

Science in Schools Workshop Marseilles March 2011.

Mathematics and

the Machine

The utility and beauty of computer visualization

Dr Andrew French

Summary

- Introduction
 - Computers and mathematics a harmonious relationship!
- Software demonstrations
 - Harmonograph
 - Spherium
 - Julia
- Rene Descartes' theory of the rainbow

Computers and mathematics

- All computer operations are fundamentally the change of a set of binary (0 or 1) switches in *memory* and in a *microprocessor*
- Binary digits e.g. 11110101 are a representation of *numbers*. (In this case 245)
- A 3GHz PC with a 64 bit data bus implies 192 billion switches can potentially be altered every second!
- Despite the appearance of a modern multi-media machine, a computer is essentially a 'number cruncher'

Computers vs humans

- Computers can perform millions of calculations per second
 - They follow mathematical recipes perfectly as directed
 - They don't get bored
- The human brain is massively more powerful than any computer yet built. We can all perform incredible feats of computation (try programming a computer to recognise a face from any angle...)
- ...Yet most of us cannot add up two double digit numbers in less than a few seconds

Humans + computers

Use a computer to become a superhuman calculator!

So why do we need all this computational power?

Computers are everywhere!

The utility and beauty of computation

- Computers perform fast arithmetic to enable many modern appliances to work
- In this workshop we will make use of this 'superpower' to create art from mathematics

We will then look at how maths can be used as a language to describe the physical world, and how the use of computers can enable us to relate the maths to what we can readily measure.

Summary

Introduction

– Computers and mathematics - a harmonious relationship!

- Software demonstrations
 - Harmonograph
 - Spherium
 - Julia
- Rene Descartes' theory of the rainbow

- The Harmonograph was a Victorian curiosity attributed to Professor Blackburn in 1844
- Use two or three pendulums to create strange and beautiful patterns

Example of a *lateral* harmonograph

Photo from The Science Museum

Mathematics and the Machine. Copyright A French. Marseilles 2011.

$$x = A_1 e^{-\frac{t}{T_1}} \sin(tW_1 + P_1) + A_2 e^{-\frac{t}{T_2}} \sin(tW_2 + P_2)$$

$$y = A_3 e^{-\frac{t}{T_3}} \sin(tW_3 + P_3) + A_4 e^{-\frac{t}{T_4}} \sin(tW_4 + P_4)$$

Lateral harmonograph

$$T = \frac{2\pi}{\omega \log\left(\frac{100}{100-D}\right)} [1, \infty, 1, \infty]$$

$$A = [1, 0 - a, 0]$$

$$V = [\omega, 0, F\omega, 0]$$

$$P = [0, 0, \phi, 0]$$

Parameters

t is time /seconds

 ω is 2π times the first pendulum swing frequency /Hz

a is the amplitude ratio

F is the frequency ratio

D is the damping factor (typically between 0 and 5)

$$x = A_1 e^{-\frac{t}{T_1}} \sin(tW_1 + P_1) + A_2 e^{-\frac{t}{T_2}} \sin(tW_2 + P_2)$$

$$y = A_3 e^{-\frac{t}{T_3}} \sin(tW_3 + P_3) + A_4 e^{-\frac{t}{T_4}} \sin(tW_4 + P_4)$$

Lateral harmonograph with frequency damping

$$T = \frac{2\pi}{\omega \log\left(\frac{100}{100-D}\right)} \left[1, \infty, \frac{1}{F}, \infty\right]$$
$$A = [1, 0 - a, 0]$$
$$W = [\omega, 0, F\omega, 0]$$
$$P = [0, 0, \phi, 0]$$

Parameters

t is time /seconds

 ω is 2π times the first pendulum swing frequency /Hz

a is the amplitude ratio

F is the frequency ratio

D is the damping factor (typically between 0 and 5)

$$x = A_1 e^{-\frac{t}{T_1}} \sin(tW_1 + P_1) + A_2 e^{-\frac{t}{T_2}} \sin(tW_2 + P_2)$$

$$y = A_3 e^{-\frac{t}{T_3}} \sin(tW_3 + P_3) + A_4 e^{-\frac{t}{T_4}} \sin(tW_4 + P_4)$$

Rotary harmonograph

$$T = \frac{2\pi}{\omega \log\left(\frac{100}{100-D}\right)} [1, 1, 1, 1]$$

$$A = [1, a, 1, a]$$

$$W = [\omega, -F\omega, \omega, -F\omega]$$

$$P = [0, \phi, \frac{\pi}{2}, \frac{\pi}{2} + \phi]$$

Parameters

t is time /seconds

 ω is 2π times the first pendulum swing frequency /Hz

a is the amplitude ratio

F is the frequency ratio

D is the damping factor (typically between 0 and 5)

$$x = A_1 e^{-\frac{t}{T_1}} \sin(tW_1 + P_1) + A_2 e^{-\frac{t}{T_2}} \sin(tW_2 + P_2)$$

$$y = A_3 e^{-\frac{t}{T_3}} \sin(tW_3 + P_3) + A_4 e^{-\frac{t}{T_4}} \sin(tW_4 + P_4)$$

Rotary harmonogrph with frequency damping

$$T = \frac{2\pi}{\omega \log\left(\frac{100}{100-D}\right)} \left[1, \frac{1}{F}, 1, \frac{1}{F}\right]$$
$$A = [1, a, 1, a]$$
$$W = [\omega, -F\omega, \omega, -F\omega]$$
$$P = [0, \phi, \frac{\pi}{2}, \frac{\pi}{2} + \phi]$$

Parameters

t is time /seconds

 ω is 2π times the first pendulum swing frequency /Hz

a is the amplitude ratio

F is the frequency ratio

D is the damping factor (typically between 0 and 5)

Musical harmony

- The mathematics of music has been known since the time of Pythagoras, 2500 years ago
- Frequency intervals of simple fractions e.g. 3:2 (a fifth) yield 'harmonious' music
- An octave means a frequency ratio of 2. An octave above concert A (440Hz) is therefore 880Hz. An octave below is 220Hz.
- The modern 'equal-tempered scale' divides an octave (the frequency ratio 2) into twelve parts such that

$$F_n = 2^{n/12} = \sqrt[n]{12}{\sqrt{2}}$$

Musical harmony

Name	Exact value in 12-TET	Decimal value in 12-TET	Cents	Just intonation interval
Unison (C)	$2^{0/12} = 1$	1.000000	0	$\frac{1}{1} = 1.000000$
Minor second (C♯/D♭)	$2^{1/12} = \sqrt[12]{2}$	1.059463	100	$\frac{16}{15} = 1.066667$
Major second (D)	$2^{2/12} = \sqrt[6]{2}$	1.122462	200	$\frac{9}{8}$ = 1.125000
Minor third (D♯/E♭)	$2^{3/12} = \sqrt[4]{2}$	1.189207	300	$\frac{6}{5}$ = 1.200000
Major third (E)	$2^{4/12} = \sqrt[3]{2}$	1.259921	400	$\frac{5}{4}$ = 1.250000
Perfect fourth (F)	$2^{5/12} = \sqrt[12]{32}$	1.334840	500	$\frac{4}{3}$ = 1.333333
Augmented fourth (F#/Gb)	$2^{6/12} = \sqrt{2}$	1.414214	600	$\frac{7}{5} = 1.400000$
Perfect fifth (G)	$2^{7/12} = \sqrt[12]{128}$	1.498307	700	$\frac{3}{2}$ = 1.500000
Minor sixth (G♯/A♭)	$2^{8/12} = \sqrt[3]{4}$	1.587401	800	$\frac{8}{5} = 1.600000$
Major sixth (A)	$2^{9/12} = \sqrt[4]{8}$	1.681793	900	$\frac{5}{3} = 1.666667$
Minor seventh (A♯/B♭)	$2^{10/12} = \sqrt[6]{32}$	1.781797	1000	$\frac{7}{4}$ = 1.750000
Major seventh (B)	$2^{11/12} = \sqrt[12]{2048}$	1.887749	1100	$\frac{15}{8} = 1.875000$
Octave (C)	$2^{12/12} = 2$	2.000000	1200	$\frac{2}{1} = 2.000000$

Represent musical harmonies visually with the harmonograph!

Summary

Introduction

– Computers and mathematics - a harmonious relationship!

- Software demonstrations
 - Harmonograph 🥎
 - Spherium
 - Julia
- Rene Descartes' theory of the rainbow

🛃 spherium		- • -
	_ Ammonite options_	i
	Plot spiral?	Add ridges
	Add bumps	Add ridges to colour
		Add bumps to colour
	Spiral type	
	Logarithmic	
	# spiral turns	# surface points per turn
	5	200
	Ridge frequency	Cross section ratio
	10	0.9
	Bump amplitude	Spiral bump amplitude
	0.01	0.5
	Spiral bump freque	ency
	10	
	Colouring function	
	None	-
	Default Save	settings Load settings
	Caus (1940)	
azimuth /dea 136.0001	Save PNG	
Output size Output DPI Sphere or surface?	A CONTRACTOR OF A	1 💕 💌 🗌
A4 landscape 300 Surface function f(azi,elev) abs(cos(elev*azi)*s	in(azi*elev))	
# surface points Renderer	n hu	
500 OpenGL Add axis Add colorbar Andy French.	March 2011	Spherium

🛃 spherium		
	Ammonite options_	
	Plot spiral?	Add ridges
	Add bumps	Add ridges to colour
		Add bumps to colour
	Spiral type	
	Logarithmic	
	# spiral turns	# surface points per turn
	5	200
	Ridge frequency	Cross section ratio
	10	0.9
	Bump amplitude	Spiral bump amplitude
	0.01	0.5
	Spiral bump frequ	ency
	10	
	Colouring function	
	None	~
	Default Save	settings Load settings
azimuth /deg 136.0001 4 23 elevation/d	Save .PNG	
Output size Output DPI Sphere or surface?		
A4 landscape 300 Sphere function f(azi,elev) abs(cos(elev*azi)*	sin(azi*elev))	
# surface points Renderer Writt	en hv	
500 OpenGL Add axis Add colorbar Andy French	. March 2011	Spherium

🛃 spherium		
	Ammonite options. Plot spiral? Add bumps Spiral type	 Add ridges Add ridges to colour Add bumps to colour
	Logarithmic # spiral turns 5	# surface points per turn 200
	Ridge frequency	Cross section ratio
	Bump amplitude 0.01 Spiral bump frequ	Spiral bump amplitude 0.5 uency
	10 Colouring function None	n
azimith	Default Save	e settings
136.0001 Image: state of the state of th	abs(cos(elev*azi)*sin(azi*elev))	
# surface points Renderer 500 OpenGL Image: Comparison of the state of the	Written by Andy French. March 2011	Spherium

Summary

Introduction

– Computers and mathematics - a harmonious relationship!

- Software demonstrations
 - Harmonograph 🍾
 - Spherium
 - Julia
- Rene Descartes' theory of the rainbow

Julia default: The Mandlebrot set

Mathematics and the Machine. Copyright A French. Marseilles 2011.

The Mandleplant slurping complexity from the Argand plane!

A slightly different Mandleincarnation!

In this case plot arg(z) following 25 iterations of $z \rightarrow z^2 + z_0$

The scary chaos beast!

12

In this case plot exp(-|z|) following 25 iterations of $z \rightarrow z^2 + z_0$

'Homering' in on the Cyclops (!)

🛃 julia			
	Julia mathematical options Julia function z-≻f(z,z0)		
	z-(sin(z)-cos(z))/(sin(z)+cos(z))		
	Map creation rule		
	plot z Julia		
	Convergence radius Iterations		
	4 30		
	Map function		
	exp_decay		
Define size of Argand diagram	Written by Andy "Dijon" French Version 1. March 2011		
xwidth x centre y centre	Reset to Julia defaults		
0.013789 -0.78372 -0.034464			
Composite image options Colour options	Output PNG image properties		
max # of tile pixels 800 NaN colour Colorr	nap image width image height		
Delete composite images [1 1 1] prism	800 600		

 $z \to z - \frac{\sin z - \cos z}{z}$ $\sin z + \cos z$

Monster of the deep!

The Mandlerocket!

 $z \rightarrow asin(z^2 + z_0)$

7 steps to enlightenment $z \rightarrow atan(z^2 + z_0)$

The light bulb

 $z \rightarrow \log(z^2 + z_0)$

Micro mandlebeast

 $z \rightarrow (z^2 + z_0)^2$

The profusion of power

 $z \rightarrow (z^2 + z_0)^z$

Day of Julia

Summary

- Introduction
 - Computers and mathematics a harmonious relationship!
- Software demonstrations
 - Harmonograph
 - Spherium Julia

Rene Descartes' theory of the rainbow

(separate presentation)