation salinity and temeperature.
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Specific heat capacity Cw of water 4.182 JK−1g−1

Specific heat capacity Cglass of glass 0.84 JK−1g−1

Specific heat capacity Cins of insulation 1.38 JK−1g−1

Specific heat capacity Csalt of solid salt 1.82 JK−1g−1

Thermal diffusivity κw of water 0.00144 cm2s−1

Thermal diffusivity κins of insulation 0.00625 cm2s−1

Thermal diffusivity κglass of glass 0.00412 cm2s−1

Thermal diffusivity κsalt of solid salt 0.00301 cm2s−1

Salt bulk diffusion constant D 1.23 x10−5 cm2s−1

Molar mass Msalt of salt 142.04 gmol−1

Injectate temperature Ti 5oC

Initial formation temperature Tf 24.5oC

Mean volumetric flowrate through system Q 0.22453 cm3s−1

Porosity φ of porous medium 0.29

Mass of salt msalt initially in medium 420 g

Head h driving flow 2 cm

Mass ratio RGS of glass beads to salt 2.5

Saturated solution volume/solvent volume RV 1.1

Weight fraction of salt in injected fluid 0

Salt reaction time constant tr 100 s

Sat. salt weight fraction of initial formation fluid 0.91792

Sat. salt weight fraction of injected fluid 0.14468

Initial formation salinity cf 0.8328 gcm−3

Saturation salinity cei of injectate 0.13126 gcm−3

Injectate salinity ci 0 gcm−3

Initial solid salt density sf 0.60736 gcm−3

Initial formation fluid density κfluid 1.7401 gcm−3

Initial formation solid density κsolid 2.1258 gcm−3

Formation fluid specific heat capacity Cfluid 2.9505 JK−1g−1

Formation fluid thermal diffusivity κfluid 0.0022586 cm2s−1
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Formation solid specific heat capacity Csolid 1.12 JK−1g−1

Formation solid thermal diffusivity κsolid 0.0038029 cm2s−1

Karman-Cozeny permeability k 6.5769 x10−11 m2

Volume Vglass of glass used in walls on tank 631.8 cm3

Volume Vins of insulation used around tank 12711.2 cm3

Total volume Vtotal of experiment 14310.68 cm3

Averaged thermal diffusivity parameter κ 0.0030883

Averaged thermal parameter Θ 1.6213

Extent of reactive species advection α 0.0021271

Extent of thermal diffusion βT 0.00077208

Extent of salt diffusion βc 3.075 x10−6

Reaction parameter θ 0.54759

Injector saturation salinity variable ω 0.15761

Ratio of thermal to fluid front lengths F 0.4627

Upsilon Υ 36.9397

Big omega Ω 0.004561

Advection to thermal diffusion ratio Φ 2.2334

Fluid flush time tflush 1229 s

Thermal flush time ttherm 2658 s

Salt diffusion time tsd 7492682 s

Heat diffusion time thd 29841 s

Cooling time tcool 3930 s

6.5.2 Sodium sulphate salt, tr = 0.06 s

Only differences to the above are shown.

Salt reaction time constant tr 0.06 s

Extent of reactive species advection α 1.2763 x10−6

Extent of thermal diffusion βT 4.6325 x10−7

Extent of salt diffusion βc 1.845 x10−9

Upsilon Υ 61566.2347

Big omega Ω 2.7366 x10−6

Advection to thermal diffusion ratio Φ 2.2334

6.5.3 Sodium chloride salt, tr = 0.06 s

Again, only differences to the above are shown.
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Specific heat capacity Csalt of solid salt 0.86 JK−1g−1

Density ρsalt of pure solid salt 2.17 gcm−3

Thermal diffusivity κsalt of solid salt 0.0097 cm2s−1

Salt bulk diffusion constant D 1.611 x10−5 cm2s−1

Molar mass Msalt of salt 58.443 gmol−1

Mean volumetric flowrate through system Q 0.31763 cm3s−1

Porosity φ of porous medium 0.38

Salt reaction time constant tr 0.06 s

Sat. salt weight fraction of initial formation fluid 0.35968

Sat. salt weight fraction of injected fluid 0.35658

Initial formation salinity cf 0.32633 gcm−3

Saturation salinity cei of injectate 0.32351 gcm−3

Injectate salinity ci 0 gcm−3

Initial solid salt density sf 0.70305 gcm−3

Initial formation fluid density κfluid 1.2336 gcm−3

Initial formation solid density κsolid 2.4607 gcm−3

Formation fluid specific heat capacity Cfluid 1.7388 JK−1g−1

Formation fluid thermal diffusivity κfluid 0.007515 cm2s−1

Formation solid specific heat capacity Csolid 0.84571 JK−1g−1

Formation solid thermal diffusivity κsolid 0.0057143 cm2s−1

Karman-Cozeny permeability k 2.1243 x10−10 m2

Averaged thermal diffusivity parameter κ 0.0064162

Averaged thermal parameter Θ 1.0187

Extent of reactive species advection α 1.8054 x10−6

Extent of thermal diffusion βT 9.6243 x10−7

Extent of salt diffusion βc 2.4165 x10−9

Reaction parameter θ 0.2877

Injector saturation salinity variable ω 0.99138

Ratio of thermal to fluid front lengths F 0.38982

Upsilon Υ 135785.6997

Big omega Ω 1.578 x10−6

Advection to thermal diffusion ratio Φ 0.95554
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Figure 6.3: Axisymmetric Salinity field for Sodium Chloride salt. tr = 0.06 s.

Fluid flush time tflush 1165 s

Thermal flush time ttherm 2990 s

Salt diffusion time tsd 5720670 s

Heat diffusion time thd 14363 s

Cooling time tcool 3745 s
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Figure 6.4: Axisymmetric Precipitation field for Sodium Chloride salt. tr = 0.06 s.
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Figure 6.5: Axisymmetric Saturation Salinity field for Sodium Chloride salt. Heat
diffusion is ignored.
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Figure 6.6: Axisymmetric Saturation Salinity field for Sodium Chloride salt. Heat
diffusion is not ignored.
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Figure 6.7: Axisymmetric Salinity field for Sodium Sulphate salt. tr = 100 s.
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Figure 6.8: Axisymmetric Salinity field for Sodium Sulphate salt. tr = 0.06 s.
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Figure 6.9: Axisymmetric Precipitation field for Sodium Sulphate salt. tr = 100 s.
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Figure 6.10: Axisymmetric Precipitation field for Sodium Sulphate salt. tr = 0.06 s.
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Figure 6.11: Axisymmetric Saturation Salinity field for Sodium Sulphate salt. Heat
diffusion is ignored.
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Figure 6.12: Axisymmetric Saturation Salinity field for Sodium Sulphate salt. Heat
diffusion is not ignored.



Chapter 7

Conclusion

To conclude I will comment under three headings. Firstly I will outline what has

been achieved and then make an assessment of the success of the models presented

by comparison to experimental results. In mind of this analysis I will voice my own

suggestions for future study, both in theoretical and practical terms. Finally I will

thank those who have supported the project over the past year

7.1 Outline of achievements and proposals for further
study

• A sharp front model has been derived for linear and axisymmetric media. Condi-
tions that select between a single front (depletion front leads thermal front) and

a double front (thermal front leads depletion front) solution are given. Equations

for the lengths of all fronts are presented in addition to the degree of dissolution

between the thermal and depletion fronts.

• Conservation of heat, total mass and salt mass have been used to derive a system
of partial differential equations for the salinity, equilibrium salinity and precip-

itation fields for axisymmetric geometry and a constant injection flowrate.1 In

all cases salt diffusion has been neglected implying a lower bound to applica-

ble flowrates of 2Dπwφ. For sodium chloride D ∼ 1.611 x 10−5 cm2s−1 . If
1As discussed in the the section concerning the processing of experimental data, the sharp front

model is valid for flowrates that vary with time. Unfortunately, closed (i.e non series) analytic solutions
to the corresponding continum model can only be found for constant flowrates. One can show this by
seeking solution functions in terms of a variable η = λaτ b and defining a power law flowrate Q = Q0τ

c.
Substitution into the governing partial differential equations only yields ordinary differential equations
in η when c = 0.

87
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the injection length scale is ∼ 10 cm and porosity ∼ 0.5, flowrates must ex-

ceed ∼ 3 x 10−5 cm3s−1. Long time asymptotic solutions have been derived for
2Dπwφ ¿ Q ∼ 2κπw

Θ and analytic solutions for Q À 2κπw
Θ , i.e. when heat and

salt diffusion are both neglected. The latter yields the same double/single front

selection criterion as the sharp front model and indeed approaches the sharp

front solutions in the limit of the reaction time parameter tr → 0. (i.e. an in-

finitely fast reaction rate). Note for the experimental system adopted in this

study, 2κπwΘ ∼ 5 x 10−2 cm3s−1 an order of magnitude less than the average
flowrate Q used. (∼ 0.2 cm3s−1).

• The numerical analogy of ‘Apples and Baskets’ encoded in MATLAB appears to
confirm the predictions of the sharp front model and seems to serve its purpose

and an educational aid in the understanding of the physical processes that gener-

ate depletion and thermal fronts. The idea could readily be extended to a greater

multiplicity of ‘chinese whispers’ (i.e. fronts that fix a species saturation) or in-

deed more than one mobile species. For example, baskets could contain apples

and oranges and people could have eating laws that depend on the amounts of

both in the baskets and in their stomachs. This would have a direct application

in the energy industry where acid or gas is often injected to stimulate reservoir

performance. A greater complexity could be introduced to take into account of

reactions between dissolved or precipitated species.

• Many difficulties were encountered in the running of experiments designed to
contradict or verify the theory presented. The current design proved adequate

for achieving results of fluid and depletion fronts using sodium chloride. However,

as indicated by a very preliminary study with sodium sulphate, the setup may

not be the most appropriate method of investigating thermal fronts. Also, the

rectangular nature of the current equipment meant no direct comparison with

the mostly axisymmetric theory could be made. An experiment based on a thin

cylindrical Hele Shaw cell using sodium sulphate salt would be the most logical

step forward. This could be oriented horizontally to reduce the possibility of

gravity driven Saffman-Taylor instability and fluid would be injected centrally

from a raised source. A double front system resulting in a near depletion of

salt upstream of the thermal front would be desirable for visual purposes. This

could be achieved by having an injectate significantly colder that the formation.

However, as shown on page 16, as the injectate temperature is lowered, although

the precipitation s0 tends to zero, the separation between depletion and thermal
fronts also reduces. When s0 is zero the double front structure is lost and a
single front system remains. An informative series of experiments could involve
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such a system with increasingly lower injectate temperature until the double-

single front transition is observed. For a sodium sulphate system initially at a

lab temperature of 24.5oC we can calculate the initial precipitation required to

cause a transition at 10oC.

c∗ei(T = 10oC) = 0.2030 gcm−3 (7.1)

cf (T = 24.5oC) = 0.8328 gcm−3 (7.2)

Using c∗ei = cf − (1−φ)vsfF
φ(1−F ) and F = φΘ

⇒
s∗f =

(cf − c∗ei)(1− φΘ)

(1− φ)vΘ
(7.3)

⇒
s∗f = 0.29 gcm

−3 (7.4)

For a Hele Shaw cell of porosity φ = 1 −
³

1
ρsalt

+ <GS
ρglass

´
msalt
πR2w

, radius R = 20 cm

and depth w = 4.2 cm, this implies a salt mass

msalt = s∗f (1− φ)πR2w (7.5)

⇒
1 = s∗f

µ
1

ρsalt
+
<GS

ρglass

¶
(7.6)

⇒
<GS =

ρglass
s∗f
− ρglass

ρsalt
(7.7)

= 7.1 (7.8)

(ρglass = 2.6 gcm
−3, ρsalt = 1.46 gcm−3).

In summary, the ballotini to salt ratio at the transition between double and single

front systems (given a desired transition temperature and thus injectate saturation

salinity) is given by

<GS =
ρglass(1− φ)vΘ

(cf − c∗ei)(1− φΘ)
− ρglass

ρsalt
(7.9)
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Appendix A

The Saffman Taylor Instability in
porous media

Consider a time and space varying perturbation ε(x, t) to a (previously) sharp

interface between fluid regions 1 and 2 as illustrated in figure (A.1)

ε(x, t) = aeinx+σtf(z) (A.1)

where a = real positive constant and n is the (dimensionless) wavenumber of the

perturbation, 2πλ .

Aim to determine σ in terms of Darcy velocity u; porosities φ1,φ2; permeabilities
k1,k2; viscosities η1,η2; fluid densities ρ1,ρ2 and gravitational field strength g. If σ >

0⇒ perturbation will grow with time and thus interface will be unstable.

Define Darcy velocity field in perturbed region to be u = ubz + uxbx + uzbz. Let

uz ≈ φ∂ε
∂t ⇒

uz = φσaeinx+σtf(z) (A.2)

In each region one assumes ∇ρ and ∂ρ
∂t = 0. Hence by continuity of fluid

∇ · u = 0⇒ ∂ux
∂x

+
∂uz
∂z

= 0 (A.3)

Substitution of (A.2) into this result and integrating wrt x expression for ux gives

ux =
−f 0(z)φσaeinx+σt

in
+ α(z, t) (A.4)
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Figure A.1: The Saffman Taylor instability desribes a criterion for the growth of
perturbations to the interface of two incompressible fluids with defined densities and
viscosities, each existing in a porous solid matrix with known permeabilities and porosi-
ties. Here cartesian geometry is studied.

where α(z, t) is the constant of integration.

Darcy’s Law relates the transport velocity u to the pressure field p

u = −k
η
(∇p− pgbz)⇒ ux = −k

η

∂p

∂x
(A.5)

For the x component

∂p

∂x
= −η

k

½
α(z, t) +

−f 0(z)φσaeinx+σt
in

¾
(A.6)

One may expect p to be oscillatory in x so set α(z, t) = 0 to prevent any αx terms.

⇒
p(x, z, t) =

−f 0(z)ηφσaeinx+σt
kn2

+ β(z, t) (A.7)

Inserting this result into Darcy’s law yields the following result for the z component

−η
k

©
u+ φσaeinx+σtf(z)

ª
+ ρg =

−f 00(z)ηφσaeinx+σt
kn2

+
∂β(z, t)

∂z
(A.8)

Since this must be true ∀ x we can compare coefficients of einx to find an ordinary
differential equation for f(z)
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f(z) =
f 00(z)
n2

(A.9)

Let f(z) = eξz.1 Substitution into the above yields ξ2

n2
= 1⇒ ξ = ±n. Hence

f(z) = Ae±nz (A.10)

Substitution of this result into the z component of Darcy’s law yields an equation

for p in terms of known quantities. (Absorbing the constant A into a)

∂p

∂z
= −η

k

©
u+ φσaeinx±nz+σt

ª
+ ρg (A.11)

⇒
p = −η

k

½
uz ± φσa

n
einx±nz+σt

¾
+ ρgz + p∗(x, t) (A.12)

In regions 1 and 2 we expect perturbations to decay far away from the interface.

i.e. (
limz→+∞ ε = 0 region 2

limz→−∞ ε = 0 region 1
(A.13)

Hence fix sign of ξ accordingly in each region to solve for the pressure field

p =


−η1
k1

½
uz +

φ1σa

n
einx+nz+σt

¾
+ ρ1gz + p∗1(x, t) z < ε

−η2
k2

½
uz − φ2σa

n
einx−nz+σt

¾
+ ρ2gz + p∗2(x, t) z > ε

(A.14)

These expressions must be equivalent at z = ε if surface tension is ignored

(ρ1 − ρ2) gε+uε

µ
η2
k2
− η1

k1

¶
+p∗1(x, t)−p∗2(x, t)−

σa

n
einx+σt

µ
φ1η1
k1

enε +
φ2η2
k2

e−nε
¶
= 0

(A.15)

If at t = 0 perturbations are small ⇒ ε¿ λ. Since λ = 2π
n ⇒ nε¿ 2π ⇒ nε¿ 1.

Hence by Taylor expansion of e±nε

e±nε = 1± nε+ .... ≈ 1 (A.16)

1Let one constant of integration be absorbed into a. Consider different values for A depending on
the sign of ξ to incorporate the second constant.
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Figure A.2: Illustration of the Saffman Taylor instability at an initailly circular inter-
face.

Applying this and differentiating wrt ε we find

(ρ1 − ρ2) g + u

µ
η2
k2
− η1

k1

¶
− σa

n
einx

µ
φ1η1
k1

+
φ2η2
k2

¶
= 0 (A.17)

At x = 0 (A.17) becomes

(ρ1 − ρ2) g + u

µ
η2
k2
− η1

k1

¶
=

µ
η1φ1
k1

+
η2φ2
k2

¶
σa

n
(A.18)

The sign of σ is fixed by the sign of the LHS since the RHS coefficients of σ must

all be positive for a real physical system.

Hence interface is unstable, i.e. σ > 0 if

u >
(ρ2 − ρ1) g
η2
k2
− η1

k1

(A.19)

A conceptually identically analysis can be applied to axisymmetric geometry. In

this case consider a perturbation ε(r, θ) to a circular interface between regions 1 and

2 as illustrated in figure (A.2).

ε(r, θ) = aeinθ+σtf(r) (A.20)
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If L is the radius of the unperturbed interface then the (dimensionless) wavenumber

n is defined to be

n =
2πL

λ
(A.21)

Let us define a Darcy velocity field in the local vicinity of the perturbed interface.

As before u is defined to be the (purely radial in this case) velocity of the unperturbed

interface.

u = ubr+ uθbθ + urbr (A.22)

Let ur ≈ φ∂ε
∂t ⇒ ur = φaσeinθ+σtf(r). Continuity of fluid implies ∇ · u = 0.

⇒
1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

= 0 (A.23)

Hence ∂uθ
∂θ = − ∂

∂r (rur). Substituting the expression for ur above and integrating

yields an expression for uθ.

∂uθ
∂θ

= −φaσeinθ+σt ©rf 0(r) + f(r)
ª

(A.24)

⇒
uθ = −φaσe

inθ+σt

in

©
rf 0(r) + f(r)

ª
+ α(r, t) (A.25)

Let us consider a horizontal medium, i.e. where the gravitational potential is

constant ∀ r, θ. In this case Darcy’s Law becomes u = −k
η∇p. Evaluating the angular

and radial components we find

uθ = −k
η

1

r

∂p

∂θ
(A.26)

u+ ur = −k
η

∂p

∂r
(A.27)

Substitution of uθ in the first of these equations and integrating yields an expression

for the pressure field p.

p = −ηφaσe
inθ+σt

n2k

©
r2f 0(r) + rf(r)

ª
+ α(r, t)θ + β(r, t) (A.28)

To prevent p from being multivalued as θ is varied from 0 → 2π the integration

constant α(r, t) = 0. Substituting this formula for ∂p
∂r into the radial component of

Darcy’s law yields (also substituting for ur)

−η
k

n
u+ φaσeinθ+σtf(r)

o
= −ηφaσe

inθ+σt

n2k

n
r2f

00
(r) + 3rf 0(r) + f(r)

o
+

∂β(r, t)

∂r
(A.29)
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Since this must be valid ∀ θ we can compare coefficients of einθ to yield an ordinary
differential equation for the function f(r).

r2f 00 + 3rf 0 + f(1− n2) = 0 (A.30)

To solve let us define f in terms of a new variable v.

f = vr (A.31)

⇒

f 0 = v + rv0 (A.32)

f 00 = 2v0 + rv00 (A.33)

Substituting these results yields

r2(2v0 + rv00) + 3r(v + rv0) + rv(1− n2) = 0 (A.34)

⇒
r3v00 + 5r2v0 + (3− n2)rv = 0 (A.35)

Let define an additional variable z

z = ln r (A.36)

⇒
dz

dr
=

1

r
(A.37)

v0 =
dv

dz

dz

dr
=
1

r

dv

dz
(A.38)

v00 =
d

dz

µ
dv

dr

¶
dz

dr
=

d

dz

µ
1

r

dv

dz

¶
dz

dr
(A.39)

=
1

r

½
1

r

d2v

dz2
− 1

r2
dr

dz

dv

dz

¾
(A.40)

=
1

r2

½
d2v

dz2
− dv

dz

¾
(A.41)

Hence r3v00 +5r2v0 + (3− n2)rv = 0 transforms to (note elimination of variable r)

d2v

dz2
− dv

dz
+ 5

dv

dz
+ (3− n2)v = 0 (A.42)

⇒
d2v

dz2
+ 4

dv

dz
+ (3− n2)v = 0 (A.43)



A. The Saffman Taylor Instability in porous media 98

Substitution of a prototype solution of the form v = eξz yields

ξ2 + 4ξ + 3− n2 = 0 (A.44)

⇒
ξ = −2±

p
1 + n2 (A.45)

Hence a general solution for v(z) takes the form

v(z) = Ae(−2+
√
1+n2)z +Be(−2−

√
1+n2)z (A.46)

Now v = f
r and z = ln r , hence

f(r) = Ar−1+
√
1+n2 +Br−1−

√
1+n2 (A.47)

Integration of the radial component of Darcy’s Law yields the simplest expression

of the pressure field

p = −η
k

½
ur + φaσeinθ+σt

Z r

f(r0)dr0
¾

(A.48)

⇒
p = −η

k

½
ur +

φaσeinθ+σt√
1 + n2

³
Ar

√
1+n2 −Br−

√
1+n2

´¾
+ p∗ (A.49)

where p∗ is the constant of integration. In order for p perturbations to decay far
away from the interface in both regions; in region 1 (r < L+ε) : B = 0 and in region 2

(r > L+ ε) : A = 0. Absorbing the remaining constant into a we arrive at a complete

solution for the pressure field

p =


−η1
k1

½
ur +

φaσeinθ+σt√
1 + n2

r
√
1+n2

¾
+ p∗1 r < L+ ε

−η2
k2

½
ur − φaσeinθ+σt√

1 + n2
r−
√
1+n2

¾
+ p∗2 r > L+ ε

(A.50)

These two expressions must be equivalent at the interface r = L+ ε. Making this

equivalence we find

0 = −η1
k1

½
u(L+ ε) +

φaσeinθ+σt√
1 + n2

(L+ ε)
√
1+n2

¾
+ p∗1 (A.51)

−p∗2 +
η2
k2

½
u(L+ ε)− φaσeinθ+σt√

1 + n2
(L+ ε)−

√
1+n2

¾
(A.52)
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If perturbations ε are initially small2, i.e. ε ¿ L one can approximate the

(L+ ε)±
√
1+n2 terms binomially

(L+ε)
√
1+n2 = L

√
1+n2

³
1 +

ε

L

´√1+n2 ≈ L
√
1+n2

n
1 +

ε

L

p
1 + n2

o
≈ L

√
1+n2 (A.53)

(L+ ε)−
√
1+n2 = L−

√
1+n2

³
1 +

ε

L

´−√1+n2 ≈ L−
√
1+n2

n
1− ε

L

p
1 + n2

o
≈ L−

√
1+n2

(A.54)

Applying this and differentiating the above expression wrt to ε yields (at θ, t = 0)

σ = u

µ
η2
k2
− η1

k1

¶µ
η1
k1
L
√
1+n2 +

η2
k2
L−

√
1+n2

¶−1 √1 + n2

φa
(A.55)

Since
µ
η1
k1
L
√
1+n2 +

η2
k2
L−

√
1+n2

¶−1 √
1+n2

φa must be > 0 for a real physical system,

the sign of σ is fixed by the sign of
η2
k2
− η1

k1
.

Hence for instability
η2
k2

>
η1
k1

(A.56)

which agrees with the more general condition derived for linear geometry when the

effect of gravity is also included.

Note these results agree with those presented by Phillips in [8] (pp 164) if one

changes the sign of u. In his analysis the unperturbed interface is defined to move in

the opposite direction of the gravitational field.

2The jist of the entire analysis is to assert a small perturbation and calculate conditions for that
perturbation to grow (by the sign of σ). The aim is not to solve for the exact shape of the interface.



Appendix B

Temperature variation of Sodium
Chloride and Sodium Sulphate
saturation solubility

Solubility is defined as the mass of salt dissolved divided by the total mass of solution.
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Figure B.1: Saturation solubility of sodium chloride as a function of temperature.
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Figure B.2: Saturation solubility of sodium sulphate as a function of temperature.


